查找算法汇总
- 格式:ppt
- 大小:4.61 MB
- 文档页数:64
c语言中常用的查找C语言中常用的查找引言:在编程中,查找是一项非常常见且重要的操作。
无论是在数组、链表、树还是图等数据结构中,都需要进行查找操作来寻找特定的数据或者确定某个元素的存在与否。
C语言提供了多种查找算法和数据结构,本文将介绍C语言中常用的查找方法。
一、线性查找线性查找是最简单的查找方法之一,也称为顺序查找。
其基本思想是从数据集合的起始位置开始逐个比较待查找元素与集合中的元素,直到找到目标元素或者遍历完整个集合。
在C语言中,可以使用for循环或者while循环实现线性查找。
线性查找的时间复杂度为O(n),其中n为数据集合中元素的个数。
二、二分查找二分查找又称为折半查找,是一种高效的查找算法,但要求数据集合必须是有序的。
其基本思想是将数据集合分为两部分,然后通过与目标元素的比较来确定目标元素在哪个部分中,从而缩小查找范围。
重复这个过程直到找到目标元素或者确定目标元素不存在于数据集合中。
二分查找的时间复杂度为O(logn),其中n为数据集合中元素的个数。
三、哈希表查找哈希表是一种通过哈希函数将关键字映射到存储位置的数据结构,它能够以常数时间复杂度O(1)进行查找操作。
在C语言中,可以使用数组和链表的结合来实现哈希表。
哈希表的关键之处在于哈希函数的设计,良好的哈希函数能够将关键字均匀地映射到不同的存储位置,从而提高查找效率。
四、二叉搜索树查找二叉搜索树是一种常用的数据结构,它满足以下性质:对于任意节点,其左子树中的所有节点的值都小于该节点的值,而右子树中的所有节点的值都大于该节点的值。
在C语言中,可以使用指针和递归的方式来实现二叉搜索树。
通过比较目标值与当前节点的值,可以确定目标值位于左子树还是右子树中,从而缩小查找范围。
五、图的遍历在图的数据结构中,查找操作通常是指遍历操作。
图的遍历有两种方式:深度优先搜索(DFS)和广度优先搜索(BFS)。
深度优先搜索通过递归的方式依次访问图中的每个节点,直到找到目标节点或者遍历完整个图。
递归查找方法
1.二分查找法:递归地在有序数组中查找目标元素。
该方法
首先将数组的中间元素与目标元素进行比较,如果相等则返回
该元素的索引,如果目标元素小于中间元素,则在数组的左半
部分继续查找,否则在数组的右半部分继续查找,直到找到目
标元素或者数组为空。
2.深度优先搜索算法(DFS):在图结构中查找目标元素。
DFS通过递归地遍历图的邻接节点来查找目标元素。
具体实现时,需要使用一个布尔数组来标记已经访问过的节点,以避免
重复访问。
3.广度优先搜索算法(BFS):同样用于图结构中查找目标
元素。
BFS通过递归地遍历图的邻接节点,但是与DFS不同的是,BFS通过使用一个队列来实现节点的访问顺序。
具体实现时,首先将起始节点入队列,然后按照先入先出的顺序逐个出
队列并访问节点的邻接节点,直到找到目标元素或者队列为空。
4.递归遍历树结构:在树结构中查找目标元素的最直接方法
是通过递归地遍历树的每个节点来查找。
这种方法可以使用前序、中序或后序遍历三种方式来实现,具体选择哪种方式取决
于具体问题的要求。
C语言常用算法程序汇总C语言是一门广泛应用于计算机编程的语言,具有较高的效率和灵活性。
在C语言中,常见的算法程序包括排序算法、查找算法、递归算法等等。
以下是一些常用的C语言算法程序的汇总:1.排序算法:-冒泡排序:通过多次迭代比较相邻元素并交换位置,将最大的元素逐渐移动到正确的位置。
-插入排序:将待排序的元素与已排序的部分依次比较并插入到正确的位置。
-选择排序:每次从待排序的元素中选择最小的元素并与已排序的部分交换位置。
-快速排序:通过选择一个基准元素,将数组划分为两个子数组进行递归排序。
2.查找算法:-顺序查找:逐个比较数组中的元素,直到找到目标元素或到数组末尾。
-二分查找:通过比较目标元素与数组中间元素的大小,逐步缩小范围,直到找到目标元素。
-哈希查找:通过散列函数将目标元素映射到哈希表的索引位置进行查找。
3.递归算法:-阶乘:通过递归调用自身计算一个正整数的阶乘。
-斐波那契数列:通过递归调用自身计算斐波那契数列的第n个数。
-二叉树遍历:通过递归调用自身遍历二叉树的各个节点。
4.图算法:- 最短路径算法:如Dijkstra算法和Floyd算法,用于计算图中两个节点之间的最短路径。
-拓扑排序:通过对有向无环图进行排序,使得所有的边从排在前面的节点指向排在后面的节点。
- 最小生成树:如Prim算法和Kruskal算法,用于找到图中连接所有节点的最小子树。
5.动态规划:-最长公共子序列:通过寻找两个字符串中的最长公共子序列,解决字符串匹配问题。
-背包问题:通过动态规划解决在给定容量下选取物品使得总价值最大的问题。
-最大子序列和:通过动态规划解决一个数组中选取连续子序列使得和最大的问题。
以上只是一些C语言中常用的算法程序的汇总,实际上,还有很多其他的算法,如逆波兰表达式、霍夫曼编码、最小割等等。
通过学习这些算法,可以更好地理解C语言的应用和开发。
(完整版)《搜索算法》知识点总结1. 搜索算法的概念搜索算法是计算机科学中的一类算法,用于在一个数据集合中查找指定的数据项。
搜索算法的目标是通过最少的计算操作来找到目标数据项,以提高效率。
2. 常见的搜索算法2.1 线性搜索线性搜索是最简单的搜索算法之一,它从数据集合的第一个元素开始逐个比较,直到找到目标数据项或者遍历整个数据集合。
线性搜索的时间复杂度为O(n),其中n为数据集合的大小。
2.2 二分搜索二分搜索是一种高效的搜索算法,它适用于有序的数据集合。
它将数据集合分为两部分,并与目标数据项进行比较,然后根据比较结果确定继续搜索的方向。
通过每次排除一半的数据,二分搜索的时间复杂度为O(log n),其中n为数据集合的大小。
2.3 哈希搜索哈希搜索通过将数据项映射到哈希表中的特定索引位置来进行搜索。
通过哈希函数,可以快速找到目标数据项所在的位置。
哈希搜索的时间复杂度为O(1),但需要额外的存储空间来存储哈希表。
2.4 深度优先搜索深度优先搜索是一种递归的搜索算法,它从起始点开始一直沿着一个路径搜索,直到找到目标数据项或者无法继续搜索。
如果搜索失败,则回溯到上一个节点,并探索其他路径。
深度优先搜索在有向图和无向图中均适用。
2.5 广度优先搜索广度优先搜索是一种逐层扩展的搜索算法,它从起始点开始,先访问所有直接相邻的节点,然后再访问相邻节点的邻居节点。
通过队列数据结构,广度优先搜索可以按层次进行遍历,直到找到目标数据项。
广度优先搜索适用于无权图和加权图。
3. 搜索算法的应用场景搜索算法在各种领域和实际问题中广泛应用,包括但不限于以下几个方面:- 文本搜索:在大规模的文本数据集中查找关键字或短语。
- 图像搜索:根据图像特征找到相似的图像。
- 数据库查询:根据指定条件查询数据库中的记录。
- 路径规划:在地图上找到最短路径或最优路径。
- 推荐系统:根据用户的兴趣和偏好推荐相关的内容。
- 人工智能:在机器研究和深度研究中的搜索空间优化等。
18个查找函数-回复查找函数在计算机编程中是非常重要的工具,它们可以帮助我们在大量的数据中快速准确地找到所需的信息。
无论是对于数据分析、软件开发还是数据库管理,查找函数都是必不可少的。
本文将介绍18个常见的查找函数,并详细解释它们的功能和使用方法。
1. 线性查找(Linear Search)线性查找是最简单的一种查找方法,它从数据结构的一端开始逐个比较数据元素,直到找到目标元素或查找完整个数据结构。
如果数据结构是有序的,则可以使用二分查找等更高效的方法。
2. 二分查找(Binary Search)二分查找是一种针对有序数据结构的查找方法,它通过将待查找元素与数据中间位置的元素进行比较,从而将查找范围逐渐缩小一半,直到找到目标元素或确定不存在。
3. 插值查找(Interpolation Search)插值查找是一种改进的查找方法,它基于二分查找的思想,但是在选择比较元素时更加接近目标元素的位置。
这种方法适用于数据分布均匀的情况下,查找效率较高。
4. 哈希查找(Hash Search)哈希查找是一种基于哈希表实现的查找方法,它将关键字直接映射到哈希表的槽位上,从而能够在常数时间内快速定位目标元素。
这种方法适用于需要快速查找的场景。
5. 二叉查找树(Binary Search Tree)二叉查找树是一种经典的数据结构,它通过比较节点的值将数据分为左子树和右子树,并保持左子树节点的值小于根节点,右子树节点的值大于根节点。
在二叉查找树中进行查找操作时,可以根据节点值的大小关系选择下一步的查找方向。
6. 平衡二叉查找树(Balanced Binary Search Tree)平衡二叉查找树是在二叉查找树的基础上进行了平衡操作,以保持树的高度平衡,提高了查找的效率。
常见的平衡二叉查找树有红黑树和AVL树。
7. B树(B-Tree)B树是一种多路平衡查找树,它可以在每个节点中存储多个关键字和子节点,从而减少磁盘访问次数,提高查找效率。
数据结构中的查找算法总结静态查找是数据集合稳定不需要添加删除元素的查找包括:1. 顺序查找2. 折半查找3. Fibonacci4. 分块查找静态查找可以⽤线性表结构组织数据,这样可以使⽤顺序查找算法,再对关键字进⾏排序就可以使⽤折半查找或斐波那契查找等算法提⾼查找效率,平均查找长度:折半查找最⼩,分块次之,顺序查找最⼤。
顺序查找对有序⽆序表均适⽤,折半查找适⽤于有序表,分块查找要求表中元素是块与块之间的记录按关键字有序动态查找是数据集合需要添加删除元素的查找包括: 1. ⼆叉排序树 2. 平衡⼆叉树 3. 散列表 顺序查找适合于存储结构为顺序存储或链接存储的线性表。
顺序查找属于⽆序查找算法。
从数据结构线形表的⼀端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相⽐较,若相等则表⽰查找成功 查找成功时的平均查找长度为: ASL = 1/n(1+2+3+…+n) = (n+1)/2 ; 顺序查找的时间复杂度为O(n)。
元素必须是有序的,如果是⽆序的则要先进⾏排序操作。
⼆分查找即折半查找,属于有序查找算法。
⽤给定值value与中间结点mid的关键字⽐较,若相等则查找成功;若不相等,再根据value 与该中间结点关键字的⽐较结果确定下⼀步查找的⼦表 将数组的查找过程绘制成⼀棵⼆叉树排序树,如果查找的关键字不是中间记录的话,折半查找等于是把静态有序查找表分成了两棵⼦树,即查找结果只需要找其中的⼀半数据记录即可,等于⼯作量少了⼀半,然后继续折半查找,效率⾼。
根据⼆叉树的性质,具有n个结点的完全⼆叉树的深度为[log2n]+1。
尽管折半查找判定⼆叉树并不是完全⼆叉树,但同样相同的推导可以得出,最坏情况是查找到关键字或查找失败的次数为[log2n]+1,最好的情况是1次。
时间复杂度为O(log2n); 折半计算mid的公式 mid = (low+high)/2;if(a[mid]==value)return mid;if(a[mid]>value)high = mid-1;if(a[mid]<value)low = mid+1; 折半查找判定数中的结点都是查找成功的情况,将每个结点的空指针指向⼀个实际上不存在的结点——外结点,所有外界点都是查找不成功的情况,如图所⽰。
Java常见的七种查找算法1. 基本查找也叫做顺序查找,说明:顺序查找适合于存储结构为数组或者链表。
基本思想:顺序查找也称为线形查找,属于无序查找算法。
从数据结构线的一端开始,顺序扫描,依次将遍历到的结点与要查找的值相比较,若相等则表示查找成功;若遍历结束仍没有找到相同的,表示查找失败。
示例代码:public class A01_BasicSearchDemo1 {public static void main(String[] args){//基本查找/顺序查找//核心://从0索引开始挨个往后查找//需求:定义一个方法利用基本查找,查询某个元素是否存在//数据如下:{131, 127, 147, 81, 103, 23, 7, 79}int[] arr ={131,127,147,81,103,23,7,79};int number =82;System.out.println(basicSearch(arr, number));}//参数://一:数组//二:要查找的元素//返回值://元素是否存在public static boolean basicSearch(int[] arr,int number){//利用基本查找来查找number在数组中是否存在for(int i =0; i < arr.length; i++){if(arr[i]== number){return true;}}return false;}}2. 二分查找也叫做折半查找,说明:元素必须是有序的,从小到大,或者从大到小都是可以的。
如果是无序的,也可以先进行排序。
但是排序之后,会改变原有数据的顺序,查找出来元素位置跟原来的元素可能是不一样的,所以排序之后再查找只能判断当前数据是否在容器当中,返回的索引无实际的意义。
基本思想:也称为是折半查找,属于有序查找算法。
用给定值先与中间结点比较。
比较完之后有三种情况:•相等说明找到了•要查找的数据比中间节点小说明要查找的数字在中间节点左边•要查找的数据比中间节点大说明要查找的数字在中间节点右边代码示例:package com.itheima.search;public class A02_BinarySearchDemo1 {public static void main(String[] args){//二分查找/折半查找//核心://每次排除一半的查找范围//需求:定义一个方法利用二分查找,查询某个元素在数组中的索引//数据如下:{7, 23, 79, 81, 103, 127, 131, 147}int[] arr ={7,23,79,81,103,127,131,147};System.out.println(binarySearch(arr,150));}public static int binarySearch(int[] arr,int number){//1.定义两个变量记录要查找的范围int min =0;int max = arr.length-1;//2.利用循环不断的去找要查找的数据while(true){if(min > max){return-1;}//3.找到min和max的中间位置int mid =(min + max)/2;//4.拿着mid指向的元素跟要查找的元素进行比较if(arr[mid]> number){//4.1 number在mid的左边//min不变,max = mid - 1;max = mid -1;}else if(arr[mid]< number){//4.2 number在mid的右边//max不变,min = mid + 1;min = mid +1;}else{//4.3 number跟mid指向的元素一样//找到了return mid;}}}}3. 插值查找在介绍插值查找之前,先考虑一个问题:为什么二分查找算法一定要是折半,而不是折四分之一或者折更多呢?其实就是因为方便,简单,但是如果我能在二分查找的基础上,让中间的mid点,尽可能靠近想要查找的元素,那不就能提高查找的效率了吗?二分查找中查找点计算如下:mid=(low+high)/2, 即mid=low+1/2*(high-low);我们可以将查找的点改进为如下:mid=low+(key-a[low])/(a[high]-a[low])*(high-low),这样,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。
18个查找函数查找函数是计算机编程中常用的工具之一,用于在给定数据集中快速找到目标元素。
这些函数广泛应用于各种编程语言和领域,包括数据处理、数据库查询、图形算法等。
本文将介绍18个常见的查找函数,并逐步回答与之相关的问题。
1. 线性查找(Linear Search)线性查找是最简单的一种查找方法,它逐个地比较目标元素与数据集中的每个元素,直到找到目标或遍历完整个数据集。
但是,线性查找的时间复杂度较高,适用于小规模数据集或未排序的数据。
问题1:线性查找的时间复杂度是多少?答:线性查找的时间复杂度为O(n),其中n是数据集的大小。
2. 二分查找(Binary Search)二分查找是一种高效的查找算法,要求数据集必须是有序的。
它通过将数据集分成两半,并与目标元素进行比较,从而逐步缩小查找范围。
每次比较都可以将查找范围缩小一半,因此该算法的时间复杂度较低。
问题2:二分查找要求数据集必须是有序的吗?答:是的,二分查找要求数据集必须是有序的,这是保证算法正确性的前提。
3. 插值查找(Interpolation Search)插值查找是对二分查找的改进,它根据目标元素与数据集中最大和最小元素的关系,估算目标所在位置,并逐步逼近目标。
这种方法在被查找的数据集分布较为均匀时能够显著提高查找效率。
问题3:何时应该使用插值查找而不是二分查找?答:当被查找的数据集分布较为均匀时,插值查找能够提供更好的性能。
而对于分布不均匀的数据集,二分查找可能更适用。
4. 斐波那契查找(Fibonacci Search)斐波那契查找是一种利用斐波那契数列的性质进行查找的算法。
它类似于二分查找,但将查找范围按照斐波那契数列进行划分。
这种方法在数据集较大时能够降低比较次数,提高查找效率。
问题4:为什么使用斐波那契数列进行划分?答:斐波那契数列具有递增的性质,能够将查找范围按照黄金分割比例进行划分,使得划分后的两部分大小接近,提高了查找的效率。
常见查找算法的优缺点分析在计算机科学中,查找算法是一种用于在数据集合中查找特定元素的方法。
不同的查找算法在时间复杂度、空间复杂度和适用场景等方面存在差异。
下面我们就来详细分析几种常见查找算法的优缺点。
首先是顺序查找算法。
这是最简单也是最直观的一种查找方法。
它的基本思路是从数据集合的开头,依次比较每个元素,直到找到目标元素或者遍历完整个集合。
顺序查找的优点在于实现简单,理解容易,对于小型数据集或者无序数据集来说,是一种可行的选择。
而且,它不需要对数据进行预处理,如排序等操作。
然而,其缺点也很明显。
当数据量较大时,顺序查找的效率非常低,因为它的平均时间复杂度为 O(n),其中 n 是数据集合的元素个数。
这意味着,随着数据量的增加,查找所需的时间会线性增长。
接下来是二分查找算法。
这种算法要求数据集合是有序的。
它通过不断将数据集一分为二,比较目标元素与中间元素的大小,从而缩小查找范围,逐步逼近目标元素。
二分查找的优点十分突出。
它的时间复杂度为 O(log n),效率比顺序查找高得多。
在大型有序数据集上,能够显著减少查找时间。
但二分查找也有其局限性。
首先,它要求数据集必须是有序的,如果数据集经常变动,维护有序性的成本可能会很高。
其次,对于小型数据集,由于其实现相对复杂,可能不如顺序查找来得直接和高效。
然后是哈希查找算法。
哈希查找通过将关键码值映射到一个特定的地址,从而实现快速查找。
哈希查找的最大优点就是查找速度极快,平均时间复杂度接近O(1),无论数据集的大小如何。
只要哈希函数设计得好,能够有效地避免冲突,就可以在常数时间内完成查找。
不过,哈希查找也并非完美。
哈希函数的设计是一个关键问题,如果设计不当,可能会导致大量的冲突,从而影响查找效率。
而且,当数据量增加时,可能需要重新调整哈希表的大小,这会带来一定的额外开销。
再说说插值查找算法。
它是二分查找的一种改进,根据要查找的关键字与查找表中最大最小关键字的比较结果,来选择合适的中间值进行比较。