【期末试卷】泉州市南安市2015-2016年八年级上期末数学试卷
- 格式:doc
- 大小:289.50 KB
- 文档页数:16
2015-2016学年度⼈教版⼋年级上学期数学期末试卷及答案(2套)2015-2016学年度⼋年级上学期数学期末试卷(⼀)⼀、选⼀选, ⽐⽐谁细⼼(本⼤题共12⼩题, 每⼩题3分, 共36分, 在每⼩题给出的四个选项中, 只有⼀项是符合题⽬要求的) 1.计算)A.2B.±2C.-2D.4 2.计算23()ab 的结果是() A.5abB.6abC.35a bD.36a b3,则x 的取值范围是() A.x >5B.x ≥5C.x ≠5D.x ≥04.如图所⽰,在下列条件中,不能..判断△ABD ≌△BAC 的条件是( ) A.∠D =∠C ,∠BAD =∠ABCB.∠BAD =∠ABC ,∠ABD =∠BACC.BD =AC ,∠BAD =∠ABCD.AD =BC ,BD =AC5.如图,六边形ABCDEF 是轴对称图形,CF 所在的直线是它的对称轴,若∠AFE+∠BCD =280°,则∠AFC+∠BCF 的⼤⼩是() A.80°B.140°C.160°D.180°6.下列图象中,以⽅程220y x --=的解为坐标的点组成的图象是()7.任意给定⼀个⾮零实数,按下列程序计算,最后输出的结果是()FEDCBAA.mB.1m +C.1m -D. 2m 8.已知⼀次函数(1)y a x b =-+的图象如图所⽰,那么a 的取值范围是( )A.1a >B.1a <C.0a >D.0a <9.若0a >且2x a =,3y a =,则x ya -的值为()A.1-B.1C.23D.3210.如图,已知△ABC 中,∠ABC=45°,AC=4,H 是⾼AD 和BE 的交点,则线段BH 的长度为()B.C.5D.411.如图,是某⼯程队在“村村通”⼯程中修筑的公路长度y (⽶)与时间x (天)之间的关系图象.根据图象提供的信息,可知该公路的长度是( )⽶. A.504 B.432 C.324 D.72012.直线y=kx+2过点(1,-2),则k 的值是() A .4 B .-4 C .-8 D .8⼆、填⼀填,看看谁仔细(本⼤题共10⼩题,每⼩题3分,共30分,请你将最简答案填在“ ”上)13.⼀个等腰三⾓形的⼀个底⾓为40°,则它的顶⾓的度数是 . 14.观察下列各式:2(1)(1)1x x x -+=-;23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-;……(第10题图)(第11题图)根据前⾯各式的规律可得到12(1)(1)n n n x x x x x ---+++++=… .15.计算: -28x 4y 2÷7x 3y =16.如图所⽰,观察规律并填空:.17.若a 42a y=a 19,则 y=_____________. 18.计算:(52)20083(-25)20093(-1)2007=_____________. 19.已知点A (-2,4),则点A 关于y 轴对称的点的坐标为_____________. 20. 2-2的相反数是,绝对值是 .21. 0.01的平⽅根是_____,-27的⽴⽅根是______,1_ _. 22. 16的平⽅根为_________.三、解⼀解,试试谁更棒(本⼤题共9⼩题,共72分.)17.(本题4分)计算:(8)()x y x y --.18.(本题5分)分解因式:3269x x x -+.19.(本题5分)已知:如图,AB=AD,AC=AE,∠BAC=∠DAE.求证:BC=DE.20.(4)先化简在求值,2()()()y x y x y x y x +++--,其中x = -2,y = 12.21.(本题5分)2008年6⽉1⽇起,我国实施“限塑令”,开始有偿使⽤环保购物袋.为了满⾜市场需求,某⼚家⽣产A B ,两种款式的布质环保购物袋,每天共⽣产4500个,两EDCBA种购物袋的成本和售价如下表,设每天⽣产A种购物袋x个,每天共获利y元.(1)求出y与x的函数关系式;(2)如果该⼚每天最多投⼊成本10000元,那么每天最多获利多少元?=的图象l是第⼀、三象限的23.(本题10分)如图,在平⾯直⾓坐标系中,函数y x⾓平分线.实验与探究:由图观察易知A(0,2)关于直线l的对称点A'的坐标为(2,0),请在图中分别标明B(5,3) 、C(-2,5) 关于直线l的对称点B'、C'的位置,并写出它们的坐标: B'、C';归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平⾯内任⼀点P(m,n)关于第⼀、三象限的⾓平分线l的对称点P'的坐标为;参考答案及评分标准⼀、选⼀选,⽐⽐谁细⼼(每⼩题3分,共36分)⼆、填⼀填, 看看谁仔细(每⼩题3分,共12分)13. 100°. 14.11n x+-. 15. x >-2 . 16.105°三、解⼀解, 试试谁更棒(本⼤题共9⼩题,共72分)17.解:(8)()x y x y --=2288x xy xy y --+ ……………………………4分 =2298x xy y -+ ……………………………6分18.解:3269x x x -+=2(69)x x x -+ ……………………………3分 =2(3)x x - ……………………………6分 19.证明:∵∠BAD=∠CAE ∴∠BAC=∠DAE ……………………………1分在△BAC 和△DAE 中BA DA BAC DAE AC AE =??∠=∠??=?∴△BAC ≌△DAE …………………………………………………………4分∴BC=DE …………………………………………………………………6分20.解:原式22222x xy y x y x ??=-++-÷?? 222x xy x ??=-÷??22x y =- ………………………………………………5分当11,2x y =-=,原式=-3 ………………………………………………7分 21.解:⑴5152S x =-+ (06)x << ………………………………………4分⑵由515102x -+=,得x=2 ∴P 点坐标为(2,4) …………………………………………………8分22.解:(1)根据题意得:=(2.3-2)(3.53)(4500)y x x +--=0.2+2250x - ………………………………4分(2)根据题意得:23(4500)10000x x +-≤解得3500x ≥元0.20k =-< ,y ∴随x 增⼤⽽减⼩∴当3500x =时,0.2350022501550y =-?+=答:该⼚每天⾄多获利1550元. ………………………………………8分 23.解:(1)如图:(3,5)B ',(5,2)C '- …………………………………2分(2)(n,m) ………………………………………………………………3分 (3)由(2)得,D(0,-3) 关于直线l 的对称点D '的坐标为(-3,0),连接D 'E 交直线l 于点Q ,此时点Q 到D 、E 两点的距离之和最⼩ …………………4分设过D '(-3,0) 、E(-1,-4)的设直线的解析式为b kx y +=,则304k b k b -+=??-+=-?,.∴26k b =-??=-?,.∴26y x =--.由26y x y x =--??=?,.得22x y =-??=-?,.∴所求Q 点的坐标为(-2,-2)………………………………………9分24.解:⑴AFD DCA ∠=∠(或相等) ……………………………………2分(2)AFD DCA ∠=∠(或成⽴) ……………………………………3分理由如下:由△ABC ≌△DEF∴AB DE BC EF ==,,ABC DEF BAC EDF ∠=∠∠=∠,ABC FBC DEF CBF ∴∠-∠=∠-∠ ABF DEC ∴∠=∠在ABF △和DEC △中,AB DE ABF DEC BF EC =??∠=∠??=?,,,ABF DEC BAF EDC ∴∠=∠△≌△,BAC BAF EDF EDC FAC CDF ∴∠-∠=∠-∠∠=∠, AOD FAC AFD CDF DCA ∠=∠+∠=∠+∠AFD DCA ∴∠=∠ ………………………………………………………8分(3)如图,BO AD ⊥. …………………………………………………9分………………………………………………10分25.解:⑴等腰直⾓三⾓形 ………………………………………………1分∵2220a ab b -+= ∴2()0a b -= ∴a b =∵∠AOB=90° ∴△AOB 为等腰直⾓三⾓形 …………………4分⑵∵∠MOA+∠MAO=90°,∠MOA+∠MOB=90° ∴∠MAO=∠MOB ∵AM ⊥OQ ,BN ⊥OQ ∴∠AMO=∠BNO=90°在△MAO 和△BON 中MAO MOB AMO BNO OA OB ∠=∠??∠=∠??=?∴△MAO ≌△NOB ∴OM=BN,AM=ON,OM=BN∴MN=ON-OM=AM-BN=5 ……………………………………8分⑶PO=PD 且PO ⊥PDADO F CB (E ) G如图,延长DP 到点C ,使DP=PC,连结OP 、OD 、OC 、BC在△DEP 和△CBP DP PC DPE CPB PE PB =??∠=∠??=?∴△DEP ≌△CBP ∴CB=DE=DA,∠DEP=∠CBP=135°在△OAD 和△OBC DA CB DAO CBO OA OB =??∠=∠??=?∴△OAD ≌△OBC∴OD=OC,∠AOD=∠COB ∴△DOC 为等腰直⾓三⾓形∴PO=PD ,且PO ⊥PD. ……………………………………………12分2015-2016学年度⼋年级上学期数学期末试卷(⼆)⼀、选择题: 1.在0,31-, π,9这四个数中,是⽆理数的是() A .0 B .-31C. πD. 92.下列乘法中,不能运⽤平⽅差公式进⾏运算的是()A .(x +a )(x -a )B .(a+b )(-a -b )C .(-x -b )(x -b )D .(b +m )(m -b )3.在下列运算中,计算正确的是()A. a a a 326?=B. a a a 824÷=C. ()a a 235=D. ()ab a b 2224= 4. 如图,DEF ABC ??≌,点A 与D ,点B 与E 分别是对应顶点,BC=5cm ,BF=7cm ,则EC 的长为()A. 1cmB. 2cmC. 3cmD. 4cm5、点P (3,2)关于x 轴的对称点'P 的坐标是()A .(3,-2)B .(-3,2)C .(-3,-2)D .(3,2)AD G6.某同学⽹购⼀种图书,每册定价20元,另加书价的5%作为快递运费。
新人教版2015~2016 学年度八年级上学期期末 数学试题(含答案)2016.1.24一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个..符合题意.请将正确选项前的字母填在表格中相应的位置. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.下列标志是轴对称图形的是A B C D2.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把数字0.000 002 5用科学记数法表示为A .62.510⨯B .60.2510-⨯C .62510-⨯D .62.510-⨯ 3.使分式23x -有意义的x 的取值范围是 A .3x ≠ B .3x > C .3x < D .3x = 4.下列计算中,正确的是A .238()a a =B .842a a a ÷=C .325a a a +=D .235a a a ⋅= 5.如图,△ABC ≌△DCB ,若AC =7,BE =5,则DE 的长为A .2B .3C .4D .56.在平面直角坐标系中,已知点A (2,m )和点B (n ,-3)关 于x 轴对称,则m n +的值是A .-1B .1C .5D .-57.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同..的刻度分别与点M ,N 重合,过角尺顶点C 作射线OC .由此作法便可得△MOC ≌△NOC ,其依据是A .SSSB .SASC .ASAD .AAS8.下列各式中,计算正确的是A .2(21)21x x x -=-B .23193x x x +=-- C .22(2)4a a +=+ D . 2(2)(3)6x x x x +-=+-9.若1a b +=,则222a b b -+的值为A .4B .3C .1D .010.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线MN 交AC 于D 点,则∠DBC 的度数是A .20°B .30°C .40°D .50° 11.若分式61a +的值为正整数,则整数a 的值有 A .3个 B .4个 C .6个 D .8个 12.如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边 的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值为A .6B .8C .10D .12二、填空题(本题共24分,每小题3分) 13.当x = 时,分式1xx -值为0. 14.分解因式:24x y y -= .15.计算:233x y ⎛⎫-= ⎪⎝⎭.16.如果等腰三角形的两边长分别为3和7,那么它的周长为 .17.如图,DE ⊥AB ,∠A =25°,∠D =45°,则∠ACB 的度数为 .18.等式222()a b a b +=+成立的条件为 .19.如图,在△ABC 中,BD 是边AC 上的高,CE 平分∠ACB ,交BD于点E ,DE =2,BC =5,则△BCE 的面积为 .20.图1是用绳索织成的一片网的一部分,小明探索这片网的结点数(V ),网眼数(F ),边数(E )之间的关系,他采用由特殊到一般的方法进行探索,列表如下:特殊网图结点数(V ) 4 6 9 12 网眼数(F ) 1 2 4 6 边数(E )4712☆表中“☆”处应填的数字为 ;根据上述探索过程,可以猜想V ,F , E 之间满足的等量关系为 ;如图2,若网眼形状为六边形,则V ,F , E 之间满足的等量关系为 .图1 图2三、解答题(本题共16分,每小题4分)21.计算:114(π3)32-⎛⎫---+- ⎪⎝⎭.22.如图,E 为BC 上一点,AC ∥BD ,AC =BE ,BC =DB .求证:AB= ED .23.计算:2234221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭.24.解方程:3111x x x -=-+.四、解答题(本题共13分,第25题4分,第26题5分,第27题4分) 25.已知3x y -=,求2[()()()]2x y x y x y x -++-÷的值.26.北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.27.已知:如图,线段AB和射线BM交于点B.(1)利用尺规完成以下作图,并保留作图痕迹(不写作法).①在射线BM上作一点C,使AC=AB;②作∠ABM的角平分线交AC于D点;③在射线CM上作一点E,使CE=CD,连接DE.(2)在(1)所作的图形中,猜想线段BD与DE的数量关系,并证明.AMB五、解答题(本题共11分,第28题5分,第29题6分)28.如图1,我们在2016年1月的日历中标出一个十字星,并计算它的“十字差”(将十字星左右两数,上下两数分别相乘再将所得的积作差,称为该十字星的“十字差”).该十字星的十字差为121462048⨯-⨯=,再选择其它位置的十字星,可以发现“十字差”仍为48.(1)如图2,将正整数依次填入5列的长方形数表中,探究不同位置十字星的“十字差”,可以发现相应的“十字差”也是一个定值,则这个定值为____________.(2)若将正整数依次填入k列的长方形数表中(3k≥),继续前面的探究,可以发现相应“十字差”为与列数k有关的定值,请用k表示出这个定值,并证明你的结论.(3)如图3,将正整数依次填入三角形的数表中,探究不同十字星的“十字差”,若某个十字星中心的数在第32行,且其相应的“十字差”为2015,则这个十字星中心的数为__________________(直接写出结果).图1 图2图329.数学老师布置了这样一道作业题:在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,α+β=120°,连接AD,求∠ADB的度数.小聪提供了研究这个问题的过程和思路:先从特殊问题开始研究,当α=90°,β=30°时(如图1),利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形的相关知识便可解决这个问题.图1 图2 (1)请结合小聪研究问题的过程和思路,求出这种特殊情况下∠ADB的度数;(2)结合小聪研究特殊问题的启发,请解决数学老师布置的这道作业题;(3)解决完老师布置的这道作业题后,小聪进一步思考,当点D和点A在直线BC的异侧时,且∠ADB的度数与(1)中相同,则α,β满足的条件为_________________ ______________________________(直接写出结果).答 案一、选择题(本题共36分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDADACABCBBC二、填空题(本题共24分,每小题3分)13.0x =; 14.(2)(2)y x x +-; 15.269x y; 16.17; 17.110°;18.0ab =; 19.5; 20.17,1V F E +-=,1V F E +-=. 三、解答题(本题共16分,每小题4分) 21.解:原式=2-----------------------------------------------------------------------3分 =2.-------------------------------------------------------------------------4分 22.证明:∵AC ∥BD ,∴∠C =∠EBD . ---------------------------------------------------------1分在△ABC 和△EDB 中,,,,AC EB C EBD BC DB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△EDB . ----------------------------------------------------------------------3分∴AB =ED . --------------------------------------------------------------------4分 23.解:原式=2342(1)2(1)(1)(1)(1)(1)x x x x x x x x ⎡⎤+++-÷⎢⎥+-+--⎣⎦--------------------------------------------1分=2(34)2(1)(1)(1)(1)2x x x x x x +-+-⋅+-+-----------------------------------------------2分=22(1)(1)(1)2x x x x x +-⋅+-+--------------------------------------------------3分=11x x -+.---------------------------------------------------------------------4分 24.解:方程两边乘以(1)(1)x x +-,得(1)(1)(1)3(1)x x x x x +-+-=-. ------------------------------------------1分解得2x =.----------------------------------------------------------3分检验:当2x =时,(1)(1)0x x +-≠.所以, 原分式方程的解为2x =. ---------------------------------4分四、解答题(本题共13分,第25题4分,第26题5分,第27题4分)25.解:原式=2222(2)2x xy y x y x -++-÷ -------------------------------------1分 =2(22)2x xy x -÷ -------------------------------------------2分=x y -. -------------------------------------------------------3分当3x y -=时,原式=x y -=3. -------------------------------------------4分26.解:设普通快车的平均行驶速度为x 千米/时,则高铁列车的平均行驶速度为1.5x 千米/时.----1分 根据题意得18018011.53x x -=. -------------------------------------3分 解得 180x =. ----------------------------------------------4分 经检验,180x =是所列分式方程的解,且符合题意.∴1.5 1.5180270x =⨯=.答:高铁列车的平均行驶速度为270千米/时. -----------------------------5分27.解:(1)(注:不写结论不扣分)ME DC B A-------------------------------1分(2)BD =DE-------------------------------------------------------------2分证明:∵BD 平分∠ABC ,∴∠1=12∠ABC . ∵AB =AC , ∴∠ABC =∠4. ∴∠1=12∠4. ∵CE =CD , ∴∠2=∠3.∵∠4=∠2+∠3, ∴∠3=12∠4.∴∠1=∠3. ∴BD =DE . ---------------------------------------------------------4分五、解答题(本题共11分,第28题5分,第29题6分) 28.(1)24; -------------------------------------------------------------------------------------1分(2)21k -;---------------------------------------------------------------------------2分 证明:设十字星中心的数为x ,则十字星左右两数分别为1x -,1x +,上下两数分别为x k -,x k +(3k ≥).十字差为(1)(1)()()x x x k x k -+--+ -----------------------------------3分=222(1)()x x k ---=2221x x k --+=21k -. -------------------------------------------------4分∴这个定值为21k -.4321ME DCB A(3)976. --------------------------------------------------------------------5分 29.(1)解:如图,作∠AB D ′=∠ABD , B D ′=BD ,连接CD ′,AD ′.∵AB =AC ,∠BAC =90°, ∴∠ABC =45°. ∵∠DBC =30°,∴∠ABD =∠ABC -∠DBC =15°.∵AB =AB ,∠AB D ′=∠ABD , B D ′=BD , ∴△ABD ≌△ABD ′.∴∠ABD =∠ABD ′=15°,∠ADB =∠AD ′B . ∴∠D ′BC =∠ABD ′+∠ABC =60°. ∵BD =BD ′,BD =BC , ∴BD ′=BC . ∴△D ′BC 是等边三角形. ----------------------------------------------1分∴D ′B =D ′C ,∠BD ′C =60°. ∵AB AC =,AD AD ''=, ∴△AD ′B ≌△AD ′C . ∴∠AD ′B =∠AD ′C .∴∠ AD ′B =12∠BD ′C =30°.∴∠ADB=30°. -------------------------------------------------------------2分 (2)解:第一种情况:当60120α︒︒<≤时如图,作∠AB D ′=∠ABD , B D ′=BD ,连接CD ′,AD ′. ∵AB =AC , ∴∠ABC =∠ACB .∵∠BAC +∠ABC +∠ACB =180°, ∴α+2∠ABC =180°.∴∠ABC =1809022αα︒-=︒-. ∴∠ABD =∠ABC -∠DBC =902αβ︒--.同(1)可证△ABD ≌△ABD ′. ∴∠ABD =∠ABD ′=902αβ︒--,BD =BD ′,∠ADB =∠AD ′B .∴∠D ′BC =∠ABD ′+∠ABC =9090180()22ααβαβ︒--+︒-=︒-+.∵120αβ+=︒,∴∠D ′BC =60°.以下同(1)可求得∠ADB =30°. -----------------------------------------3分第二种情况:当060α︒︒<<时,D 'DCBA如图,作∠AB D ′=∠ABD , B D ′=BD ,连接CD ′,AD ′. ∵AB =AC ,∴∠ABC =∠ACB .∵∠BAC +∠ABC +∠ACB =180°, ∴α+2∠ABC =180°. ∴∠ABC =1809022αα︒-=︒-. ∴∠ABD =∠DBC -∠ABC =902αβ-︒-(). 同(1)可证△ABD ≌△ABD ′.∴∠ABD =∠ABD ′=902αβ-︒-(),BD =BD ′,∠ADB =∠AD ′B . ∴∠D ′BC =∠ABC -∠ABD ′=90[(90)]=180()22ααβαβ︒---︒-︒-+.∵120αβ+=︒,∴∠D ′BC =60°.∵BD =BD ′,BD =BC , ∴BD ′=BC .∴△D ′BC 是等边三角形.∴D ′B =D ′C ,∠BD ′C =60°. 同(1)可证△AD ′B ≌△AD ′C . ∴∠AD ′B =∠AD ′C .∵∠AD ′B +∠AD ′C +∠BD ′C =360°, ∴2∠ AD ′B +60°=360°. ∴∠ AD ′B =150°.∴∠ADB =150°. ---------------------------------------------4分(3)0180α︒︒<<,60β=︒或120180α︒︒<<,120αβ-=︒. ------------------------------6分(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分)。
南安市上学期初中期末教学质量监测初二年数学试题(满分:150分;考试时间:120分钟)学校 班级 姓名 考号 友情提示:本次考试有设置答题卡,请把各题的解答另填写在答题卡指定的位置,这样的解答才有效!一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.,3.14,311,5π,0.66666,这6个数中,无理数共有( ).A .2个B .3个C .4个D .5个 2.下列算式中,结果等于6a 的是( ).A .42a a +B .222a a a ++C .23a a ⋅D .222a a a ⋅⋅ 3.在下列各组数据中,不能作为直角三角形的三边长的是( ). A .4,5,6 B .6,8,10 C .7,24,25 D .9,12,154.如图,是某企业1~5月份利润的折线统计图, 根据图中信息,下列说法错误的是( ). A .利润最高是130万 B .利润最低是100万C .利润增长最快的是2~3月份D .利润增长最快的是4~5月份5.若2(3)(2)y y y my n +-=++,则m 、n 的值分别为( ). A .5m =,6n = B .1m =,6n =- C .1m =,6n = D .5m =,6n =- 6.下列作图语言中,正确的是( ).A .画直线AB =3cmB .延长线段AB 到C ,使BC =ABC .画射线AB =5cmD .延长射线OA 到B ,使AB =OA(第4题图)7.下列命题中,真命题的是( ).A .同位角相等B .相等的角是对顶角C .同角的余角相等D .内错角相等8.用反证法证明“若0a b >>,则22a b >”,应假设( ).A .22a b <B .22a b =C .2a ≤2bD .2a ≥2b9.下列式子中,能用平方差公式计算的是( )A .(1)(1)x x -+-B .(1)(1)x x --+C .(1)(1)x x ---+D .(1)(1)x x -- 10.如图所示,是一块三角形的草坪,现在要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( ).A .△ABC 的三边中线的交点B .△ABC 的三条角平分线的交点C .△ABC 的三条高所在直线的交点D .△ABC 的三边的中垂线的交点二、填空题(本大题共6小题,每小题4分,共24分).11.若1n n <<+,且n 是正整数,则n = . 12.分解因式:22mn mn m ++= .13.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A 型血的人数是 人.14.写出命题“内错角相等”的逆命题 . 15.计算:201620181()(3)3⨯-= .16.如图是“赵爽弦图”,由4个全等的直角三角形拼成的图形,若大正方形的面积是13,小正方形的面积是1, 设直角三角形较长直角边为a ,较短直角边为b ,则a b +的值是 .(第16题图)(第10题图)ABC三、解答题(本大题共9小题,共86分.解答应写出文字说明,证明过程或演算步骤)17.(81.18.(8分)用简便方法计算(要写出运算过程):(1)2018201620172⨯- (2)219819.(8分)先化简,再求值:23522)1612()42(3a a a a a a ÷---,其中2-=a .20.(8分)如图,已知A ,F ,E ,C 在同一直线上,AB ∥CD ,∠1=∠2,AF =CE . (1)写出图中全等的三角形; (2)选择其中一对,说明理由.21.(8分)某校八年级数学兴趣小组的同学调查了若干名家长对“初中生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图。
南安市 2015-2016 学年度上学期初中期末教课质量抽查初一年数学参照答案及评分标准说明:(一)考生的正确解法与“参照答案” 不一样时,可参照“参照答案及评分标准” 的精神进行评分.(二)如解答的某一步出现错误,这一错误没有改变后续部分的观察目的,可酌情给分,但原则上不超过后边应得分数的二分之一;如属严重的看法性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步应得的累计分数.一、选择题(每题3分,共 21 分)1.A ;2. C;;;;;.二、填空题(每题4分,共 40 分)8.3 ;9.105;;;;13. 39 °;14.2x35x23x115.乐;16 .55°;17. (1) a ,(2) 0.三、解答题18.(每题 5 分,共 15 分)(1) 解:原式 = -12+4,,,3分= -8,,,, 5 分(2)解:原式 =1245724,,,,,, 1 分624128= 4 1021,,,,,, 4 分=15,,,,,,, 5 分(3)解:原式16 2 34,,,,,,,2分31683,,,,,,,, 3 分4166,,,,,,,,, 4 分22,,,,,,,,,,,, 5 分19.化简 (6 分)解:原式= x 29x547x 2x ,,3分= 8x 28x9,,,,,,,6分20. (7 分)先化简,再求值:解:原式 = 7x 26xy 1 6x 2 8xy 5,, 2分 = x 2 2xy 4,,,,,,,4 分当 x1, y1时,21 )原式= (1)2 2 (1) ( 4 ,,,,5 分 =11 4 2,,,,6 分= 2,,,,,,, 7 分21.(8 分)解:( 1) AB AC BC,,,,,,,,,,,, 2 分 12 4 ,,,,,,,,,,,, 3 分8,,,,,,,,,,,,4 分(2)∵ O 是 AC 的中点,∴ AO1AC ,,,,,,,,,,,,,,,,,5 分26,,,,,,,,,,,,,,,,,6 分 ∴ OBAB AO ,,,,,,,,,,,,,,7 分8 62,,,,,,,,,,,,,,8 分22. (9 分)解 : 画图以下:(画线段、直线、射线、垂线各 2 分),,8 分D点 B 到直线 AC 的距离是线段 BD 的长度。
南安市2015—2016学年八年级下期末教学质量数学试卷含答案 初二年数学试题(满分:150分; 考试时刻:120分钟)学校 班级 姓名 考号友情提示:所有解答必须填写到答题卡相应的位置上. 一、选择题(每小题4分,共40分). 1.下列各式中不属于分式的是( ). A .a1 B .1-x x C . 12D . 112--x x 2.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为 0.00 000 156m ,则那个数用科学记数法可表示为( ).A .50.15610⨯B .50.15610-⨯C .61.5610⨯D .61.5610-⨯3.在平面直角坐标系中,点P (3,4)关于y 轴对称点的坐标为( ).A .(﹣3,4)B .(3,4)C .(3,﹣4)D .(﹣3,﹣4) 4.函数11-=x y 自变量x 的取值范畴是( ). A .1x ≠- B . 1x =- C . 0x ≠ D .1x ≠(第7题图)5.在本学期数学期中考中,某小组8名同学的成绩如下: 90、103、105、105、105、115、140、140,则这组数据的众数为( ).A .105B .90C .140D .50 6.函数2y x =- 的图象不通过( ). A .第一象限 B .第二象限 C .第三象限D .第四象限7.如图,在□ABCD 中,AC 与BD 交于点O ,下列讲法正确的是( ).A . AC=BDB . AC ⊥BD C . AO=CO D . AB=BC如图,菱形ABCD 的对角线长分不为6cm 和8cm ,则此菱形的面积为( ).A .12cm2B .24cm2C .48cm2D .96cm2如图,矩形ABCD 中,AC 与BD 交于点O ,若60AOB ∠=o ,5AB =,则对角线AC 的长为( ) . A .5 B .7.5 C .10 D .1510.小亮家与姥姥家相距24km ,小亮8:00从家动身,骑自行车去姥姥家.妈妈8:30 从家动身,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S (km )(第8题图)(第9题图)(第10题图) y x图(1)ODC P511图(2)(第16题图)与时刻t (时)的函数图象如图所示.按照图象得到下列结论,其中错误的是( ).A .小亮骑自行车的平均速度是12km/hB .妈妈比小亮提早0.5小时到达姥姥家C .妈妈在距家12km 处追上小亮D .9:30妈妈追上小亮二、填空题(每小题4分,共24分).11.运算:111---a a a = .12.将直线x y 2=向下平移3个单位所得直线的解析式为 .13.反比例函数xky =的图像通过点(2,3),则=k .14.如图,在□ABCD 中,70B ∠=o ,则D ∠= ______°. 15.甲、乙两人各进行10次射击竞赛,平均成绩均为8环,方差分不是:23S =甲,21S =乙, 则射击成绩较稳固的是 乙(填“甲”或“乙”).16.如图1,在矩形ABCD 中,5BC =.动点P 从点B 动身,沿BC —CD —DA 运动至点A 停止.设点P 运动的路程为x ,△A BP 的面积为y ,如果y 关于x 的函数图象如图2所示,则DC = , y 的最大值是 .三、解答题(共86分). 17.(6分)运算:()()120161212π-⎛⎫--+- ⎪⎝⎭18.(6分)解方程:132+=x x19.(6分)某校要在甲、乙两名学生中选拔一名参加市级唱歌竞赛,对两人进行一次考核,两人的唱功、舞台形象、歌曲难度评分统计如下表所示,依次按三项得分的5﹕2﹕3确定最终成绩,请你运算他们各自最后得分,并确定哪位选手被选拔上.20.(6分)某中学八年级(一)班共40名同学开展了“我为灾区献爱心”的活动.活动终止后,生活委员小林将捐款情形进行了统计,并绘制成如图所示的统计图.(1)该班同学捐款数额的众数是 元,中位数是 元;(2)该班平均每人捐款多少元?唱功 舞台形象 歌曲难度 甲 90 80 90 乙801009021.(8分)如图,在□ABCD中,点E、F分不在边AD、BC上,且AE=CF.求证:四边形EBFD是平行四边形.22.(8分)如图,矩形ABCD的两条对角线相交于点O,DE∥AC,CE∥BD.求证:四边形OCED是菱形.23.(10分)如图,直线bxky+=11与反比例函数xky22=(x<0)的图象相交于点A、点B,其中点A的坐标为(-2,4),点B的坐标为(-4,m).(1)求出m,bkk,,21的值;(2)请直截了当写出1y>2y时x的取值范畴.24.(10分)某旅行风景区门票价格为a元/人,对团体票规定:10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,y与x之间的函数关系如图所示.(1)填空:a=,b=;(2)要求出:当x>10时,y与x之间的函数关系式;(3)导游小王带A旅行团到该景区旅行,付门票费用2 720元(导游不需购买门票),求A旅行团有多少人?25.(12分)如图,已知直线b=与坐标轴分不交于点kxy+A(0,8)、B(8,0),动点C从原点O动身沿OA方向以每秒1个单位长度向点A运动,动点D从点B动身沿BO方向以每秒1个单位长度向点O运动,动点C、D同时动身,当动点D到达原点O时,点C、D停止运动,设运动时刻为t 秒.(1)直截了当写出直线的解析式:;(2)若E点的坐标为(-2,0),当△OCE的面积为5时.①求t的值,② 探究:在y 轴上是否存在点P ,使△PCD 的面积等于△CED 的面积?若存在,要求出P 点的坐标;若不存在,请讲明理由.26.(14分)如图,正方形ABCD 的边长为4,点P 为对角线BD 上一动点,点E 在射线BC 上.填空:∠PBC= 度. 若BE t =, 连结PE 、PC ,则PE PC +的最小值为 ,PE PC -的最大值是 (用含t 的代数式表示);(3)若点E 是直线AP 与射线BC 的交点,当△PCE 为等腰三角形时,求∠PEC 的度数.(本页可作为草稿纸使用)南安市2015—2016学年度下学期期末教学质量监测初二数学试题参考答案及评分标准讲明:(一)考生的正确解法与“参考答案”不同时,可参照“参考答案及评分标准”的精神进行评分.(二)如解答的某一步显现错误,这一步没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得的分数的二分之一;如属严峻的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确作完该步应得的累计分数.一、选择题(每小题3分,共21分)1.C;2.D;3.A;4.D;5.A;6.B;7.C;8.B;9.C;10.D.二、填空题(每小题4分,共40分)11.1;12. 3=xy;13.6;14.70;15.乙;12-6. 6, 15.三、解答题(共86分)17.(本小题6分)解:原式=1-2+ 1………………………………………………………………………(5分)= 0……………………………………………………………………………(6分)18.(本小题6分)解:2=(…………………………………………………………+)1xx3……………(2分)+2=x2x3………………………………………………………………………(4分)x…………………………………………………………………=2…………(5分)经检验2x…==x是原方程的解,∴原方程的解是2……………………(6分)19.(本小题6分)4140310016501230920=⨯+⨯+⨯+⨯解:甲得分88103901028010590=⨯+⨯+⨯………………………………………(2分)乙得分523801009087101010⨯+⨯+⨯=………………………………………(4分)∵88>87 ∴甲能够被选拔上………………………………………………………………(6分)20.(本小题6分) 解:(1)50,30;………………………………………………………………………(4分)(2)该班平均每人捐款 元…………(6分)(本小题8分)证明:在平行四边形ABCD 中 AD ∥BC ,AD=B C …………………………………(2分)∵AE=CF ∴AD-AE=BC-CF …………………………………………………………………(4分)即DE=BF …………………………………………………………………………(5分)又∵DE ∥BF……………………………………………………………………(7分)∴四边形EBFD 是平行四边形………………………………………………(8分) (本题也可先证明△ABE ≌△CDF ,请按照实际情形给分)22. (本小题8分)证明:∵ DE ∥AC ,CE ∥BD ………………………………………………………(2分)∴ 四边形OCED 是平行四边形………………………………………………(3分)在矩形ABCD 中AC=BD ,OC=21AC ,OD=21B D …………………………………(6分)∴OC =OD ………………………………………………………………………(7分)∴ □OCED 是菱形……………………………………………………………(8分)23.(本小题10分)解:(1)∵点A (-2,4)在反比例函数22k y x图像上∴242-=k ,82-=k ……………………………………………………………(2分)∴反比例函数为xy 82-=………………………………………………………(3分) ∵点B (-4,m )在反比例函数xy 82-=图像上∴248=--=m ……………………………………………………………………(4分)∵点A (-2,4)、点B (-4,2)在直线b x k y +=11上 ∴4224k bk b=-+⎧⎨=-+⎩ …………………………………………………………………(6分)解得:16k b =⎧⎨=⎩……………………………………………………………………(8分)(2)-4<x <-2.…………………………………………………………………(10分)24.(本小题10分) 解:(1)80,8;………………………………………………………………………(4分)(2)当x >10时,8010(10)800.8y x =⨯+-⨯g ……………………………(6分)16064+=x y ………………………………………………………………(7分)(3)∵2720>800,∴x >10……………………………………………………(8分)2720=64x +160 x =40…………………………………………………………………………(9分)∴A 旅行团有40人.……………………………………………………………(10分)25. (本小题12分) .解:(1)8y x =-+…………………………………………………………………(3分)(2)①12OEC S OE OC =⋅V Q ;………………(4分)∴12=52t ⨯⨯ ∴5t = ………………………………(6分)由①得 t=5∴OC=5,OD=3, ∴C (0,5),D (3,0),设直线CD 的解析式为:y kx b =+将C (0,5),D (3,0),代入上式得:5,53k b =-=,∴直线CD 的解析式为:553y x =-+……………………………………………(7分)过E 点作EF ∥CD ,交y 轴于点P ,如图, 设直线EF 的解析式为:153y x b =-+将E (﹣2,0)代入得1103b =-∴直线EF 的解析式为:51033y x =--当0x =时,103y =-∴P 100,3⎛⎫- ⎪⎝⎭ ………………………………(9分)又∵E 为(﹣2,0)、D (3,0)、B (8,0) ∴D 为EB 中点,∴DCE DCBS S =V V ……………………………………………(10分)过点B 作直线BH ∥CD ,直线BH 与y 轴的交点为点P 设直线BH 的解析式为:253y x b =-+ 将E (8,0)代入得:2403b =∴直线BH 的解析式为:54033y x =-+∴P400,3⎛⎫⎪⎝⎭……………………………………………………………………………(11分)综上所述:当△OCE 的面积为5时,在y 轴存在点P ,使△PCD 的面积等于△CED 的面积,点P 的坐标为:P 100,3⎛⎫-⎪⎝⎭、400,3⎛⎫⎪⎝⎭……………………………………(12分) 解法二:设点),0(a P ,DCE S ∆=2255)2(32121=⨯--=•OC DE ……………(8分)352121⨯-=•=∆a OD PC S DCP …………………………………………………(9分)∴225523=-a ,解得340310或-=a .……………………………………………(10分)∴P 100,3⎛⎫- ⎪⎝⎭或400,3⎛⎫⎪⎝⎭…………………………………………………………(11分)综上所述:当△OCE 的面积为5时,在y 轴存在点P ,使△PCD 的面积等于△CED 的面积,点P 的坐标为:P 100,3⎛⎫- ⎪⎝⎭、400,3⎛⎫⎪⎝⎭……………………………………(12分)26.(本小题14分)(1)∠PBC= 45度………………………………………………………(3分)(2)PE PC +的最小值为5分)PE PC -的最大值是4t -………………………………………………(8分)(备注:写成 PE PC -的最大值是 4t - 或(4t - )………………(6分)(3))①当点E 在BC 的延长线上时,如图,ΔPCE 是等腰三角形,则CP =CE ,∴∠CPE=∠CEP.[来源:%zzste^p.co~m *#]∴∠BCP=∠CPE+∠CEP=2∠CEP∵在正方形ABCD 中,∠ABC=90° ,B∴∠PBA=∠PBC=45°, 又AB=BC ,BP =BP , ∴ΔABP ≌ΔCBP ,∴∠BAP=∠BCP=2∠CEP ,∵∠BAP+∠PEC =90°,∴2∠PEC+∠PEC =90° ∴∠PEC=30°.…………………………………………………………………(11分)②当点E 在BC 上时,如图,ΔPCE 是等腰三角形,则P E =CE ,∴∠CPE=∠PCE.∴∠BEP=∠CPE+∠PCE=2∠ECP[来 ∵四边形ABCD 是正方形,∴∠PBA=∠PBC=45°,又AB=BC ,BP =BP ,∴ΔABP ≌ΔCBP ,∴∠BAP=∠BCP∵∠BAP+∠AEB =90°,∴2∠BCP+∠BCP =90° ∴∠BCP=30°.∴∠AEB=60°. ∴∠PEC=180°-∠AEB=120°……………………………………………(13分)综上所述:当△PCE 为等腰三角形时,∠PEC 的度数为30°或120°…………(14分)BD。
(完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】的全部内容。
2015—2016学年度第一学期末测试一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个. A 。
1 B2 C.3 D.4 2。
与3—2相等的是( )A.91B.91- C.9D.-9 3。
当分式21-x 有意义时,x 的取值范围是( )A.x <2 B 。
x >2 C.x ≠2 D 。
x ≥2 4.下列长度的各种线段,可以组成三角形的是( ) A 。
1,2,3B.1,5,5 C 。
3,3,6 D 。
4,5,6 5.下列式子一定成立的是( )A 。
3232a a a =+B 。
632a a a =• C. ()623a a = D 。
326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B 。
7 C.8 D 。
97。
空气质量检测数据pm2。
5是值环境空气中,直径小于等于2。
5微米的颗粒物,已知1微米=0。
000001米,2。
5微米用科学记数法可表示为( )米。
A 。
2。
5×106B.2.5×105C 。
2.5×10—5D 。
2.5×10-68。
已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )。
2015-2016第一学期八年级数学期末试题一、选择题(每小题4分,共40分)1、若分式11-2+x x 的值为零,则x 的值为( ) A. 1 B. -1 C. ±1 D. 02、下列运算正确的是( )A. x 4²x 3 =x 12B.(x 3)4 =x 7C. x 4÷x 3=x(x ≠0)D. x 4+x 4=x 83、已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是 ( )A. 4cmB. 5cmC. 6cmD.13cm4、如图,AC ∥BD ,AD 与BC 相交于O ,∠A =45°,∠B =30°,那么∠AOB 等于( )A.75°B.60°C.45°D.30(4题) (6题) (10题)5、若等腰三角形的一个内角为50°,则另两个角的度数为( )A.65°、65° B 、65°、65°或50°、80°C.50°、80° D 、50°、50°6、如图,MP 、NQ 分别垂直平分AB 、AC 且BC =6cm ,则△APQ 的周长为( )cmA.12B.6C.8D.无法确定7、下列运算中正确的是( )A .236X =X XB .1--=y+x y +x C .b a b +a =b a b +ab +a --22222 D . yx =+y +x 11 8、已知正n 边形的一个内角为135°,则边数n 的值是( )A.6B.7C.8D.109、将多项式x 3-xy 2分解因式,结果正确的是( )A.•x (x 2-y 2)B.x (•x -y )2C.x (x +y )2D.x (x+y )(x -y )10、如图,D 是AB 边上的中点,将△ABC 沿过D 的直线折叠,使点A 落在BC 上F 处,若∠B =50°,则∠BDF 度数是( )A.80°B.70°C.60°D.不确定二、填空题(每小题3分,共18分)11、如图,在△ABC 中,∠C 是直角,AD 平分∠BAC ,交BC 于点D 。
2015——2016学年度第一学期期末教学质量测试八年级数学试卷一.选择题(每小题2分,共20分)1.下列各数中,属于无理数的是( )(A )﹣1 (B )3.1415 (C )12(D 2. 若一个有理数的平方根与立方根是相等的,则这个有理数一定是 ( ) (A) 0 (B) 1 (C) 0或1 (D) 0和±1 3.下列命题中,逆命题是真命题的是( )(A )直角三角形的两锐角互余. (B )对顶角相等. (C )若两直线垂直,则两直线有交点. (D )若21,1x x ==则.4.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )(A )40°. (B )100°. (C )50°或70°. (D )40°或100°. 5.如图,图中的尺规作图是作( )(A )线段的垂直平分线. (B )一条线段等于已知线段. (C )一个角等于已知角. (D )角平分线.6.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC=5cm, △ADC 的周长为17cm,则BC 的长为( )(A )7cm (B )10cm (C )12cm (D )22cm5题图 6题图 7题图7.如图是某手机店今年1—5月份音乐手机销售额统计图。
根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是( )(A )1月至2月 (B )2月至3月 (C )3月至4月 (D )4月至5月8. 若b 为常数,要使16x 2+bx+1成为完全平方式,那么b 的值是 ( )(A) 4 (B) 8 (C) ±4 (D) ±89题图 10题图9.如图,正方形网格中有△ABC ,若小方格边长为1,则△ABC 是( )(A )直角三角形. (B )锐角三角形. (C )钝角三角形. (D )以上都不对. 10.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )(A )48. (B )60. (C )76. (D )80.二、填空题(每小题2分,共18分)11.计算:25a a ⋅= .12.因式分解:24x y y -=__________________.13. 如图将4个长、宽分别均为a 、b 的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是__________________.13题图 14题图14.将一张长方形的纸片ABCD 按如图所示方式折叠,使C 点落在/C 处,/BC 交AD 于点E ,则△EBD 的形状是__________________.15.某校对1200名女生的身高进行了测量,身高在 1.58m ~1.63m 这一小组的频率为0.25,则该组共有_________人16. 如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,若再以A为圆心,以OA长为半径画弧,与弧AB交于点C,则∠AOC=_________度16题图 17题图17.如图,将一根长为20cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,筷子露在杯子外面的长度为_________cm18.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。
2015—2016学年度第一学期期末学业质量评估八年级数学试题(时间120分钟,满分120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷上.2. 填空题和解答题答案用黑色或蓝黑色墨水钢笔、中性笔或圆珠笔书写.一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填在下面的表格里,每小题选对得3分,满分36分.多选、不选、错选均记零分.)1.下列命题中真命题是A. 两边分别对应相等且有一角为30º的两个等腰三角形全等B. 两边和其中一边的对角分别对应相等的两个三角形全等C. 两个锐角分别对应相等的两个直角三角形全等D. 两角和一边分别对应相等的两个三角形全等2. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是A.B.C.D.3. 某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是A. 96,94.5B. 96,95C. 95,94.5D. 95,954. 如图,P在AB上,AE=AG,BE=BG,则图中全等三角形的组数一共有A.1 组B.2 组C.3组D.4组5. 等腰三角形的一个角是80°,则它的底角是A.50°B.80°C.20°或80°D.50°或80°6. 对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°7. 甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定正确的是A.甲、乙射中的总环数相同B.甲、乙的众数相同C.乙的成绩波动较大D.甲的成绩稳定8. 如图,OP平分∠AOB,PC⊥OA于C,D在OB上,则PC与PD 的大小关系是A.PC≥PDB.PC=PDC.PC≤PDD.不能确定9. 已知2a =3b =4c ≠0,则c b a +的值为 A. 54 B. 45 C.2 D. 2110. 白浪河是潍坊的母亲河,为打造特色滨水景观区,现有一段河道整治任务由A 、B 两工程队完成.A 工程队单独整治该河道要16天才能完成;B 工程队单独整治该河道要24天才能完成.现在A 工程队单独做6天后,B 工程队加入合做完成剩下的工程,那么A 工程队一共做的天数是A .12B .13C .14D .1511. 已知a=2x ,b=2y ,x +y=100xy ,那么分式abba +的值等于 A. 200 B. 100 C. 50 D. 2512. 已知一组数据:-1,x ,0,1,-2的平均数是0,那么,这组数据的方差是 A.2 B.2 C.4 D.10二、填空题(本题共6小题,要求将每小题的最后结果填写在横线上. 每小题4分,满分24分)13.已知点A (3,﹣2),点B (a ,b )是A 点关于y 轴的对称点,则a+b=_________. 14. 老师为了了解学生周末利用网络进行学习的时间,随机调查了10名学生,其统计数据如下表,则这10名学生周末利用网络进行学习的平均时间是 h.全等三角形的对应边相等17. 如图,△ABC 中,DE 是AC 的垂直平分线,AE=3cm ,△ABD 的周长为13cm ,则△ABC 的周长等于________cm .18. 如图,AD 是∠BAC 的角平分线,E 是AB 上一点,AE=AC ,EF ∥BC 交AC 于F .下列结论①△ADC ≌△ADE ;②CE 平分∠DEF ;③AD 垂直平分CE .其中正确的是三、解答题(本题共6小题,共60分.解答应写出文字说明、证明过程或推演步骤.) 19.(本大题满分20分)(1)计算:①9122-m --32m ②-12a a -a -1(2(320.(本大题满分6分)已知:如图,A B∥DC,点E是BC上一点,∠1=∠2,∠3=∠4.求证:AE⊥DE王大伯几年前承包了甲、乙两片荒山,各栽了100棵杨梅树,成活率为98%,现已结果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?22.(本大题满分8分)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即匀速步行回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度(单位:米/分)是多少?(2)李明能否在联欢会开始前赶到学校?24.(本大题满分10分)已知:如图,点B,C,E三点在同一条直线上,CD平分∠ACE,DB=DA,DM⊥BE于M.(1)求证:AC=BM+CM;(2)若AC=2,BC=1,求CM的长.。
2015-2016学年八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中有几个选项符合题意,选错、不选、多选或涂改不清的均不给分)1.在下列四个轴对称图形中,对称轴的条数最多的是( )A.等腰三角形B.等边三角形C.圆D.正方形2.下面有4个汽车标志图案,其中不是轴对称图形的是( )A. B.C.D.3.若分式的值为零,则x的值为( )A.±1 B.﹣1 C.1 D.不存在4.下列运算错误的是( )A.x2•x4=x6B.(﹣b)2•(﹣b)4=﹣b6C.x•x3•x5=x9D.(a+1)2(a+1)3=(a+1)55.下列各因式分解中,结论正确的是( )A.x2﹣5x﹣6=(x﹣2)(x﹣3)B.x2+x﹣6=(x+2)(x﹣3)C.ax+ay+1=a(x+y)+1 D.ma2b+mab2+ab=ab(ma+mb+1)6.如图,在△ABC中,若AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数是( )A.45°B.40°C.35°D.30°7.到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点8.若等腰三角形的两条边的长分别为3cm和7cm,则它的周长是( )A.10cm B.13cm C.17cm D.13cm或17cm9.如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有( )对.A.5对B.4对C.3对D.2对10.如图是屋架设计图的一部分,点D是斜梁AB的AB的中点,立柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于( )A.3m B.2m C.1m D.4m二、填空题(本题共有6小题,每小题3分,共18分)11.要使分式有意义,那么x必须满足__________.12.已知一个n边形的内角和是其外角和的5倍,则n=__________.13.如图,已知△ABC≌△AFE,若∠ACB=65°,则∠EAC等于__________度.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于__________度.15.如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=6cm,BC=4cm,S△ABC=10cm2,则DE=__________cm.16.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号__________.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.三、解答题(本题共有7小题,共72分)17.完成下列运算(1)计算:7a2•(﹣2a)2+a•(﹣3a)3(2)计算:(a+b+1)(a﹣b+1)+b2﹣2a.18.(14分)完成下列运算(1)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2(2)先化简,再求值:,其中x=1,y=3.19.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.20.如图,已知AB=AC,D是BC边的中点,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.21.客车和货车同时分别从甲乙两城沿同一公路相向而行,相遇时客车比货车多行驶了180千米,相遇后,客车再经过4小时到达乙城,货车再经过9小时到达甲城,求客车、货车的速度和甲乙两城间的路程.22.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.23.在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.2015-2016学年八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中有几个选项符合题意,选错、不选、多选或涂改不清的均不给分)1.在下列四个轴对称图形中,对称轴的条数最多的是( )A.等腰三角形B.等边三角形C.圆D.正方形【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、有1条对称轴;B、有3条对称轴;C、有无数条对称轴;D、有4条对称轴.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下面有4个汽车标志图案,其中不是轴对称图形的是( )A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、是轴对称图形,故错误;D、不是轴对称图形,故正确.故选D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.若分式的值为零,则x的值为( )A.±1 B.﹣1 C.1 D.不存在【考点】分式的值为零的条件.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得,|x|﹣1=0,且x﹣1≠0,解得x=﹣1.故选:B.【点评】本题考查了分式为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.下列运算错误的是( )A.x2•x4=x6B.(﹣b)2•(﹣b)4=﹣b6C.x•x3•x5=x9D.(a+1)2(a+1)3=(a+1)5【考点】同底数幂的乘法.【分析】根据同底数幂的乘法,底数不变指数相加,可得答案.【解答】解:A、底数不变指数相加,故A正确;B、底数不变指数相加,故B错误;C、底数不变指数相加,故C正确;D、底数不变指数相加,故D正确;故选:B.【点评】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加是解题关键.5.下列各因式分解中,结论正确的是( )A.x2﹣5x﹣6=(x﹣2)(x﹣3)B.x2+x﹣6=(x+2)(x﹣3)C.ax+ay+1=a(x+y)+1 D.ma2b+mab2+ab=ab(ma+mb+1)【考点】因式分解-十字相乘法等;因式分解-提公因式法.【专题】计算题.【分析】原式各项分解因式得到结果,即可做出判断.【解答】解:A、原式=(x﹣6)(x+1),错误;B、原式=(x﹣2)(x+3),错误;C、原式不能分解,错误;D、原式=ab(ma+mb+1),正确,故选D【点评】此题考查了因式分解﹣十字相乘法与提公因式法,熟练掌握因式分解的方法是解本题的关键.6.如图,在△ABC中,若AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数是( )A.45°B.40°C.35°D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°.∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD=30°∴∠BCD=∠ACB﹣∠ACD=45°.故选A.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.7.到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点【考点】角平分线的性质.【专题】几何图形问题.【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项为C.8.若等腰三角形的两条边的长分别为3cm和7cm,则它的周长是( )A.10cm B.13cm C.17cm D.13cm或17cm【考点】等腰三角形的性质;三角形三边关系.【分析】等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17(cm).故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有( )对.A.5对B.4对C.3对D.2对【考点】全等三角形的判定.【分析】利用全等三角形的判定方法,利用HL、ASA进而判断即可.【解答】解:由题意可得出:△ABE≌△ACF(HL),△ADF≌△ADE(HL),△ABD≌△ACD (SAS),△BFD≌△CED(ASA).故选:B.【点评】本题考查三角形全等的判定方法及等腰三角形的性质;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图是屋架设计图的一部分,点D是斜梁AB的AB的中点,立柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于( )A.3m B.2m C.1m D.4m【考点】含30度角的直角三角形.【专题】应用题.【分析】由于BC、DE垂直于横梁AC,可得BC∥DE,而D是AB中点,可知AB=BD,利用平行线分线段成比例定理可得AE:CE=AD:BD,从而有AE=CE,即可证DE是△ABC的中位线,可得DE=BC,在Rt△ABC中易求BC,进而可求DE.【解答】解:如右图所示,∵立柱BC、DE垂直于横梁AC,∴BC∥DE,∵D是AB中点,∴AD=BD,∴AE:CE=AD:BD,∴AE=CE,∴DE是△ABC的中位线,∴DE=BC,在Rt△ABC中,∵∠ADE=60°,∴∠A=30°,∴BC=AB=6m,∴DE=3m.故选A.【点评】本题考查了平行线分线段成比例定理、三角形中位线定理、直角三角形30°的角所对的边等于斜边的一半.解题的关键是证明DE是△ABC的中位线.二、填空题(本题共有6小题,每小题3分,共18分)11.要使分式有意义,那么x必须满足x≠2.【考点】分式有意义的条件.【分析】根据分母不等于0列式求解即可.【解答】解:由题意得,x﹣2≠0,解得x≠2.故答案为:x≠2.【点评】从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.已知一个n边形的内角和是其外角和的5倍,则n=12.【考点】多边形内角与外角.【分析】利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的5倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×5,解得n=12.故答案为:12.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.13.如图,已知△ABC≌△AFE,若∠ACB=65°,则∠EAC等于50度.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠ACB=∠AEF=65°,然后在△EAC中利用三角形内角和定理即可求出求出∠EAC的度数.【解答】解:∵△ABC≌△AFE,∴∠ACB=∠AEF=65°,∴∠EAC=180°﹣∠ACB﹣∠AEF=50°.故答案为50.【点评】本题考查了全等三角形的性质,三角形内角和定理,熟记性质并准确识图是解题的关键.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于80度.【考点】全等三角形的判定与性质.【分析】根据SSS证△BAD≌△CAD,根据全等得出∠BAD=∠CAD,∠B=∠C=20°,根据三角形的外角性质得出∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,求出∠BDC=∠B+∠C+∠BAC,代入求出即可.【解答】解:过D作射线AF,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS),∴∠BAD=∠CAD,∠B=∠C=20°,∵∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,∴∠BDF+∠CDF=∠B+∠BAD+∠C+∠CAD,∴∠BDC=∠B+∠C+∠BAC,∵∠C=∠B=20°,∠BDC=120°,∴∠BAC=80°.故答案为:80.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是求出∠BDC=∠B+∠C+∠BAC和∠C的度数,难度适中.15.如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=6cm,BC=4cm,S△ABC=10cm2,则DE=2cm.【考点】角平分线的性质.【分析】过D作DF⊥BC于F,根据角平分线性质求出DE=DF,根据三角形的面积公式得出关于DE的方程,求出方程的解即可.【解答】解:过D作DF⊥BC于F,∵BD是∠ABC的角平分线,DE⊥AB,∴DF=DE,∵S△ABC=10cm2,AB=6cm,BC=4cm,∴×BC×DF+×AB×DE=10,∴×4×DE+×6×DE=10,∴DE=2,故答案为:2.【点评】本题考查了三角形的面积,角平分线性质的应用,注意:角平分线上的点到角的两边的距离相等.16.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号①②④.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.【考点】角平分线的性质;全等三角形的判定与性质.【分析】由射线OC上的任意一点到∠AOB的两边的距离都相等,根据角平分线的判定定理可知OC平分∠AOB.要得到OE=OF,就要让△ODE≌△ODF,①②④都行,只有③ED=FD不行,因为证明三角形全等没有边边角定理.【解答】解:∵射线OC上的任意一点到∠AOB的两边的距离都相等,∴OC平分∠AOB.①若①∠ODE=∠ODF,根据ASA定理可求出△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;②若∠OED=∠OFD,根据AAS定理可得△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;③若ED=FD条件不能得出.错误;④若EF⊥OC,根据ASA定理可求出△OGE≌△OGF,由三角形全等的性质可知OE=OF.正确.故答案为①②④.【点评】本题主要考查了角平分线的判定,三角形全等的判定与性质;由求线段相等转化为添加条件使三角形全等是正确解答本题的关键.三、解答题(本题共有7小题,共72分)17.完成下列运算(1)计算:7a2•(﹣2a)2+a•(﹣3a)3(2)计算:(a+b+1)(a﹣b+1)+b2﹣2a.【考点】整式的混合运算.【分析】(1)先算乘方,再算乘法,最后算加减,合并同类项即可;(2)先用平方差公式计算,再用完全平方公式计算,然后合并同类项即可.【解答】解:(1)原式=7a2•4a2+a•(﹣27a3)=28a4﹣27a4=a4;(2)原式=(a+1)2﹣b2+b2﹣2a=a2+2a+1﹣2a=a2+1.【点评】本题考查了整式的混合运算:先算乘方,再算乘法,最后算加减;注意乘法公式的运用.18.(14分)完成下列运算(1)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2(2)先化简,再求值:,其中x=1,y=3.【考点】分式的化简求值;整式的混合运算—化简求值.【分析】(1)先根据整式混合运算的法则把原式进行化简,再把x=1,y=2代入进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x=1,y=3代入进行计算即可.【解答】解:(1)原式=4x2﹣y2﹣4y2+x2=5(x2﹣y2),当x=1,y=2时,原式=5×(1﹣4)=﹣15;(2)原式=﹣•=+===,当x=1,y=3,∴原式=3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.【考点】等腰三角形的性质.【分析】设∠BAD=x.由AD平分∠BAC,得出∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.由AC=BC,得出∠B=∠BAC=2x.根据三角形外角的性质得出∠ADC=∠B+∠BAD=60°,即2x+x=60°,求得x=20°,那么∠B=∠BAC=40°.然后在△ABC中,根据三角形内角和定理得出∠C=180°﹣∠B﹣∠BAC=100°.【解答】解:设∠BAD=x.∵AD平分∠BAC,∴∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.∵AC=BC,∴∠B=∠BAC=2x.∵∠ADC=∠B+∠BAD=60°,∴2x+x=60°,∴x=20°,∴∠B=∠BAC=40°.在△ABC中,∵∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=100°.【点评】本题考查了等腰三角形的性质,角平分线定义,三角形内角和定理,三角形外角的性质,难度适中.设∠BAD=x,利用∠ADC=60°列出关于x的方程是解题的关键.20.如图,已知AB=AC,D是BC边的中点,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】利用等腰三角形的性质和全等三角形的判定定理ASA证得△AED≌△AFD,则由该全等三角形的对应边相等得到DE=DF.【解答】证明:∵AB=AC,D是BC边的中点,∴AD⊥BC,∠EAD=∠FAD.又∵DE和DF分别平分∠ADB和∠ADC,∴∠EDA=∠FDA=45°.在△AED与△AFD中,,∴△AED≌△AFD(ASA),∴DE=DF.【点评】本题考查了全等三角形的判定与性质和等腰三角形的性质.此题利用了等腰三角形“三线合一”的性质推知来证明三角形全等的对应角.21.客车和货车同时分别从甲乙两城沿同一公路相向而行,相遇时客车比货车多行驶了180千米,相遇后,客车再经过4小时到达乙城,货车再经过9小时到达甲城,求客车、货车的速度和甲乙两城间的路程.【考点】分式方程的应用.【分析】可设客车的速度是x千米/小时,则货车的速度是千米/小时,以相遇时时间相等作为等量关系,列出方程求解即可.【解答】解:设客车的速度是x千米/小时,则货车的速度是千米/小时,依题意有=,解得x1=90,x2=﹣18(不合题意舍去),经检验,x=90是原方程的解,==60,90×4+60×9=360+540=900(千米).答:客车的速度是90千米/小时,则货车的速度是60千米/小时,甲乙两城间的路程是900千米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.注意分式方程要验根.22.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】在AB上取一点F,使A F=AC,连结EF,就可以得出△ACE≌△AFE,就有∠C=∠AFE.由平行线的性质就有∠C+∠D=180°,由∠AFE+∠EFB=180°得出∠EFB=∠D,在证明△BEF≌△BED就可以得出BF=BD,进而就可以得出结论.【解答】证明:在AB上取一点F,使AF=AC,连结EF.∵EA、EB分别平分∠CAB和∠DBA,∴∠CAE=∠FAE,∠EBF=∠EBD.∵AC∥BD,∴∠C+∠D=180°.在△ACE和△AFE中,,∴△ACE≌△AFE(SAS),∴∠C=∠AFE.∵∠AFE+∠EFB=180°,∴∠EFB=∠D.在△BEF和△BED中,,∴△BEF≌△BED(AAS),∴BF=BD.∵AB=AF+BF,∴AB=AC+BD.【点评】本题考查了平行线的性质的运用,角平分线的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.23.在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.【考点】全等三角形的判定与性质;等腰三角形的判定与性质;等腰直角三角形.【专题】证明题;探究型.【分析】(1)由PO=PD,利用等边对等角和三角形内角和定理可求得∠POD=67.5°,∠OPB=67.5°,然后利用等角对等边可得出结论;(2)过点O作OC⊥AB于C,首先利用等腰直角三角形的性质可以得到∠COB=∠B=45°,OC=5,然后证得∠POC=∠DPE,进而利用AAS证明△POC≌△DPE,再根据全等三角形的性质可得OC=PE.【解答】(1)证明:∵PO=PD,∠OPD=45°,∴∠POD=∠PDO==67.5°,∵等腰直角三角形AOB中,AO⊥OB,∴∠B=45°,∴∠OPB=180°﹣∠POB﹣∠B=67.5°,∴∠POD=∠OPB,∴BP=BO,即△BOP是等腰三角形;(2)解:PE的值不变,为PE=5,证明如下:如图,过点O作OC⊥AB于C,∵∠AOB=90°,AO=BO,∴△BOC是等腰直角三角形,∠COB=∠B=45°,点C为AB的中点,∴OC=AB=5,∵PO=PD,∴∠POD=∠PDO,又∵∠POD=∠COD+∠POC=45°+∠POC,∠PDO=∠B+∠DPE=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE=5,∴PE的值不变,为5.【点评】本题考查了等腰三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形等知识,解答(2)的关键是正确作出辅助线,并利用AAS证得△POC≌△DPE.。
2015-2016学年福建省泉州市南安市八年级上期末数学试卷一、单项选择题(每小题3分,共21分).1.4的平方根是()A.2 B.﹣2 C.±2 D.±42.下列运算正确的是()A.4a2﹣2a2=2a2B.(a2)3=a5 C.a2•a3=a6D.a3+a2=a53.以下列各组数为一个三角形的三边长,能构成直角三角形的是()A.2,3,4 B.3,4,5 C.5,6,7 D.7,8,94.八年级(1)班有60位学生,秋游前,班长把全班学生对秋游地点的意向绘制成了扇形统计图,其中想去“动物园”的学生数的扇形的圆心角为60°,则下列说法正确的是()A.想去动物园的学生占全班学生的60%B.想去动物园的学生有36人C.想去动物园的学生肯定最多D.想去动物园的学生占全班学生的5.若x+y=3且xy=1,则代数式(1+x)(1+y)的值等于()A.﹣1 B.1 C.3 D.56.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BAD=∠CAD7.下列选项中,可以用来说明命题“若|x|>1,则x>1”是假命题的反例是()A.x=﹣2 B.x=﹣1 C.x=1 D.x=2二、填空题(每小题4分,共40分).8.比较大小:______.(选填“>”、“=”、“<”).9.8的立方根是______.10.因式分解:ma+mb+mc=______.11.计算:(5x2+15x)÷5x=______.12.如图,OP平分∠AOB,PE⊥AO于点E,PF⊥BO于点F,且PE=6cm,则点P到OB 的距离是______cm.13.小明在做“抛一枚正六面体骰子”的实验时,他连续抛了10次,共抛出了3次“6”向上,则出现“6”向上的频率是______.14.在实数、0.、π、中,无理数是______.15.如图,已知△ABC≌△ABD,∠CAB=30°,∠D=40°,则∠CBE=______°.16.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠C=40°,则∠BAE的度数为______°.17.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=6,请你在直线BC上找出一点P,使得△PAB为等腰三角形.要求:(1)用尺规作图,在原图形中作出所有满足条件的P点;(2)保留作图痕迹,不必写作法.三、解答题(共89分).18.计算: +﹣(﹣1)2.19.先化简,再求值:(3+a)(3﹣a)+(a﹣1)2,其中a=.20.因式分解:(1)x2﹣16;(2)x3+4x2y+4xy2.21.如图,已知线段AD、BC交于点E,AE=CE,BE=DE.求证:△ABE≌△CDE.22.如图,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.23.某中学采取随机抽样的方式在学生中进行“最常用的交流方式”的问卷调查,问卷调查的结果分为四类:A.面对面交谈;B.微信和QQ等聊天软件交流;C.短信与电话交流;D.书信交流.要求接受调查的人每人从中选择一个选项,不能多选或不选.根据调查数据结果绘制成以下两幅不完整的统计图:(1)由图中信息可知:调查人数为______人;(2)请在图甲中补全条形统计图;(3)若全校有学生500名,请根据调查结果估计这些学生中以“C.短信与电话交流”为最常用的交流方式的人数约为多少?24.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:可用图A来解释a2+2ab+b2=(a+b)2,事实上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(1)根据图B完成因式分解:2a2+2ab=2a______.(2)现有足够多的正方形和长方形卡片(如图C),试在右边的虚线方框中画出一个用若干张1号卡片、2号卡片和3号卡片拼成的长方形,使该长方形的面积为a2+3ab+2b2,要求:每两块纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),并利用你所画的图形面积对a2+3ab+2b2进行因式分解a2+3ab+2b2______.(直接填空)25.如图所示,四边形ABCD中,AC⊥BD于点O,且AO=CO=12,BO=DO=5,点P为线段AC上的一个动点.(1)填空:AD=CD=______.(2)过点P分别作PM⊥AD于M点,作PH⊥DC于H点.①试说明PM+PH为定值.②连结PB,试探索:在点P运动过程中,是否存在点P,使PM+PH+PB的值最小?若存在,请求出该最小值;若不存在,请说明理由.26.如图所示,在△ACB中,∠ACB=90°,CA=CB,D为AB边上一点,连结CD,CD绕点C逆时针旋转90度与线段CE重合,连结AE.(1)填空:∠B=______度;∠BCD=∠______(在图中找出一个与∠BCD相等的角).(2)求证:△BCD≌△ACE.(3)当AB=2CE时,求证:CD垂直平分AB.2015-2016学年福建省泉州市南安市八年级(上)期末数学试卷参考答案与试题解析一、单项选择题(每小题3分,共21分).1.4的平方根是()A.2 B.﹣2 C.±2 D.±4【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a 的平方根,由此即可解决问题.【解答】解:∵(±2)2=4∴4的平方根是:±2.故选C.2.下列运算正确的是()A.4a2﹣2a2=2a2B.(a2)3=a5 C.a2•a3=a6D.a3+a2=a5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同类项合并法则,可以得到结果.【解答】解:A、正确;B、(a2)3=a6故错误;C、a2•a3=a5故错误;D、a3+a2不能合并故错误;故选A.3.以下列各组数为一个三角形的三边长,能构成直角三角形的是()A.2,3,4 B.3,4,5 C.5,6,7 D.7,8,9【考点】勾股定理的逆定理.【分析】只要验证两小边的平方和等于最长边的平方即可判断是直角三角形.【解答】解:A、22+32=13≠42,不能构成直角三角形,故本选项错误;B、32+42=52,能构成直角三角形,故本选项正确;C、52+62≠72,不能构成直角三角形,故本选项错误;D、72+82≠92,不能构成直角三角形,故本选项错误;故选B.4.八年级(1)班有60位学生,秋游前,班长把全班学生对秋游地点的意向绘制成了扇形统计图,其中想去“动物园”的学生数的扇形的圆心角为60°,则下列说法正确的是()A.想去动物园的学生占全班学生的60%B.想去动物园的学生有36人C.想去动物园的学生肯定最多D.想去动物园的学生占全班学生的【考点】扇形统计图.【分析】根据扇形统计图的相关知识,“想去“动物园”的学生数”的扇形圆心角为60°,而一个圆的圆心角是360°,因而,“想去“动物园”的学生数”就是总人数的=,据此即可求解.【解答】解:A、想去“动物园”的学生数占全班学生的百分比为60÷360=,故选项错误;B、想去动物园的学生有48×=8人,故选项错误;C、想去动物园的学生肯定最多,没有其它去处的数据,不能确定为最多,故选项错误;D、想去动物园的学生占全班学生的,故选项正确.故选D.5.若x+y=3且xy=1,则代数式(1+x)(1+y)的值等于()A.﹣1 B.1 C.3 D.5【考点】整式的混合运算—化简求值.【分析】利用多项式的乘法法则把所求式子展开,然后代入已知的式子即可求解.【解答】解:(1+x)(1+y)=x+y+xy+1,则当x+y=3,xy=1时,原式=3+1+1=5.故选D.6.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BAD=∠CAD【考点】全等三角形的判定.【分析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.【解答】解:A、∵∠1=∠2,AD为公共边,若BD=CD,则△ABD≌△ACD(SAS);B、∵∠1=∠2,AD为公共边,若AB=AC,不符合全等三角形判定定理,不能判定△ABD ≌△ACD;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);D、∵∠1=∠2,AD为公共边,若∠BAD=∠CAD,则△ABD≌△ACD(ASA);故选:B.7.下列选项中,可以用来说明命题“若|x|>1,则x>1”是假命题的反例是()A.x=﹣2 B.x=﹣1 C.x=1 D.x=2【考点】命题与定理.【分析】由于反例满足条件,但不能得到结论,所以利用此特征可对各选项进行判断.【解答】解:因为x=﹣2满足|x|>1,但不满足x>1,所以x=﹣2可作为说明命题“若|x|>1,则x>1”是假命题的反例.故选A.二、填空题(每小题4分,共40分).8.比较大小:>.(选填“>”、“=”、“<”).【考点】实数大小比较.【分析】把2化成,再比较即可.【解答】解:2=,即2>,故答案为:>.9.8的立方根是2.【考点】立方根.【分析】利用立方根的定义计算即可得到结果.【解答】解:8的立方根为2,故答案为:2.10.因式分解:ma+mb+mc=m(a+b+c).【考点】因式分解-提公因式法.【分析】通过观察可知公因式为m,将原式中的公因式提取出来即可解出此题.【解答】解:ma+mb+mc=m(a+b+c).故答案为:m(a+b+c).11.计算:(5x2+15x)÷5x=x+3.【考点】整式的除法.【分析】根据多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加,可得答案.【解答】解:原式=x+3.故答案为:x+3.12.如图,OP平分∠AOB,PE⊥AO于点E,PF⊥BO于点F,且PE=6cm,则点P到OB 的距离是6cm.【考点】角平分线的性质.【分析】根据角平分线的性质,可得答案.【解答】解:由OP平分∠AOB,PE⊥AO于点E,PF⊥BO于点F,且PE=6cm,则点P到OB的距离是6cm,故答案为:6.13.小明在做“抛一枚正六面体骰子”的实验时,他连续抛了10次,共抛出了3次“6”向上,则出现“6”向上的频率是0.3.【考点】频数与频率.【分析】根据频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷数据总数进行计算即可.【解答】解:出现“6”向上的频率是:3÷10=0.3,故答案为:0.3.14.在实数、0.、π、中,无理数是π、.【考点】无理数.【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.【解答】解:无理数有π、,故答案为:π、.15.如图,已知△ABC≌△ABD,∠CAB=30°,∠D=40°,则∠CBE=70°.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠C=∠D=40°,再根据三角形的外角与内角的关系可得答案.【解答】解:∵△ABC≌△ABD,∴∠C=∠D=40°,∵∠CAB=30°,∴∠CBE=∠C+∠CAB=70°,故答案为:70.16.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠C=40°,则∠BAE的度数为10°.【考点】线段垂直平分线的性质.【分析】由ED是AC的垂直平分线,可得AE=CE,继而求得∠BAE=∠C=40°,然后由在Rt△ABC中,∠B=90°,即可求得∠BAC的度数,继而求得答案.【解答】解:∵ED是AC的垂直平分线,∴AE=CE,∴∠EAC=∠C=40°,∵在Rt△ABC中,∠B=90°,∴∠BAC=90°﹣∠C=50°,∴∠BAE=∠BAC﹣∠EAC=10°.故答案为:10.17.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=6,请你在直线BC上找出一点P,使得△PAB为等腰三角形.要求:(1)用尺规作图,在原图形中作出所有满足条件的P点;(2)保留作图痕迹,不必写作法.【考点】作图—复杂作图;等腰三角形的判定.【分析】直接利用等腰三角形的性质结合线段垂直平分线的性质得出符合题意的图形.【解答】解:如图所示:点P,P1,P2,P3即为所求.三、解答题(共89分).18.计算: +﹣(﹣1)2.【考点】实数的运算.【分析】原式第一项利用立方根定义计算,第二项利用算术平方根定义计算,最后一项利用乘方的意义化简,计算即可得到结果.【解答】解:原式=﹣2+5﹣1=﹣3+5=2.19.先化简,再求值:(3+a)(3﹣a)+(a﹣1)2,其中a=.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:(3+a)(3﹣a)+(a﹣1)2=9﹣a2+a2﹣2a+1=﹣2a+10,当a=时,原式=﹣2×+10=9.20.因式分解:(1)x2﹣16;(2)x3+4x2y+4xy2.【考点】提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(x+4)(x﹣4);(2)原式=x(x2+4xy+4y2)=x(x+2y)2.21.如图,已知线段AD、BC交于点E,AE=CE,BE=DE.求证:△ABE≌△CDE.【考点】全等三角形的判定.【分析】根据全等三角形的判定定理SAS证得结论即可.【解答】证明:在△ABE和△CDE中,∵,∴△ABE≌△CDE(SAS).22.如图,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.【考点】勾股定理的逆定理;勾股定理.【分析】(1)先根据勾股定理求出AC的长,再根据勾股定理的逆定理即可证明△ABC为直角三角形;(2)根据S阴影=S Rt△ABC﹣S Rt△ACD,利用三角形的面积公式计算即可求解.【解答】(1)证明:∵在Rt△ADC中,∠ADC=90°,AD=8,CD=6,∴AC2=AD2+CD2=82+62=100,∴AC=10(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676,∴AC2+BC2=AB2,∴△ABC为直角三角形;(2)解:S阴影=S Rt△ABC﹣S Rt△ACD=×10×24﹣×8×6=96.23.某中学采取随机抽样的方式在学生中进行“最常用的交流方式”的问卷调查,问卷调查的结果分为四类:A.面对面交谈;B.微信和QQ等聊天软件交流;C.短信与电话交流;D.书信交流.要求接受调查的人每人从中选择一个选项,不能多选或不选.根据调查数据结果绘制成以下两幅不完整的统计图:(1)由图中信息可知:调查人数为200人;(2)请在图甲中补全条形统计图;(3)若全校有学生500名,请根据调查结果估计这些学生中以“C.短信与电话交流”为最常用的交流方式的人数约为多少?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据C类别40人占被调查人数的20%,列式可计算调查人数;(2)由题意可知,B类别人数占被调查200人的20%,可得B类别人数并补全图形;(3)根据C类别占调查人数的20%,估计全校500中选择C方式的人数也为20%,计算可得.【解答】解:(1)由题意可知,C类别40人占被调查人数的20%,故调查人数为:40÷20%=200(人);(2)B类别人数为:200×50%=100(人),补全图形如下(3)最常用C短信与电话交谈的人数约为:500×20%=100(人).24.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:可用图A来解释a2+2ab+b2=(a+b)2,事实上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(1)根据图B完成因式分解:2a2+2ab=2a(a+b).(2)现有足够多的正方形和长方形卡片(如图C),试在右边的虚线方框中画出一个用若干张1号卡片、2号卡片和3号卡片拼成的长方形,使该长方形的面积为a2+3ab+2b2,要求:每两块纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),并利用你所画的图形面积对a2+3ab+2b2进行因式分解a2+3ab+2b2=(a+b)(a+2b).(直接填空)【考点】因式分解的应用.【分析】(1)看图即可得出所求的式子;(2)通过画图能更好的理解题意,从而得出结果.由于构成的是正方形,它的面积等于所给图片的面积之和,从而画出图形.【解答】解:(1)2a2+2ab=2a(a+b),故答案为:(a+b);(2)画图如下a2+3ab+2b2=(a+b)(a+2b),故答案为:(a+b)(a+2b)25.如图所示,四边形ABCD 中,AC ⊥BD 于点O ,且AO=CO=12,BO=DO=5,点P 为线段AC 上的一个动点.(1)填空:AD=CD= 13 .(2)过点P 分别作PM ⊥AD 于M 点,作PH ⊥DC 于H 点.①试说明PM +PH 为定值.②连结PB ,试探索:在点P 运动过程中,是否存在点P ,使PM +PH +PB 的值最小?若存在,请求出该最小值;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)在△ADO 中,由勾股定理可求得AD=13,由AC ⊥BD ,AO=CO ,可知DO 是AC 的垂直平分线,由线段垂直平分线的性质可知AD=DC ;(2)连接DP ,根据题意可知:S △ADP +S △CDP =S △ADC ,由三角形的面积公式可知:AD •PM +DC •PH=AC •OD ,将AC 、OD 、AD 、DC 的长代入化简即可;(3))由PM +PH 为定值,当PB 最短时,PM +PH +PB 有最小值,由垂线的性质可知当点P 与点O 重合时,OB 有最小值.【解答】解:(1)∵AC ⊥BD 于点O ,∴△AOD 为直角三角形.∴AD===13.∵AC ⊥BD 于点O ,AO=CO ,∴CD=AD=13.故答案为:13.(2)如图1所示:连接PD .∵S △ADP +S △CDP =S △ADC ,∴AD •PM +DC •PH=AC •OD ,即×13×PM +×13×PH=.∴13×(PM +PH )=24×5.∴PM+PH=.(3)∵PM+PH为定值,∴当PB最短时,PM+PH+PB有最小值.∵由垂线段最短可知:当BP⊥AC时,PB最短.∴当点P与点O重合时,PM+PH+PB有最小,最小值=+5=.26.如图所示,在△ACB中,∠ACB=90°,CA=CB,D为AB边上一点,连结CD,CD绕点C逆时针旋转90度与线段CE重合,连结AE.(1)填空:∠B=45度;∠BCD=∠ACE(在图中找出一个与∠BCD相等的角).(2)求证:△BCD≌△ACE.(3)当AB=2CE时,求证:CD垂直平分AB.【考点】全等三角形的判定与性质;线段垂直平分线的性质;等腰直角三角形.【分析】(1)根据等腰直角三角形的性质得出∠B的度数和旋转的性质得出∠BCD=∠ACE 即可;(2)根据旋转的性质和SAS证明三角形全等即可;(3)根据全等三角形的判定和性质以及等腰直角三角形的判定解答即可.【解答】解:(1)∵在△ACB中,∠ACB=90°,CA=CB,∴∠B=45°;∵CD绕点C逆时针旋转90度与线段CE重合,∴∠DCE=90°,即∠BCD+∠DCA=∠DCA+∠ACE,∴∠BCD=∠ACE;故答案为:45;ACE;(2)∵CD绕点C逆时针旋转90度与线段CE重合,∴CD=CE,又由(1)可知,∠BCD=∠ACE,∵CA=CB,在△BCD与△ACE中,,∴△BCD≌△ACE;(3)∵∠ACB=90°,CA=CB,∴∠CAB=∠B=45°,∵△BCD≌△ACE,∴∠CAE=∠B=45°,∴∠DAE=∠CAE+∠CAB=90°,设AD=a,CE=b,则AB=2CE=2b,DC=CE=b,∴△ECD为等腰直角三角形又△ADE为直角三角形∴DE2=CD2+CE2=2b2,AE2=DE2﹣AD2=2b2﹣a2又∵△BCD≌△ACE,∴AE=BD=AB﹣AD=2b﹣a,∴2b2﹣a2=(2b﹣a)2化简得:a2﹣2ab+b2=0∴(a﹣b)2=0∴a=b,∴BD=2b﹣a=a=AD,∴D为AB中点,又∵△ABC为等腰直角三角形.∴CD垂直平分AB.2016年9月27日。