八年级上学期期末试卷.doc
- 格式:doc
- 大小:482.00 KB
- 文档页数:11
八年级上册语文期末考试试卷(满分150分,时间150分钟)一、语文积累与综合运用(40分)1. 下列加点字的注音全部正确的一项是( )(3分)A. 翘.首(qi áo) 粗糙.(z ào) 锐不可当.(d āng) 络绎.不绝(y ì) B. 锃.亮(z èng) 禁锢.(g ù) 深恶.痛疾(è) 杳.无消息(y ǎo) C. 恹.恹(y àn) 滞.留(zh ì) 潜.滋暗长(qi ǎn) 鸢飞戾.天(l ì) D. 炽.热(ch ì) 缥.碧(pi ǎo) 殚.精竭虑(d ān) 纵横.决荡(h éng) 2.下列词语中没有错别字的一项是( )(3分) A .琐屑 泄气 长途跋涉 诚惶诚恐 B .俯瞰 颁发 春寒料峭 自出新裁 C .序幕 落第 重峦叠障 妙手偶得 D .妨御 斟酌 摧枯拉朽 一丝不苟 3. 下列各句中,加点词语使用不正确的一项是( )(3分) A .八路军出其不意的反击,使敌人有些张皇失措....。
B .看着家中日渐衰败的景象,我不禁触目伤怀....。
C .小明为人诚实,待人接物坦荡如砥....,深得同学好评。
D .他生性刚直,一身傲骨,从不对权贵唯命是从....。
4. 下列句子没有语病的一项是( )(3分) A .屠呦呦全身心投入世界性流行疾病——疟疾的防治研究。
B. 只有对老师所提的问题理解到位,就能回答得清楚明了。
C. 新时代教育应培养学生善于观察、善于思考、善于创造的水平。
D. 经过三年的努力学习,他对自己能否考上理想的高中充满信心。
5. 将下列句子组成语段,顺序排列正确的一项是( )(3分) ①寻根求源,乃是一种不愿与流俗同流合污的理想。
②耐寒草木,说到底,没有超过松柏的。
③自孔老夫子以缓舒纡徐的口吻道出:“岁寒,然后知松柏之后凋”之后。
精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。
八年级(上)期末数学试卷一、选择题(共8小题).1.(3分)下列四个图案中,不是轴对称图案的是()A.B.C.D.2.(3分)已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a>B.a>﹣1C.﹣1<a<D.a<3.(3分)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a94.(3分)若a,b,c为△ABC的三边长,且满足|a﹣5|+(b﹣3)2=0,则c的值可以为()A.7B.8C.9D.105.(3分)如果多项式4a2+ma+25是完全平方式,那么m的值是()A.10B.20C.﹣20D.±206.(3分)化简(1﹣)÷(1﹣)的结果为()A.B.C.D.7.(3分)已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有()个.A.1B.2C.3D.48.(3分)如图,七边形ABCDEFG中,AB、ED的延长线交于点O,着∠1、∠2、∠3、∠4对应的邻补角和等于215°,则∠BOD的度数为()A.30°B.35°C.40°D.45°二、填空题(共8小题).9.(3分)细胞的直径只有1微米,即0.000 001米,用科学记数法表示0.000 001为.10.(3分)如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).11.(3分)若分式的值为0,则x=.12.(3分)分解因式:xy4﹣6xy3+9xy2=.13.(3分)已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h.14.(3分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.15.(3分)已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ =5,NQ=9,则MH长为.16.(3分)如图,∠AOB=30°,点M、N分别是射线OB、OA上的动点,点P为∠AOB 内一点,且OP=8,则△PMN的周长的最小值=.三、解答题(共72分)17.(10分)(1)计算:a﹣2b2•(a2b﹣2)﹣3÷(a﹣4)2;(2)解方程:=﹣1.18.(6分)解不等式组:,并写出它的所有整数解.19.(6分)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣8=0.20.(6分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:△ACD≌△CBE;(2)若AD=12,DE=7,求BE的长.21.(6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为A(﹣4,5),C(﹣1,3).(1)请在如图所示的网格内作出x轴、y轴;(2)请作出△ABC关于y轴对称的△A1B1C1;(3)写出点B1的坐标并求出△A1B1C1的面积.22.(8分)如图①,是一个长为2m、宽为2n的长方形,用剪刀沿图中的虚线(对称轴)剪开,把它分成四个形状和大小都相同的小长方形,然后按图②那样拼成一个正方形(中间是空的).(1)图②中画有阴影的小正方形的边长等于多少?(2)观察图②,写出代数式(m+n)2,(m﹣n)2与mn之间的等量关系;(3)根据(2)中的等量关系解决下面的问题:若a+b=7,ab=5,求(a﹣b)2的值.23.(8分)2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?24.(10分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.25.(12分)如图1,在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.参考答案一、选择题(共8小题).1.(3分)下列四个图案中,不是轴对称图案的是()A.B.C.D.解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.2.(3分)已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a>B.a>﹣1C.﹣1<a<D.a<解:∵点P(a+1,2a﹣3)关于x轴的对称点在第一象限,∴点P在四象限,∴,解得:﹣1<a,故选:C.3.(3分)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a9解:a2•a3=a5,故选:A.4.(3分)若a,b,c为△ABC的三边长,且满足|a﹣5|+(b﹣3)2=0,则c的值可以为()A.7B.8C.9D.10解:由题意得,a﹣5=0,b﹣3=0,解得a=5,b=3,∵5﹣3=2,5+3=8,∴2<c<8,∴c的值可以为7.故选:A.5.(3分)如果多项式4a2+ma+25是完全平方式,那么m的值是()A.10B.20C.﹣20D.±20解:∵4a2+ma+25是完全平方式,∴4a2+ma+25=(2a±5)2=4a2±20a+25,∴m=±20.故选:D.6.(3分)化简(1﹣)÷(1﹣)的结果为()A.B.C.D.解:原式=÷=•=,故选:A.7.(3分)已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有()个.A.1B.2C.3D.4【解答】证明:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∴∠APE=∠C=60°,故①正确∵BQ⊥AD,∴∠PBQ=90°﹣∠BPQ=90°﹣60°=30°,∴BP=2PQ.故③正确,∵AC=BC.AE=DC,∴BD=CE,∴AE+BD=AE+EC=AC=AB,故④正确,无法判断BQ=AQ,故②错误,故选:C.8.(3分)如图,七边形ABCDEFG中,AB、ED的延长线交于点O,着∠1、∠2、∠3、∠4对应的邻补角和等于215°,则∠BOD的度数为()A.30°B.35°C.40°D.45°解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣505°=35°,故选:B.二、填空题(每小题3分,共24分)9.(3分)细胞的直径只有1微米,即0.000 001米,用科学记数法表示0.000 001为1×10﹣6.解:0.00 000 1=1×10﹣6,故答案为:1×10﹣6.10.(3分)如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是∠B=∠C(填上你认为适当的一个条件即可).解:∵∠1=∠2,∴∠AEB=∠AEC,又AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).11.(3分)若分式的值为0,则x=﹣1.解:根据题意得x2﹣1=0,且x﹣1≠0,解得:x=﹣1.故答案是:﹣1.12.(3分)分解因式:xy4﹣6xy3+9xy2=xy2(y﹣3)2.解:原式=xy2(y2﹣6y+9)=xy2(y﹣3)2,故答案为:xy2(y﹣3)213.(3分)已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是80km/h.解:设这辆汽车原来的速度是xkm/h,由题意列方程得:,解得:x=80经检验,x=80是原方程的解,所以这辆汽车原来的速度是80km/h.故答案为:80.14.(3分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后△CAP与△PQB全等.解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.15.(3分)已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ =5,NQ=9,则MH长为4.解:∵MQ⊥PN,NR⊥PM,∴∠NQH=∠NRP=∠HRM=90°,∵∠RHM=∠QHN,∴∠PMH=∠HNQ,在△MQP和△NRP中,,∴△MQP≌△NQH(ASA),∴PA=QH=5,∵NQ=MQ=9,∴MH=MQ﹣HQ=9﹣5=4,故答案为4.16.(3分)如图,∠AOB=30°,点M、N分别是射线OB、OA上的动点,点P为∠AOB 内一点,且OP=8,则△PMN的周长的最小值=8.解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=8cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=8.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=8.故答案为:8.三、解答题(共72分)17.(10分)(1)计算:a﹣2b2•(a2b﹣2)﹣3÷(a﹣4)2;(2)解方程:=﹣1.解:(1)原式=a﹣2b2•a﹣6b6÷a﹣8=a﹣8b8÷a﹣8=b8;(2)两边都乘以(x+1)(x﹣1),得:3(x﹣1)=x(x+1)﹣(x+1)(x﹣1),解得:x=2,检验:x=2时,(x+1)(x﹣1)=3≠0,∴分式方程的解为x=2.18.(6分)解不等式组:,并写出它的所有整数解.解:解不等式>﹣1,得:x>﹣2,解不等式2x+1≥5(x﹣1),得:x≤2,所以不等式组的解集为﹣2<x≤2,则不等式组的整数解为﹣1、0、1、2.19.(6分)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣8=0.解:原式=•﹣=﹣=,∵x2+2x﹣8=0,∴x2+2x=8,∴原式==.20.(6分)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D,E.(1)求证:△ACD≌△CBE;(2)若AD=12,DE=7,求BE的长.解:(1)∵∠ACB=90°,BE⊥CE,∴∠ECB+∠ACD=90°∠ECB+∠CBE=90°,∴∠ACD=∠CBE,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∵AC=BC,∴△ACD≌△CBE;(2)∵△ACD≌△CBE,∴AD=CE,CD=BE,∵AD=12,DE=7,∴BE=CD=CE﹣DE=12﹣7=5.21.(6分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为A(﹣4,5),C(﹣1,3).(1)请在如图所示的网格内作出x轴、y轴;(2)请作出△ABC关于y轴对称的△A1B1C1;(3)写出点B1的坐标并求出△A1B1C1的面积.解:(1)如图所示:(2)如图所示:(3)B1(2,1),S△A1B1C1=3×4﹣×4×2﹣×1×2﹣×3×2,=12﹣4﹣1﹣3,=4.22.(8分)如图①,是一个长为2m、宽为2n的长方形,用剪刀沿图中的虚线(对称轴)剪开,把它分成四个形状和大小都相同的小长方形,然后按图②那样拼成一个正方形(中间是空的).(1)图②中画有阴影的小正方形的边长等于多少?(2)观察图②,写出代数式(m+n)2,(m﹣n)2与mn之间的等量关系;(3)根据(2)中的等量关系解决下面的问题:若a+b=7,ab=5,求(a﹣b)2的值.解:(1)图②中画有阴影的小正方形的边长(m﹣n);(2)(m+n)2=(m﹣n)2+4mn;(3)由(2)得:(a+b)2=(a﹣b)2+4ab;∵a+b=7,ab=5,∴(a﹣b)2=(a+b)2﹣4ab=49﹣20=29;答:(a﹣b)2的值为29.23.(8分)2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,﹣=9,解得:x=72,经检验,x=72是原分式方程的解,且符合题意,则2.5x=180,答:高铁列车的平均时速为180千米/小时;(2)630÷180=3.5,则坐车共需要3.5+1.5=5(小时),王老师到达会议地点的时间为13点40.故他能在开会之前到达.24.(10分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.【解答】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°,∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE,∵△ACB,△DCE都是等腰三角形,∴AC=BC,DC=EC,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE.②解:∵△ACD≌△BCE,∴∠ADC=∠BEC,∵点A、D、E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°,∵∠BEC=∠CED+∠AEB,∠CED=50°,∴∠AEB=∠BEC﹣∠CED=80°.(2)结论:AE=2CF+BE.理由:∵△ACB,△DCE都是等腰直角三角形,∴∠CDE=∠CED=45°,∵CF⊥DE,∴∠CFD=90°,DF=EF=CF,∵AD=BE,∴AE=AD+DE=BE+2CF.25.(12分)如图1,在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.解:(1)在四边形ABCD中,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°,∵BC⊥CD,∴∠BCD=90°,∴∠BAD=90°,∴∠BAC+∠CAD=90°,∵∠BAC+∠ABO=90°,∴∠ABO=∠CAD;(2)过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G,∵B(0,7),C(7,0),∴OB=OC,∴∠BCO=45°,∵BC⊥CD,∴∠BCO=∠DCO=45°,∵AF⊥BC,AE⊥CD,∴AF=AE,∠FAE=90°,∴∠BAF=∠DAE,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AB=AD,同理,△ABO≌△DAG,∴DG=AO,BO=AG,∵A(﹣3,0)B(0,7),∴D(4,﹣3),S四ABCD=AC•(BO+DG)=50;(3)过点E作EH⊥BC于点H,作EG⊥x轴于点G,∵E点在∠BCO的邻补角的平分线上,∴EH=EG,∵∠BCO=∠BEO=45°,∴∠EBC=∠EOC,在△EBH和△EOG中,,∴△EBH≌△EOG(AAS),∴EB=EO,∵∠BEO=45°,∴∠EBO=∠EOB=67.5°,又∠OBC=45°,∴∠BOE=∠BFO=67.5°,∴BF=BO=7.。
八年级上册期末试卷(实用11篇)八年级上册期末试卷(1)1、选择题(下列各题的四个选项中,只有一项是最符合题意的。
每小题1分,共20分)与水生环境相比,陆地环境要复杂得多,一般来讲,陆生动物适应陆地生活的结构特点有①体表具有防止水分散失的结构②有辅助呼吸的气囊③有能在空气中呼吸的器官④有发达的感觉器官和神经系统⑤有支持躯体和运动的器官⑥有防寒皮毛②③④⑥ B①③④⑤ C①③④⑥①②①⑤下列对动物特征的叙述,准确的是水螅、涡虫和蝈虫都有口无肛门,属于低等动物B河蚌、蜗牛和乌贼身体柔软,都有大的贝壳保护蝗虫、蜘蛛和蜈蚣的足和触角均分节,且体表都有外骨骼,适应环境的能力较强就鱼、章鱼、鲨鱼、娃娃鱼、鯨鱼和美人鱼都不属于鱼类乳酸菌在自然界广泛分布,与人类关系密切,有关乳酸菌的叙述正确的是A单细胞个体,有细胞核,是真核生物B乳酸菌能利用二氧化碳和水制造乳酸乳酸菌主要通过产生芽孢来繁殖后代D用其制作泡菜时,要使泡菜坛内缺氧下列诗句中的各种动物,不具备“体表都有外骨骼,足和触角均分节”特征的是正是河豚欲上时儿童急走追黄蝶C蝉噪林逾静 D早有蜻蜓立上头下列关于人体运动的说法,错误的是运动系统主要是由骨、关节和肌肉组成的B运动是骨骼肌受到神经传来的刺激收缩,牵动骨绕关节活动而产生的C运动的完成不仅依靠运动系统,还需要其他系统的协调配合屈肘时,肱三头肌收缩为运动提供动力关于社会行为的叙述,哪一项是错误的A社会行为有利于动物的生存和繁衍社会行为是群体内形成了一定的组织,成员间有明确分工的动物集群行为所有高等动物都有社会行为具有社会行为的群体,组织内一定有传递信息的“语言”当蚂蚁发现新食物源或要迁移到新的巢址时,都要通知同伴。
下列关于这种行为的说法错误的是A这种行为与小鼠走迷宫获取食物的行为均属于学习行为这种行为直接反映了蚂蚁个体之间能够进行信息交流C蚂蚁的这种行为叫通讯,靠嗅觉和触觉实现D蚂蚁的这种行为是由体内的遗传物质决定的吃剩的饭菜放在冰箱内不易腐败变质且能保存较长时间,其主要原因是低温把微生物冻死了B低温抑制了微生物的生长、繁殖冰箱内含杀死微生物的物质D冰箱内无空气,微生物无法生存如图①~⑤表示五种不同的生物,有关叙述错误的是①是酵母菌,②是细菌,③是病毒,④是草履虫,⑤是衣藻有细胞壁的是①②⑤,有成形细胞核的是①②④⑤,无细胞膜的是③有蛋白质外壳的是③,有叶绿体的是⑤,有伸缩泡的是④,有纤毛的是④⑤进行自养生活,①②③④进行异养生活,③营寄生生活,①营腐生活如图是部分蝶形花科植物分类图解,据此分析正确的是蝶形花科所包含的植物种类比紫檀属少紫檀、绿豆和菜豆属于同一个分类等级绿豆和菜豆的亲缘关系比绿豆和紫檀更远紫檀、绿豆和菜豆三种植物中,前两者形态结构更相似下列对于生物分类单位的叙述,正确的是分类单位越小,生物间的亲缘关系越近分类单位越大,所包含的生物种类越少“科”是生物分类中最小的单位同一分类单位中,生物的特征完全相同下列有关生物多样性的说法,正确的是生物多样性是指生物种类的多样性B科研人员将油桃和蟠桃进行杂交,培育出油蟠桃,利用的是遗传的多样性保护生物的多样性可大量引进外来物种要保护生物多样性,必须禁止对生物资源的开发和利用下列现象与活动,与真菌无关的是制作腐乳发面蒸馒头脏衣服受潮发霉幼儿患手足口病完成屈肘动作的正确顺序是①骨骼肌收缩②骨受到肌肉牵拉绕着关节产生动作③骨骼肌接受神经传来的兴奋③①② B②③①①③②②①③下列关于动物在生物圈中的作用的叙述,错误的是维持生态平衡 B促进物质循环帮助植物传粉、传播种子 D动物能产生二氧化碳下列表示骨,关节和肌肉关系的模式图中,正确的是下列关于病毒的说法,错误的是A由蛋白质外壳和内部的遗传物质构成B十分微小,没有细胞结构可以在人体细胞内繁殖可以在空气中独立生活酸奶的制作过程需要加入乳酸菌、嗜热杆菌等益生菌,因此需要专门进行菌种培养。
八年级(上学期)期末物理试卷(含答案)(时间90分钟,满分100分)题号一二三四五总分得分一、单选题(本大题共6小题,共24.0分)1.下列物理量的估测中,最接近实际的是()A. 人感觉舒适的环境温度约为35℃B. 一名中学生的质量约为50kgC. 成人正常步行的速度约为6m/sD. 人正常眨眼一次的时间约为5s2.学物理,处处留心皆学问,对以下现象的解释正确的是()A. 初冬季节,在家里洗澡时发现房间里充满“白气”,这些“白气”是水蒸气B. 秋天的早晨,草叶上有露珠,而初冬时却出现一层霜,说明霜是由露变成的C. 放在衣橱里的樟脑丸,时间久了会明显变小,是因为樟脑丸蒸发为气体了D. 冻豆腐里有许多小孔,这是豆腐里的水先遇冷结冰,后又熔化成水形成的3.声音是由物体的振动产生并以波的形式向四周传播,小明用图甲的实验装置将音叉发出的声音信号输入计算机,观察到计算机上的波形如图乙。
下列有关音叉发出声音的说法,与实际不符的是()A. 是通过空气传播到接收器的B. 传播过程中音调和音色保持不变C. 传播过程中响度保持不变D. 接收器将变化的声音信号转变为变化的电流信号传输给计算机4.沙画是将沙子洒在平板灯台上做出各种造型的一种艺术,灯台下方射出的光受到沙子的阻挡后,呈现出各种画面,如图所示。
下列光现象与沙画的光学原理相同的是()A. 镜中花B. 日食C. 水中“折筷”D. 海市蜃楼5.一条0.5kg的鲫鱼的体积最接近于()A. 5×10-5m3B. 5×10-4m3C. 5×10-3m3D. 5×10-2m36.下列关于光学实验的说法,错误的是()A. 探究光的反射定律时,硬纸板与镜面必须垂直,否则不能显示光的传播路径B. 探究凸透镜成像规律时,当蜡烛燃烧变短后,光屏上蜡烛的像会向上移动C. 探究光的折射特点时,光从空气射入水中,传播方向一定会发生改变D. 探究平面镜成像特点时,尽量使用薄一点的平板玻璃,是为了便于确定像的位置二、填空题(本大题共10小题,共20.0分)7.驾驶员利用“倒车雷达”来判断车与障碍物间的距离,这是利用了声可以传递______(选填“信息”或“能量”);在倒车过程中,以车为参照物,车旁边的障碍物是______(选填“运动”或“静止”)的。
八年级数学(上册)期末试卷及答案(A4打印版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .3 2.若a b c d ,,,满足a b c d b c d a ===,则2222ab bc cd da a b c d ++++++的值为( ) A .1或0 B .1- 或0 C .1或2- D .1或1-3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直5.如图,已知菱形的两条对角线分别为6cm 和8cm ,则这个菱形的高DE 为( )A .2.4cmB .4.8cmC .5cmD .9.6cm6.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7.下面是一位同学做的四道题:①222()a b a b +=+;②224(2)4a a -=-;③532a a a ÷=;④3412a a a ⋅=,其中做对的一道题的序号是( )A .①B .②C .③D .④8.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k >-时,0y > 9.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个10.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________.2.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm ,则菱形的边长是______cm .3.若m+1m =3,则m 2+21m=________. 4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,依据尺规作图的痕迹,计算∠α=_______°.6.如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 . 三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:22169211x x x x x ⎛⎫-++-÷ ⎪+-⎝⎭,其中2x =.3.已知:12x =-,12y =+,求2222x y xy x y +--+的值.4.如图,在△ABC 中,∠B=40°,∠C=80°,AD 是BC 边上的高,AE 平分∠BAC ,(1)求∠BAE 的度数;(2)求∠DAE 的度数.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A 型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、C5、B6、A7、C8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、723、74、10.5、56.6、(10,3)三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、13xx-+;15.3、4、(1) ∠BAE=30 °;(2) ∠EAD=20°.5、(1)略(2)等腰三角形,理由略6、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.。
八年级物理上册期末试卷试卷(word版含答案)一、初二物理声现象实验易错压轴题(难)1.根据如图所示的实验情景,回答问题:(1)如图①所示的实验现象表明:________.(2)如图②所示,从左向右敲击瓶子时,各瓶发音的音调变化是:________.(选填“由高变低”或“由低变高”)(3)如图③所示,用手指轻叩课桌,使正坐在对面的同学刚好听不到叩击声,再让对面的同学将耳朵紧贴在桌面上,用同样的力度轻叩课桌,这时对面的同学则能听到叩击声.这个实验表明:________(4)如图④所示,正在发声的手机悬挂在密闭的广口瓶内,将瓶内的空气不断抽出时,手机铃声逐渐变小.由这个实验事实得到的推论是:________.(5)如图⑤所示,我们把水倒入瓶中时,通常根据声音的________来判断瓶中水的多少.【答案】声音由物体振动产生由高变低固体传声效果比空气好真空不能传声音调变化【解析】【详解】(1)小纸片的跳动是由于扬声器振动造成的,扬声器发出声音的原因正是由于里边纸盆的振动;所以如图①所示的实验现象表明:声音由物体振动产生;(2)敲击瓶子时,声音主要是瓶身和水柱振动发出的,瓶中盛水越多,瓶子和水的质量越大,越难振动,音调越低,因此从左向右敲打瓶子,音调由高变低;(3)敲课桌的另一端的时候,耳朵贴在桌面上是靠固体传播声音;耳朵离开桌子的时候靠空气传播声音,固体传声效果比气体好,所以耳朵紧贴在桌面上,用同样的力度轻叩课桌,这时对面的同学则能听到叩击声.(4)当用抽气机不断抽气时,手机播放的音乐声逐渐减弱,经过科学推理可得:真空不能传声;(5)往暖水瓶中灌水时,是由暖水瓶内的空气柱振动发出声音,水越来越多,空气柱越来越短,越容易振动,音调越高.所以可以通过发出声音的音调变化来判断暖水瓶中水的多少.2.小玉所在物理实验小组首先做了如下几个实验。
实验一:用手摸喉头,发声时,喉头在振动。
实验二:用薄塑料片在塑料梳子的齿上划动,发声时,感觉梳子在振动。
部编版语文八年级上学期期末测试卷总分100分时间120分钟【活动一.草木有情】(30分)1.王同学为活动拟写了一条宣传标语,请你用正楷或行楷临摹它草木且作无声诗草木且作无声诗2.同学们玩起了“飞花令”游戏,规则约定每人背诵的诗句必须包含“花”字请你填补下面空白.小明:唐代诗人杜牧在《山行》中写道“①”.小林:我想到宋代女词人②在《如梦令》中的“兴尽晚回舟,③" 一句.小刚:宋朝词人晏殊的《浣溪沙》中有“④”是带“花”字的小童:杜甫《春望》一诗的颈联“⑤,恨别鸟惊心”也是带“花”字的小明:小童,这句诗不是颈联,应该是⑥联.小童:哦,是我搞错了.3.下面是小林同学写的一则关于树的片段,请你参与修改家门口这棵高大的梧桐树从从容容地经受了风雨的岁月,它高大起来,繁盛起来你看,这树一傲然挺立在寒风之中,没有丝毫倦dai®.它的qi6②枝旁yi③斜出,抵挡住严霜的侵袭.在喧xiao®的人世间,这样一棵好树,让人佩服. (1)根据读音和语境,填补其中的汉字.①②③④(2)片段开头画线句是病句,请结合所学的句子成分和主干的知识,向小王分析错误并修改分析:________________________________ 修改:(3)小童同学说,片段结尾画线句,如改成反问句,可以增强表达效果请你先试着改一改,再比较分析反问句的表达效果好在哪里.反问句:分析:4.小青同学想要策划一场“人间草木”的知识大赛,她在网上搜索了一些资料请你参与她的活动.(1)辨析下面几种说法,有错一项是()A.《愚公移山》一文中,智叟嘲笑愚公”曾不能毁山之一毛”,“毛”指草木B.《白杨礼赞》是我国著名现代文学C. “风声一何盛,松枝一何劲”用两D.《寂静的春天》是一本外国诗集,(2)小青搜集到一则咏菊古诗,下花开不并百花丛,独立疏篱趣未穷.宁可枝头抱香死,何曾吹落北风中.菊的形象:_______________________________________________________________________菊的象征意义:___________________________________________________________________【活动二•人间有味】(40分)小青同学还与大家分享了两则与茶文化相关的文章,请你一起来品读.任务一:品读《兰雪茶》兰雪茶【明】张岱日铸①者,越王铸剑地也.茶味棱棱②,有金石之气.……(余)遂募歙③人入日铸.A拘法、掐法、挪法、撒法、扇法、炒法、培法、藏法,一如松衰.他泉渝⑤之,香气不出用杂入茉莉再三较量用敞口瓷瓯淡放之候其冷;C以旋滚汤冲泻之.色如竹箨⑥方解,绿粉初匀;又如山窗初曙,透纸黎光.口取清妃白⑦.倾向素瓷,真如百茎素兰同雪涛并泻也.……余戏呼之“兰雪”.四五年后,“兰雪茶”一哄如市焉.越⑧之好事者不食松萝,止食兰雪.(选自《陶庵梦忆》,有删节)【注】①日铸,即日铸岭,位于浙江②棱棱,形容茶叶味道浓厚、清朗.③歙,安徽歙县.④松萝,当时的安徽名茶.⑤瀹yuB,煮.⑥箨tub,竹笋上一片一片的皮.⑦清妃白,一种细瓷、色浅、形曲的杯子⑧越,指浙江一带.5.阅读选文,用“/”标出下面句子停顿,标三处杂入茉莉再三较量用敞口瓷瓯淡放之候其冷6.有同学不理解文中“以旋滚汤冲泻之”中“旋”的意思,查阅了《古汉语字典》,下面四个义项中,符合语境的是().A转动 B.返回 C.随即 D.屡次7.下面是小黄在摘抄时,脱漏了的文字.它应该放在文中处.(在文中A、B、C、D中选择正确的位置.)煮禊泉,投以小罐,则香太浓郁.8.同学们特别喜欢文中“色如竹箨方解,绿粉初匀;又如山窗初曙,透纸黎光”这几句话,请你一起来赏析.任务二:品读《寻常茶话》寻常茶话汪曾祺我的家乡有“喝早茶”的习惯,或者叫做“上茶馆”.上茶馆其实是吃点心,包子、蒸饺、烧麦、千层糕……茶自然是要喝的.在点心未端来之前,先上一碗干丝.我们那里原先没有煮干丝,只有烫干丝干丝在一个敞口的碗里堆成塔状,临吃,堂倌把装在一个茶杯里的佐料一酱油、醋、麻油浇入喝热茶,吃干丝,一■绝!抗日战争时期,我在昆明住了七年,几乎天天泡茶馆.“泡茶馆”是西南联大学生特有的说法.本地人叫做“坐茶馆”,“坐”,本有消磨时间的意思,“泡”则更胜一筹这是从北京带过去的一个字,“泡” 者,长时间地沉溺其中也,与“穷泡”、“泡蘑菇”的“泡”是同一语源联大学生在茶馆里往往一泡就是半天.干什么的都有,聊天、看书、写文章.有一位研究生,可称泡茶馆的冠军.此人姓陆,是一怪人.他曾经徒步旅行了半个中国,读书甚多,而无所着述,不爱说话他简直是“长”在茶馆里.上午、下午、晚上,要一杯茶,独自坐着看书.他连漱洗用具都放在一家茶馆里,一起来就到茶馆里洗脸刷牙.听说他后来流落在四川,穷困潦倒而死,悲夫!老北京早起都要喝茶,得把茶喝“通” 了,这一天才舒服无论贫富,皆如此.一九四八年我在午门历史博物馆工作.馆里有几位看守员,岁数都很大了.他们上班后,都是先把带来的窝头片在炉盘上烤上,然后轮流用水汆坐水沏茶.茶喝足了,才到午门城楼的展览室里去坐着.他们喝的都是花茶.北京人爱喝花茶,以为只有花茶才算是茶.我不太喜欢花茶,但好的花茶例外,比如老舍先生家的花茶老舍先生一天离不开茶.他到莫斯科开会,苏联人知道中国人爱喝茶,倒是特意给他预备了一个热水壶可是,他刚沏了一杯茶,还没喝上几口,一转脸,服务员就给倒了.老舍先生很愤慨地说:“他不知道中国人喝茶是一天喝到晚的!” 一天喝茶喝到晚,也许只有中国人如此.外国人喝茶都是论“顿”的,难怪那位服务员看到多半杯茶放在那里,以为老先生已经喝完了,不要了.龚定庵以为碧螺春天下第一.我曾在苏州东山白的“雕花楼”喝过一次新采的碧螺春.“雕花楼”原是一个华侨富商的住宅,楼是进口的硬木造的,到处都雕了花,八仙过海、福禄寿三星、龙、凤、牡丹…… 真是集恶俗之大成.但碧螺春真是好.不过茶是泡在大碗里的,我觉得这有点煞风景.后来问陆文夫,文夫说碧螺春就是讲究用大碗喝的.茶极细,器极粗,亦怪!我还在湖南桃源喝过一次擂茶.茶叶、老姜、芝麻、米,加盐放在一个擂钵里,用硬木的擂棒“擂”成细末,用开水冲开,便是擂茶.茶可入馔,制为食品.杭州有龙井虾仁,裘盛戎曾用龙井茶包饺子,可谓别出心裁日本有茶粥.茶粥是啥样的呢?我曾用粗茶叶煎汁,加大米熬粥,自以为这便是“茶粥”了.有一阵子,我每天早起喝我所发明的茶粥,自以为很好喝.四川的樟茶鸭子乃以柏树枝、樟树叶及茶叶为熏料,吃起来有茶香而无茶味曾吃过一块龙井茶心的巧克力,这简直是恶作剧!用上海人的话说:巧克力与龙井茶实在完全“弗搭界”.(选自《记忆中的星光:光明日报65年文艺作品选萃》,2014年6月版,有删改)9.同学们发现,作者围绕着“茶”,将记忆中与之相关的人、事娓娓道来请你按照提示依次概括家乡“喝早茶”的习惯一一——老北京人早起都要喝茶——______________ :——“我”在湖南桃源喝擂茶——:__________10.赏读中,同学们发现有些词语有特定的语境义,请你解释下面句中加点词的语境义(1)老北京早起都要喝茶,得把茶喝“通” 了,这一天才舒服..(2)不过茶是泡在大碗里的,我觉得这有点煞风景.・・・(3)用上海人的话说:巧克力与龙井茶实在完全“弗搭界”.• • •11.关于选文第②节结尾处画线句,有同学提出质疑,认为它与该节内容无关,可以删去对此,你如果同意,请补充理由;你如果不同意,请阐述理由.12.有同学把选文与《昆明的雨》进行比较阅读,发现它们在语言上都充分体现了汪曾祺散文的语言风格——“平淡有味”.请你从文中摘抄一处,加以品味.摘抄:__________________________________________________________品味:__________________________________________________________【活动三•昆虫有灵】(10分)草木有情,昆虫有灵,小曦同学也跟大家分享了他找到几则材料,请你一起来研读探究【材料一】【材料二】假使它估量到外面有雨或风暴——纤弱的幼虫脱皮的时候,这是一件顶重要的事情——它就小心谨慎地溜到温暖严紧的隧道底下.如果气候看来很温暖,它就用爪击碎天花板,爬到地面上来它臃肿的身体里面有一种汁液,可以用力抵御穴里的尘土它掘土的时候,将汁液喷洒在泥土上,使泥土成为泥浆,于是墙壁就更加柔软.幼虫再用它肥重的身体压上去,使烂泥挤进干土的罅隙.所以,它在地面上出现的时候,身上常有许多潮湿的泥点.蝉的幼虫初次出现于地面,常常在邻近的地方徘徊,寻求适当的地点棵小矮树,一丛百里香,一片野草叶,或者一根灌木枝——脱掉身上的皮找到就爬上去,用前爪紧紧地把握住,丝毫不动.于是它外层的皮开始由背上裂开,里面露出淡绿色的蝉体头先出来,接着是吸管和前腿,最后是后腿与折着的翅膀.这时候,除掉尾部,全体都出来了.接着,它表演一种奇怪的体操.在空中腾跃,翻转,使头部倒悬,折皱的翼向外伸直,竭力张开.然后用一种几乎看不清的动作,尽力翻上来,并用前爪钩住它的空皮这个动作使尾端从壳中脱出.总的过程大概要半点钟.这个刚得到自由的蝉,短期内还不十分强壮.在它的柔弱的身体还没有精力和漂亮的颜色以前,必须好好地沐浴阳光和空气.只用前爪挂在已脱下的壳上,摇摆在微风中,依然很脆弱,依然是绿色的.直到变成棕色,才同平常的蝉一样强壮了.假定它在早晨九点钟占据了树枝,大概要到十二点半才扔下它的皮飞去. 空壳挂在树枝上,有时可达一两个月之久.(节选自《昆虫记》,中华书局2018年6月版)13.研读中,有同学发现,【材料二】描写蝉的成长变化对应的是【材料一】蝉一生中的“” (用图片中的文字填空)阶段,请你结合材料二给这一阶段下个定义:.(不超过20个字)14.同学们还发现【材料二】和【材料三】在说明内容上有明显不同,请用简要的语言分别概括15.阅读三则材料,同学们已经感受到法布尔的《昆虫记》无愧于“昆虫的史诗”的美誉请你结合三则材料写一段发言稿表达你的读后感受.(80字左右)【活动四•人间草木](30分)16.本次综合性学习活动的最后一个环节,是八(1)班的语文老师组织大家向学校文学社“人间草木”专刊投稿.该刊下设“草木有情”和“昆虫有灵”两个栏目,请你从植物或动物的角度,写一篇文章要求:(1)任选一个角度,可记叙、可抒情、可说明(2)自拟标题,文体自选(诗歌除外),600字左右. (3)不得出现真实的校名、人名.答案与解析【活动一.草木有情】(30分)1.王同学为活动拟写了一条宣传标语,请你用正楷或行楷临摹它草木且作无声诗草木且作无声诗【答案】草木且作无声诗草木且作无声诗【解析】【详解】本题考查学生的书写.作此题时一定要注意严格按照题目的要求,照样书写,不添加、不遗漏,规范格式,标点符号占一格,工整、规范、美观地书写每一个字符.2.同学们玩起了“飞花令”游戏,规则约定每人背诵的诗句必须包含“花”字请你填补下面空白.小明:唐代诗人杜牧在《山行》中写道“①”.小林:我想到宋代女词人②在《如梦令》中的“兴尽晚回舟,③" 一句.小刚:宋朝词人晏殊的《浣溪沙》中有“④”是带“花”字的小童:杜甫《春望》一诗的颈联“⑤,恨别鸟惊心”也是带“花”字的小明:小童,这句诗不是颈联,应该是⑥联.小童:哦,是我搞错了.【答案】(1).霜叶红于二月花⑵.李清照(3).误入藕花深处⑷.无可奈何花落去(5).感时花溅泪(6).颔【解析】【详解】注意“藕花”“溅泪”“颔”等易错字,律诗的第二联应该是颔联3.下面是小林同学写的一则关于树的片段,请你参与修改家门口这棵高大的梧桐树从从容容地经受了风雨的岁月,它高大起来,繁盛起来你看,这树一傲然挺立在寒风之中,没有丝毫倦d%①.它的q迨②枝旁yi③斜出,抵挡住严霜的侵袭.在喧xiao®的人世间,这样一棵好树,让人佩服. (1)根据读音和语境,填补其中的汉字.①②③④(2)片段开头画线句是病句,请结合所学的句子成分和主干的知识,向小王分析错误并修改分析:_________________________________ 修改:(3)小童同学说,片段结尾画线句,如改成反问句,可以增强表达效果请你先试着改一改,再比较分析反问句的表达效果好在哪里.反问句:____________________________ 分析:【答案】(1). (1)怠⑵.虬⑶.逸⑷.嚣⑸.(2)这一句的主干是“梧桐树经受岁月”,谓语中心语“经受”和宾语中心语“岁月”搭配不当;(6).应把“风雨的岁月”改成“岁月的风雨”.另改成“风雨的洗礼”也可. (7). (3)有这样一棵好树,怎能不让人佩服呢?(8).改句是反问句,无疑而问,语气强烈,能表达对梧桐树的强烈的赞美语气容易引起读者的(思考)情感共鸣【解析】【详解】(1)本题考查汉字的书写,注意“虬”和“札”、“嚣”和“器”的辨析(2)本题考查语病的辨析和修改,这里属于搭配不当,可使用缩句的方法,先缩句,再分析原句的“梧桐树”是主语,“经受”是谓语,“岁月”是宾语,不能与“经受”搭配把“风雨的岁月”改成“岁月的风雨”.(3)本题考查句型转换和对句子的理解.可以改成“这样一颗好树,难道不让人佩服吗?”反问句能加强语气,便于抒发强烈的感情,这里强烈地表达了对梧桐树的赞美和敬佩之情4.小青同学想要策划一场“人间草木”的知识大赛,她在网上搜索了一些资料请你参与她的活动.(1)辨析下面几种说法,有错的一项是()A.《愚公移山》一文中,智叟嘲笑愚公”曾不能毁山之一毛”,“毛”指草木B.《白杨礼赞》是我国著名现代文学家茅盾的作品,茅盾原名沈德鸿,字雁冰C. “风声一何盛,松枝一何劲”用两个“一何”,对松柏的赞美之情溢于言表D.《寂静的春天》是一本外国诗集,其作者是英国海洋生物学家蕾切尔•卡森(2)小青搜集到一则咏菊的古诗,请理解诗中菊形象及其象征意义寒菊(宋)郑思肖花开不并百花丛,独立疏篱趣未穷.宁可枝头抱香死,何曾吹落北风中.菊的形象:_______________________________________________________________________菊的象征意义:___________________________________________________________________【答案】(1). (1) D (2). (2)形象:菊花盛开在秋天,独立在稀疏的篱笆旁,从不与百花为伍,宁可在枝头凋谢枯萎而死,也不曾吹落于凛冽北风之中!(3).象征意义:象征着品行高洁、坚贞自守的君子形象(意近即可).【解析】【详解】(1)本题考查对文学常识的积累.D.《寂静的春天》是一本激起了全世界环境保护事业的书,作者是美国海洋生物学家蕾切尔卡森.选项错误. 故选D.(2)本题考查对诗歌的理解.解答时,需读懂诗歌,分析作答.诗意:你在秋天盛开,从不与百花为丛.独立在稀疏的篱笆旁边,你的情操意趣并未衰穷.宁可在枝头上怀抱着清香而死,绝不会吹落于凛冽北风之中!本诗塑造了一个高洁坚贞、真淳自得、不愿屈服的菊花形象,这首诗题咏的对象是画上的菊,诗歌的重点是托物言志,不在于发挥画理,因此具有咏物诗的特征.全诗写菊花之形貌,得菊花之神理,又能超乎其上,在充分表现菊花自然属性的同时,也写了郑思肖的爱国情操,既表现出菊花的自然美,菊画的绘画美,又表现了画家兼诗人的人格美.菊花的形象象征了宁可为坚持气节而死去,不愿屈服于蒙元统治集团,具有崇高民族气节的君子形象.【活动二•人间有味】(40分)小青同学还与大家分享了两则与茶文化相关的文章,请你一起来品读.任务一:品读《兰雪茶》兰雪茶【明】张岱日铸①者,越王铸剑地也.茶味棱棱②,有金石之气.……(余)遂募歙③人入日铸.A拘法、掐法、挪法、撒法、扇法、炒法、培法、藏法,一如松衰.他泉渝⑤之,香气不出用杂入茉莉再三较量用敞口瓷瓯淡放之候其冷;C以旋滚汤冲泻之,色如竹箨⑥方解,绿粉初匀:又如山窗初曙,透纸黎光.口取清妃白⑦,倾向素瓷,真如百茎素兰同雪涛并泻也.……余戏呼之“兰雪”.四五年后,“兰雪茶”一哄如市焉.越⑧之好事者不食松萝,止食兰雪.(选自《陶庵梦忆》,有删节)【注】①日铸,即日铸岭,位于浙江②棱棱,形容茶叶味道浓厚、清朗.③歙,安徽歙县.④松萝,当时的安徽名茶.⑤瀹yuB,煮.⑥箨tub,竹笋上一片一片的皮.⑦清妃白,一种细瓷、色浅、形曲的杯子⑧越,指浙江一带.5.阅读选文,用“/”标出下面句子停顿,标三处杂入茉莉再三较量用敞口瓷瓯淡放之候其冷6.有同学不理解文中“以旋滚汤冲泻之”中“旋”的意思,查阅了《古汉语字典》,下面四个义项中,符合语境的是().A.转动B.返回C.随即D.屡次7.下面是小黄在摘抄时,脱漏了的文字.它应该放在文中处.(在文中A、B、C、D中选择正确的位置.)煮禊泉,投以小罐,则香太浓郁.8.同学们特别喜欢文中“色如竹箨方解,绿粉初匀;又如山窗初曙,透纸黎光”这几句话,请你一起来赏析.【答案】5.杂入茉莉/再三较量/用敞口瓷瓯淡放之/候其冷 6. C7. B 8.作者用了两个精妙的比喻,首先把茶色比作刚剥开的竹笋,呈极其均匀的淡绿色,再把茶色比作面山小窗的窗纸,刚刚透出黎明曙色.这几句话描写兰雪茶刚冲泡后的茶色;形象写出兰雪茶色彩的青绿、清亮的特点,给人以视觉上的独特审美.(其中特点必须答完整)【解析】【5题详解】本体考察句子的断句.做此类题时,最基本的在于对通篇文章的领会断句方法:读通文段,弄懂大意断句总则:牢记一个前提领会大意.要通读文段,领会基本意思,再根据句子成分进行停顿划分.句意为:后来掺入茉莉花,反复配比,冲淡后放入敞口的瓷瓯中,等待冷却故停顿为:杂入茉莉/再三较量/用敞口瓷瓯淡放之/候其冷.【6题详解】本题考查对文言文实词的理解能力.作答本题,重点在于实词的积累,同时也可借助整个句子的意思来判断结合语境,句意为:随即用滚开的水猛冲.故选C.【7题详解】本题考查句子的衔接.解答时,先要了解句意.句子的意思是用禊泉水煮,装在小罐中,香气又过于浓郁可知这句话讲的是冲泡的方法,“香太浓郁”与“香气不出”形成前后的对比,所以应该放在句子“他泉渝之,香气不出”之后.故选B.【8题详解】本题考查对句子的赏析.此句应用两个比喻,把“茶汤色泽”比作“刚剥开的竹笋”,写出了茶汤色彩青绿的特点,又比作“面山轩窗的窗纸,刚刚透出黎明曙色”,突出了茶汤清亮透明的特点语言优美,给人视觉上的美感.【点睛】译文:日铸岭,越王铸剑地方.这里的茶茶味浓厚、清朗,似乎有金石般的气息.……于是我便招募安徽歙县人来到日铸制茶.为法、掐法、挪法、撒法、扇法、炒法、焙法、藏法,全部遵照松萝茶制作工艺.制成后,用其它泉水冲泡,香气出不来,掺入茉莉花,反复配比,冲淡后放入敞口的瓷瓯中,等待冷却;随即用滚开的水猛冲,这时只见茶汤色泽如同刚剥开的竹笋,呈极其均匀的淡绿色;又如面山轩窗的窗纸,刚刚透出黎明曙色取来清妃白素瓷杯,将茶倾倒进去,犹如一枝枝立在水中的素兰与雪涛一同倾泻而下.……我开玩笑般地把新茶叫做“兰雪”.四五年后,“兰雪茶”在市场上得到消费者哄抬浙江很多喜欢制造事端的消费者不再喝松萝茶,只喝兰雪.任务二:品读《寻常茶话》寻常茶话汪曾祺我的家乡有“喝早茶”的习惯,或者叫做“上茶馆”.上茶馆其实是吃点心,包子、蒸饺、烧麦、千层糕……茶自然是要喝的.在点心未端来之前,先上一碗干丝.我们那里原先没有煮干丝,只有烫干丝干丝在一个敞口的碗里堆成塔状,临吃,堂倌把装在一个茶杯里的佐料一酱油、醋、麻油浇入喝热茶,吃干丝,一■绝!抗日战争时期,我在昆明住了七年,几乎天天泡茶馆.“泡茶馆”是西南联大学生特有的说法.本地人叫做“坐茶馆”,“坐”,本有消磨时间的意思,“泡”则更胜一筹这是从北京带过去的一个字,“泡” 者,长时间地沉溺其中也,与“穷泡”、“泡蘑菇”的“泡”是同一语源联大学生在茶馆里往往一泡就是半天.干什么的都有,聊天、看书、写文章.有一位研究生,可称泡茶馆的冠军.此人姓陆,是一怪人.他曾经徒步旅行了半个中国,读书甚多,而无所着述,不爱说话他简直是“长”在茶馆里.上午、下午、晚上,要一杯茶,独自坐着看书.他连漱洗用具都放在一家茶馆里,一起来就到茶馆里洗脸刷牙.听说他后来流落在四川,穷困潦倒而死,悲夫.!老北京早起都要喝茶,得把茶喝“通” 了,这一天才舒服无论贫富,皆如此.一九四八年我在午门历史博物馆工作.馆里有几位看守员,岁数都很大了.他们上班后,都是先把带来的窝头片在炉盘上烤上,然后轮流用水汆坐水沏茶.茶喝足了,才到午门城楼的展览室里去坐着.他们喝的都是花茶.北京人爱喝花茶,以为只有花茶才算是茶.我不太喜欢花茶,但好的花茶例外,比如老舍先生家的花茶老舍先生一天离不开茶.他到莫斯科开会,苏联人知道中国人爱喝茶,倒是特意给他预备了一个热水壶可是,他刚沏了一杯茶,还没喝上几口,一转脸,服务员就给倒了.老舍先生很愤慨地说:“他不知道中国人喝茶是一天喝到晚的!” 一天喝茶喝到晚,也许只有中国人如此.外国人喝茶都是论“顿”的,难怪那位服务员看到多半杯茶放在那里,以为老先生已经喝完了,不要了.龚定庵以为碧螺春天下第一.我曾在苏州东山白的“雕花楼”喝过一次新采的碧螺春.“雕花楼”原是一个华侨富商的住宅,楼是进口的硬木造的,到处都雕了花,八仙过海、福禄寿三星、龙、凤、牡丹…… 真是集恶俗之大成.但碧螺春真是好.不过茶是泡在大碗里的,我觉得这有点煞风景.后来问陆文夫,文夫说碧螺春就是讲究用大碗喝的.茶极细,器极粗,亦怪!我还在湖南桃源喝过一次擂茶.茶叶、老姜、芝麻、米,加盐放在一个擂钵里,用硬木的擂棒“擂”成细末,用开水冲开,便是擂茶.茶可入馔,制为食品.杭州有龙井虾仁,裘盛戎曾用龙井茶包饺子,可谓别出心裁日本有茶粥.茶粥是啥样的呢?我曾用粗茶叶煎汁,加大米熬粥,自以为这便是“茶粥”了.有一阵子,我每天早起喝我所发明的茶粥,自以为很好喝.四川的樟茶鸭子乃以柏树枝、樟树叶及茶叶为熏料,吃起来有茶香而无茶味曾吃过一块龙井茶心的巧克力,这简直是恶作剧!用上海人的话说:巧克力与龙井茶实在完全“弗搭界”.(选自《记忆中的星光:光明日报65年文艺作品选萃》,2014年6月版,有删改)9.同学们发现,作者围绕着“茶”,将记忆中与之相关的人、事娓娓道来请你按照提示依次概括家乡“喝早茶”的习惯一一——老北京人早起都要喝茶——______________ :——“我”在湖南桃源喝擂茶——:___________10.赏读中,同学们发现有些词语有特定的语境义,请你解释下面句中加点词的语境义(1)老北京早起都要喝茶,得把茶喝“通” 了,这一天才舒服.。
八年级(上学期)期末数学试卷(含答案解析)(时间120分钟,满分150分)题号一二三总分得分一、选择题(本大题共10小题,共40.0分)1.下列等式正确的是()A. x3•x-1=x-3B. x3•x-1=x2C. x3÷x-1=x2D. x3÷x-1=x-32.下列长度的三条线段能组成三角形的是()A. 3,4,7B. 3,4,8C. 3,4,5D. 3,3,73.在平面直角坐标系xOy中,若△ABC在第一象限,则△ABC关于x轴对称的图形所在的位置是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.若分式有意义,则x应满足的条件是()A. x≠0B. x≠-2C. x≥-2D. x≤-25.如图,在Rt△ABC中,∠ACB=90°,分别以其三边向外作正方形,过点C作CK⊥AB交ID于点K,延长EB交AG于点L,若点L是AG的中点,△ABC的面积为20,则CK的值为()A. 4B. 5C. 2D. 46.某同学把一块三角形的玻璃打碎成三块(如图所示),现要到玻璃店其配一块完全一样的玻璃,应带第()块去配.A. ①B. ②C. ③D. ①②③都不可以7.运用完全平方公式(a-b)2=a2-2ab+b2计算(x-)2,则公式中的2ab是()A. xB. -xC. xD. 2x8.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队共同工作了半个月,总工程全部完成.设乙队单独施工1个月完成总工程的,则可以表示“两队共同工作了半个月完成的工程量”的代数式是()A. B. C. D.9.如图,你能根据面积关系得到的数学公式是()A. a2-b2=(a+b)(a-b)B. (a+b)2=a2+2ab+b2C. (a-b)2=a2-2ab+b2D. a(a+b)=a2+ab10.如图,在△ABC中,∠ACB=90°,作CD⊥AB于点D,以AB为边作矩形ABEF,使得AF=AD,延长CD,交EF于点G,作AN⊥AC交GF于点N,作MN⊥AN交CB的延长线于点M,MN分别交BE,DG于点H,P,若NP=HP,NF=2,则四边形ABMN的面积为()A. 8B. 9C. 10D. 11二、填空题(本大题共6小题,共24.0分)11.若a+b=3,则a2-b2+6b=______;若2x+5y-3=0,则4x•32y=______.12.分解因式:m3-2m2+m=______.13.如图,在△ABC和△EDB中,∠C=∠EBD=90°,点E在AB上.若△ABC≌△EDB,AC=4,BC=3,则AE=______.14.如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=110°,则∠EAB=______度.15.如图,等边△ABC中,AD是BC边上的中线,且AD=4,E,P分别是AC,AD上的动点,则CP+EP的最小值等于______.16.如图,在Rt△ABC中,AB=AC,∠CBD=∠ABD,DE⊥BC,BC=10,则△DEC的周长= ______ .三、解答题(本大题共9小题,共86.0分)17.化简:(1+)(1-)+-2+×-()2.18.先化简,再求值:(x-2-),其中x=.19.如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB.求证:∠A=∠E.20.如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)21.如图,△ABC的周长为20,其中AB=8,(1)用直尺和圆规作AB的垂直平分线DE交AC于点E,垂足为D,连接EB;(保留作图痕迹,不要求写画法)(2)在(1)作出AB的垂直平分线DE后,求△CBE的周长.22.如图,在△ABC中,AC=BC=1,∠C=90°,E、F是AB上的动点,且∠ECF=45°,分别过E、F作BC、AC的垂线,垂足分别为H、G,两垂线交于点M.(1)当点E与点B重合时,请直接写出MH与AC的数量关系;(2)探索AF、EF、BE之间的数量关系,并证明你的结论;(3)以C为坐标原点,以BC所在的直线为x轴,建立直角坐标系,请画出坐标系并利用(2)中的结论证明MH•MG=.23.元旦节前夕,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销量大,店主决定将玫瑰每枝降价2元促销,降价后80元可购买玫瑰的数量是原来可购买玫瑰数量的1.25倍.(1)试问:降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于1000元的资金再次购进两种鲜花共180枝,康乃馨进价为6元/枝,玫瑰的进价是5元/枝.试问;至少需要购进多少枝玫瑰?24.已知a,b互为相反数,c,d互为倒数,x的平方等于4,试求x2-(a+b+cd)x+(a+b)2009+(-cd)2008的值.25.如图,在等腰△ABC中,AB=AC,点D为直线BC上一点,连接AD,以AD为腰在AD的右侧作等腰△ADE,AD=AE,∠BAC=∠DAE=a,连接CE.(1)如图1,当点D在线段BC上时,求证:△ABD≌△ACE;(2)当a=60°,①如图2,求证:CE∥AB;②探究线段CE、AB、CD之间的数量关系,请直接写出结论.答案和解析1.【答案】B【解析】解:A.x3•x-1=x3-1=x2,故本选项不合题意;B.x3•x-1=x3-1=x2,故本选项合题意;C.x3÷x-1=x3-(-1)=x4,故本选项不合题意;D.x3÷x-1=x3-(-1)=x4,故本选项不符合题意.故选:B.分别根据同底数幂的乘法除法法则,根据法则逐一判断即可.本题主要考查了同底数幂的乘法除法法则,熟记相关运算法则是解答本题的关键.2.【答案】C【解析】解:根据三角形的三边关系,得,A、3+4=7,不能组成三角形,不符合题意;B、3+4<8,不能够组成三角形,不符合题意;C、2+5>5,能组成三角形,符合题意;D、3+3<7,不能组成三角形,不符合题意.故选:C.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.【答案】D【解析】解:∵△ABC在第一象限,∴△ABC关于x轴对称的图形在第四象限,故选:D.根据关于x轴对称的点的横坐标相等,纵坐标互为相反数求解可得.本题主要考查关于x、y轴对称点的坐标,解题的关键是掌握点P(x,y)关于x轴的对称点P′的坐标是(x,-y),关于y轴的对称点P′的坐标是(-x,y).4.【答案】B【解析】解:由题意得:x+2≠0,解得:x≠-2,故选:B.根据分式有意义的条件即可求解.本题考查的是分式有意义的条件的内容,根据分式有意义,分母不为零来求解.5.【答案】B【解析】解:由题意可知,AC=IC,BC=DC,∠ACB=∠ICD=90°,∴△ACB≌△ICD(SAS),∴∠CAB=∠CIK,∠ABC=∠IDC,延长KC交AB于点P,则KP⊥AB,在Rt△ABC中,∠ACB=90°,∠CAB+∠CBA=90°,在Rt△ACP中,∠APC=90°,∠ACP+∠CAB=90°,∴∠ACP=∠CBA=∠IDC,∵∠ACP=∠KCD,∴∠KCD=∠IDC,∴KC=KD,同理可知,IK=KC,∴KD=IK=KC,∴KC=ID=AB,∵AD∥EL,∴△ACB∽△BAL,∴AC:BC=BA:AL=2:1,∵△ABC的面积为20,∴AC•BC=40,∴BC=2,AC=4,∴AB=10,∴CK=5.故选:B.由题意可知,AC=IC,BC=DC,∠ACB=∠ICD=90°,所以△ACB≌△ICD(SAS),所以∠CAB=∠CIK,∠ABC=∠IDC,延长KC交AB于点P,则KP⊥AB,易证KD=IK=KC,所以KC=ID=AB,因为AD∥EL,所以△ACB∽BAL,则AC:BC=BA:AL=2:1,又△ABC的面积为20,所以AC•BC=40,则可得BC=2,AC=4,所以AB=10,则CK=5.本题利用正方形性质,平行线的性质和三角形相似等,关键是根据三角形相似找出对应边成比例.6.【答案】C【解析】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.7.【答案】B【解析】解:(x-)2=x2-2x×+=x2-x+,所以公式中的2ab是-x.故选:B.利用完全平方公式计算(x-)2即可得到答案.本题考查了完全平方公式,属于基础题,熟记公式(a-b)2=a2-2ab+b2即可解题.8.【答案】D【解析】解:∵甲队单独施工1个月完成总工程的,乙队单独施工1个月完成总工程的,∴两队共同工作了半个月完成的工程量=(+)=+,故选:D.由题意甲队单独施工1个月完成总工程的,乙队单独施工1个月完成总工程的,求出两队共同工作了半个月完成的工程量即可.本题考查了列代数式,熟知甲队和乙队的工作效率是解题的关键.9.【答案】C【解析】解:从图中可知:阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,∴(a-b)2=a2-2ab+b2,故选:C.根据图形得出阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,即可得出选项.本题考查了完全平方公式的应用,主要考查学生的阅读能力和转化能力,题目比较好,有一定的难度.10.【答案】C【解析】解:∵CD⊥AB,∠F=90°,∴∠ADC=∠F=90°,∵AN⊥AC,∠DAF=90°,∴∠FAN+∠DAN=∠DAC+∠DAN=90°,∴∠FAN=∠DAC.在△ADC和△AFN中,,∴△ADC≌△AFN(ASA),∴CD=FN=2,AC=AN.∵AN⊥AC,MN⊥AN,∴∠ACB=∠CAN=∠ANM=90°,∴四边形ACMN是矩形,∴四边形ACMN是正方形,∵∠CDB=∠DBE=90°,∴CG∥BE,又∵NP=PH,∴NG=GE,设NG=GE=x,则FG=2+x=AD,DB=GE=x,∵Rt△ACB中,CD⊥AB,∴△ADC∽△CDB,∴.∴CD2=AD×DB,∴22=(2+x)x,即x2+2x=4.四边形ABMN的面积=S正方形ACMN-S△ABC=AC2-=(AD2+CD2)-=(2+x)2+22-=x2+2x+6=4+6=10,故选:C.依据条件可判定△ADC≌△AFN(ASA),即可得到CD=FN=2,AC=AN,再根据四边形ACMN是矩形,即可得到四边形ACMN是正方形;设NG=GE=x,则FG=2+x=AD,DB=GE=x,根据△ADC∽△CDB,可得CD2=AD×DB,即可得出x2+2x=4,再根据四边形ABMN的面积=S正方形ACMN-S△ABC进行计算,即可得出结论.本题主要考查了矩形的性质,正方形的判定与性质以及相似三角形、全等三角形的综合运用,解决问题的关键是先判定四边形ACMN是正方形,四边形ABMN的面积=S正方形ACMN-S△ABC,然后利用整体代入方法求解.11.【答案】9 8【解析】解:∵a+b=3,∴a2-b2+6b=(a+b)(a-b)+6b=3(a-b)+6b=3(a+b)=3×3=9;∵2x+5y-3=0,∴2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8.故答案为:9,8.把a2-b2+6b写成(a+b)(a-b)+6b=3(a-b)+6b=3(a+b),再把a+b=3代入即可求解;4x•32y=22x•25y=22x+5y,再把2x+5y=3代入即可求解.本题主要考查了平方差公式,同底数幂的乘法以及幂的乘方,熟记幂的运算法则是解答本题的关键.12.【答案】m(m-1)2【解析】解:m3-2m2+m=m(m2-2m+1)=m(m-1)2.故答案为m(m-1)2.先提取公因式m,再根据完全平方公式进行二次分解.完全平方公式:a2-2ab+b2=(a-b)2.本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.13.【答案】1【解析】解:在Rt△ACB中,∠C=90°,AC=4,BC=3,由勾股定理得:AB=5,∵△ABC≌△EDB,∴BE=AC=4,∴AE=5-4=1,故答案为:1.根据勾股定理求出AB,根据全等得出BE=AC=4,即可求出答案.本题考查了全等三角形的性质和勾股定理的应用,能求出BE的长是解此题的关键,全等三角形的对应角相等,对应边相等.14.【答案】40【解析】解:∵AB=BC,∴∠ACB=∠BAC∵∠ACD=110°∴∠ACB=∠BAC=70°∴∠B=∠40°,∵AE∥BD,∴∠EAB=40°,故答案为40.首先利用∠ACD=110°求得∠ACB与∠BAC的度数,然后利用三角形内角和定理求得∠B的度数,然后利用平行线的性质求得结论即可.本题考查了等腰三角形的性质及平行线的性质,题目相对比较简单,属于基础题.15.【答案】4【解析】解:作点E关于AD的对称点F,连接CF,∵△ABC是等边三角形,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点E关于AD的对应点为点F,∴CF就是EP+CP的最小值.∵△ABC是等边三角形,E是AC边的中点,∴F是AB的中点,∴CF是△ABC的中线,∴CF=AD=4,即EP+CP的最小值为4,故答案为:4.要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解.本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键.16.【答案】10【解析】解:∵∠CBD=∠ABD,DE⊥BC,∠A=90°,∴△ABD≌△EBD,∴AB=BE,AD=DE.又∵AB=AC,∴CD+DE=CD+AD=AC=AB=BE,∴△DEC的周长=CD+DE+CE=BE+CE=BC=10.∴△DEC的周长=10.故填10.从已知条件开始思考,利用角的平分线上的点到角的两边的距离相等进行相等线段的转移,可得答案.本题考查了角平分线的性质;解题时主要利用了角的平分线上的点到角的两边的距离相等证明三角形全等,然后利用和差关系求值.17.【答案】解:原式=1-2+5-8+6-3×2=-1-3+6-6=-1-3.【解析】先利用平方差公式、二次根式的性质计算、化简,再计算加减即可.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则、平方差公式.18.【答案】解:原式=()÷=()÷=÷==2x-4当x=时,原式=【解析】先化简分式,然后将x=代入求值即可.本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.19.【答案】证明:如图,∵BC∥DE,∴∠ABC=∠BDE.在△ABC与△EDB中,,∴△ABC≌△EDB(SAS),∴∠A=∠E.【解析】直接利用平行线的性质结合全等三角形的判定方法得出答案.此题主要考查了全等三角形的判定与性质,正确掌握全等三角形的判定方法是解题关键.20.【答案】解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.证明:∵AD⊥BC,∴∠ADB=90°,∴∠BPD+∠PBD=90°.∵∠BAC=90°,∴∠AQP+∠ABQ=90°.∵∠ABQ=∠PBD,∴∠BPD=∠AQP.∵∠BPD=∠APQ,∴∠APQ=∠AQP,∴AP=AQ.【解析】本题考查的是作图-基本作图,熟知角平分线的作法和性质是解答此题的关键.根据角平分线的性质作出BQ即可.先根据垂直的定义得出∠BPD+∠PBD=90°.再根据余角的定义得出∠AQP+∠ABQ=90°,根据角平分线的性质及对顶角得出可知∠APQ=∠AQP,据此可得出结论.21.【答案】解:(1)如图,BE为所作;(2)∵DE是AB的垂直平分线,∴EA=EB,∴EB+EC=EA+EC=AC,∵△ABC的周长为20,∴AC+BC=20-AB=20-8=12,∴△CBE的周长=BE+EC+BC=AE+EC+BC=AC+BC=12.【解析】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).(1)利用基本作图作AB的垂直平分线;(2)根据垂直平分线的性质得到EA=EB,则EB+EC=AC,然后利用△ABC的周长为20得到AC+BC=12,从而得到△CBE的周长.22.【答案】解:(1)如图1,当点E与点B重合时,点H与点B重合,∴MB⊥BC,∠MBC=90°,∵MG⊥AC,∴∠MGC=90°=∠C=∠MBC,∴MG∥BC,四边形MGCB是矩形,∴MH=MB=CG,∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,∴CF=AF=BF,∴FG是△ACB的中位线,∴GC=AC=MH,即MH=AC.(2)AF、EF、BE之间的数量关系是EF2=AF2+BE2,证明如下:如图2所示,∵AC=BC,∠ACB=90°,∴∠A=∠5=45°.将△ACF顺时针旋转90°至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2.在△ECF和△ECD中,,∴△ECF≌△ECD(SAS),∴EF=DE.∵∠5=45°,∴∠DBE=90°,∴DE2=BD2+BE2,即EF2=AF2+BE2;(3)如图,以C为坐标原点,以BC所在的直线为x轴,建立直角坐标系,设M(a,b),∵OA=OB=1,∴∠GAF=∠AFG=∠MFE=∠HEB=∠HBE=45°,∴△AGF和△EFM和△BEH都是等腰直角三角形,∴AG=GF=1-b,BH=EH=1-a,FM=ME=a+b-1,∴AF2=2(1-b)2,EF2=2(a+b-1)2,BE2=2(1-a)2,由(2)可知EF2=AF2+BE2,∴2(a+b-1)2=2(1-b)2+2(1-a)2,∴2ab=1,∴ab=,即MH•MG=.【解析】(1)当点E与点B重合时,点H与点B重合,可得MG∥BC,四边形MGCB是矩形,进一步得到FG是△ACB的中位线,从而得出结论;(2)根据SAS可证△ECF≌△ECD,根据全等三角形的性质和勾股定理即可得出答案;(3)以C为坐标原点,以BC所在的直线为x轴,建立直角坐标系,设M(a,b),可得出AG=GF=1-b,BH=EH=1-a,FM=ME=a+b-1,由(2)的结论可得出a,b的等式,整理即可得出结论.此题是三角形综合题,考查了等腰直角三角形的判定和性质,平行线的判定和性质,矩形的判定和性质,三角形中位线的性质,全等三角形的判定和性质,勾股定理,坐标与图形的性质等知识,熟练掌握等腰直角三角形的性质及全等三角形的判定与性质是解题的关键.23.【答案】解:(1)设降价后每枝玫瑰的售价是x元,则降价前每枝玫瑰的售价是(x+2)元,根据题意得:=×1.25,解得:x=8,经检验,x=8是原方程的解.答:降价后每枝玫瑰的售价是8元.(2)设购进玫瑰y枝,则购进康乃馨(180-y)枝,根据题意得:5y+6(180-y)≤1000,解得:y≥80.答:至少购进玫瑰80枝.【解析】(1)设降价后每枝玫瑰的售价是x元,则降价前每枝玫瑰的售价是(x+2)元,根据数量=总价÷单价结合降价后80元可购买玫瑰的数量是原来可购买玫瑰数量的1.25倍,即可得出关于x的分式方程,解之经检验即可得出结论;(2)设购进玫瑰y枝,则购进康乃馨(180-y)枝,根据总价=单价×数量结合总价不多于1000元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24.【答案】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∵x的平方等于4,∴x=±2,∴x2-(a+b+cd)x+(a+b)2009+(-cd)2008=22-(0+1)×2+02009+(-1)2008=4-2+0+1=3,x2-(a+b+cd)x+(a+b)2009+(-cd)2008=(-2)2-(0+1)×(-2)+02009+(-1)2008=4+2+1=7,综上所述,代数式的值为3或7.【解析】根据相反数的定义求出a+b,根据倒数的定义求出cd的值,再根据有理数的乘方求出x,然后代入代数式进行计算即可得解.本题考查了代数式求值,相反数的定义,倒数的定义,是基础题,熟记概念与性质是解题的关键.25.【答案】证明:(1)∵∠BAC=∠DAE=a,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS);(2)①∵∠BAC=∠DAE=a,∴∠BAD=∠CAE,由(1)同理可证△BAD≌△CAE,∴∠ABD=∠ACE,∵α=60°,AB=AC,∴△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠ABC+∠BCE=60°+120°=180°,∴CE∥AB;②当点D在BC延长线上时,∵△BAD≌△CAE,∴CE=BD=BC+CD=AB+CD;当点D在BC上时,∵△BAD≌△CAE,∴CE=BD=BC-CD=AB-CD;当点D在线段CB的延长线上时,∵△BAD≌△CAE,∴CE=BD=CD-AB.综上所述:当点D在BC延长线上时,CE=AB+CD;当点D在BC上时,CE=AB-CD;当点D在线段CB的延长线上时,CE=CD-AB.【解析】(1)利用SAS即可证明△BAD≌△CAE;(2)①当α=60°,AB=AC,得△ABC是等边三角形,由(1)同理可证△BAD≌△CAE,可得∠ABC+∠BCE=60°+120°=180°,即可证明结论;②分三种情形:当点D在BC延长线上时,当点D在BC上时,或当点D在线段CB的延长线上时,分别根据全等三角形的性质得出CE=BD,从而解决问题.本题主要考查了全等三角形的判定与性质,等边三角形的判定与性质,平行线的判定等知识,证明△BAD≌△CAE是解题的关键,注意分三种情况.。
八年级数学(上册)期末试卷及答案(真题) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.3-的倒数是( )A .3B .13C .13-D .3-2.若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .123.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm4.下列二次根式中,与6是同类二次根式的是( )A .12B .18C .23D .305.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .26.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一些蜂蜜,此时一只蚂蚁正好也在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,那么蚂蚁要吃到甜甜的蜂蜜所爬行的最短距离是( )A .13B .14C .15D .167.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+18.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD.设BC边的长为x米,AB边的长为y米,则y与x之间的函数关系式是( )A.y=-2x+24(0<x<12) B.y=-x+12(0<x<24)C.y=2x-24(0<x<12) D.y=x-12(0<x<24)10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.3二、填空题(本大题共6小题,每小题3分,共18分)+=__________.1.已知a、b为两个连续的整数,且11a b<<,则a b2.已知三角形ABC 的三边长为a,b,c 满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是________.4.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为_____________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,在平行四边形ABCD 中,DE 平分∠ADC ,AD=6,BE=2,则平行四边形ABCD 的周长是________.三、解答题(本大题共6小题,共72分)1.解不等式(1)7252x x -+≥ (2)11132x x -+-<2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中50+-113⎛⎫ ⎪⎝⎭2(-1).3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.5.如图,在△OBC 中,边BC 的垂直平分线交∠BOC 的平分线于点D ,连接DB ,DC ,过点D 作DF ⊥OC 于点F .(1)若∠BOC =60°,求∠BDC 的度数;(2)若∠BOC =α,则∠BDC = ;(直接写出结果)(3)直接写出OB ,OC ,OF 之间的数量关系.6.某商店销售A 型和B 型两种电脑,其中A 型电脑每台的利润为400元,B 型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、C5、B6、C7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、72、直角3、13k <<.4、72°5、706、20三、解答题(本大题共6小题,共72分)1、(1)2x ≥;(2)11x >-2、-33a +,;12-.3、(1)102b -≤≤;(2)24、(1)略;(2).5、(1)120°;(2)180°-α;(3)OB +OC =2OF6、(1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。
八年级(上学期)期末数学试卷(含答案解析)(时间90分钟,满分100分)题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.以下列各数为边长,能构成直角三角形的是()A. 1,2,2B. 1,,2C. 4,5,6D. 1,1,2.在如图所示的直角坐标系中,M,N的坐标分别为()A. M(2,-1),N(2,1)B. M(2,-1),N(1,2)C. M(-1,2),N(1,2)D. M(-1,2),N(2,1)3.在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S甲2=0.24,S乙2=0.42,S丙2=0.56,S丁2=0.75,成绩最稳定的是()A. 甲.B. 乙C. 丙D. 丁4.若a<<b,且a与b为连续整数,则a与b的值分别为()A. 1;2B. 2;3C. 3;4D. 4;55.如图,直线a∥b,下列各角中与∠1相等的是()A. ∠2B. ∠3C. ∠4D. ∠56.估计3的运算结果应在()A. 14到15之间B. 15到16之间C. 16到17之间D. 17到18之间7.下列函数中经过第一象限的是()A. y=-2xB. y=-2x-1C.D. y=x2+28.下列命题错误的个数有()①实数与数轴上的点一一对应;②无限小数就是无理数;③三角形的一个外角大于任何一个和它不相邻的内角;④两条直线被第三条直线所截,同旁内角互补.A. 1个B. 2个C. 3个D. 4个9.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A. 90B. 100C. 110D. 12110.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法不正确的是()A. 甲的速度保持不变B. 乙的平均速度比甲的平均速度大C. 在起跑后第180秒时,两人不相遇D. 在起跑后第50秒时,乙在甲的前面二、填空题(本大题共5小题,共15.0分)11.当a= ______ 时,代数式+1取值最小.12.将直线y=3x向上平移3个单位,得到直线______.13.如图,直线AB:y=kx+b与直线CD:y=mx+n交于点E(3,1),则关于x的二元一次方程组的解为______.14.点A(-2a,a-1)在x轴上,则A点的坐标是______,A点关于y轴的对称点的坐标是______.15.图(1)中的梯形符合条件时,可以经过旋转和翻折形成图案(2).三、解答题(本大题共7小题,共55.0分)16..17.某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.社团名称人数文学社团18科技社团a书画社团45体育社团72其他b请解答下列问题:(1)a= ______ ,b= ______ ;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为______ ;(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.18.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?19.为了响应市委和市政府“绿色环保,节能减排”的号召,幸福商场用3300元购进甲、乙两种节能灯共计100只,很快售完.这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1)求幸福商场甲、乙两种节能灯各购进了多少只?(2)全部售完100只节能灯后,商场共计获利多少元?20.在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1).(1)在图中作出△ABC关于y轴的对称△A1B1C1;(2)写出对称点A1、B1、C1的坐标;(3)在y轴上找一点Q,使QA+QB最小.21.(1)如图,在△ABC中,∠A=40°,∠B=70°,CD是AB边上的高,CE是∠ACB的平分线,DF⊥CE于F,求∠CDF的度数.(2)计算:(-x)2•x3•(-2y)3+(2xy)2•(-x)3•y22.如图:一次函数y=-x+3的图象与坐标轴交于A、B两点,点P是函数y=-x+3(0<x<4)图象上任意一点,过点P作PM⊥y轴于点M,连接OP.(1)当AP为何值时,△OPM的面积最大?并求出最大值;(2)当△BOP为等腰三角形时,试确定点P的坐标.答案和解析1.【答案】B【解析】解:A、12+22≠22,不符合勾股定理的逆定理,不能构成直角三角形;B、12+()2=22,符合勾股定理的逆定理,能构成直角三角形;C、42+52≠62,不符合勾股定理的逆定理,不能构成直角三角形;D、12+12≠()2,不符合勾股定理的逆定理,不能构成直角三角形.故选:B.根据勾股定理的逆定理可知,当三角形中三边的关系为:a2+b2=c2时,则三角形为直角三角形.此题考查的是勾股定理的逆定理:已知三角形ABC的三边满足:a2+b2=c2时,则三角形ABC是直角三角形.解答时,只需看两较小数的平方和是否等于最大数的平方.2.【答案】D【解析】解:点M在第二象限,那么横坐标小于0,是-1,纵坐标大于0,是2,即M点的坐标为(-1,2);又因为点N在第一象限,那么它的横,纵坐标都大于0,即N的坐标为(2,1).故选:D.先判断象限内点的坐标的符号特点,进而找相应坐标.本题主要考查了平面直角坐标系中各个象限内点的符号,注意先找横坐标,再找纵坐标.3.【答案】A【解析】解:∵S甲2=0.24,S乙2=0.42,S丙2=0.56,S丁2=0.75,,∴S甲2<S乙2<S丙2<S丁2,∴成绩最稳定的是甲,故选:A.根据方差的意义求解可得.本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.4.【答案】B【解析】解:∵4<7<9,∴2<<3,∵a<<b,且a与b是两个连续整数,∴a=2,b=3.故选:B.根据4<7<9,结合a<<b,且a与b为连续整数,即可得出a、b的值.本题考查了估算无理数的大小,解题的关键是找出2<<3.5.【答案】C【解析】解:∵a∥b,∴∠2=∠3,又∵∠2+∠1=180°,∠3+∠4=180°,∴∠1=∠4,故选:C.依据平行线的性质,即可得到∠2=∠3,再根据∠2+∠1=180°,∠3+∠4=180°,即可得到∠1=∠4.本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.6.【答案】C【解析】解:3=12+3,∵,∴,∴,即3的运算结果应在16到17之间.故选:C.先进行二次根式的运算,然后再进行估算.本题考查了无理数的近似值问题,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法.7.【答案】D【解析】【分析】本题考查了一次函数图象与系数的关系、正(反)比例函数的性质以及二次函数的性质,逐一分析四个选项中函数图象经过的象限是解题的关键.A、由k=-2,可得出正比例函数y=-2x的图象经过第二、四象限,A不符合题意;B、由k=-2、b=-1,可得出一次函数y=-2x-1的图象经过第二、三、四象限,B不符合题意;C、由k=-2,可得出反比例函数y=-的图象在第二、四象限,C不符合题意;D、由a=1、b=0、c=2,可得出二次函数y=x2+2的图象经过第一、二象限,D符合题意.此题得解.【解答】解:A、∵k=-2,∴正比例函数y=-2x的图象经过第二、四象限,A不符合题意;B、∵k=-2,b=-1,∴一次函数y=-2x-1的图象经过第二、三、四象限,B不符合题意;C、∵k=-2,∴反比例函数y=-的图象在第二、四象限,C不符合题意;D、∵a=1,b=0,c=2,∴二次函数y=x2+2的图象经过第一、二象限,D符合题意.故选:D.8.【答案】B【解析】解:①实数与数轴上的点一一对应,正确,不符合题意;②无限不循环小数就是无理数,故原命题错误,符合题意;③三角形的一个外角大于任何一个和它不相邻的内角,正确,不符合题意;④两条平行直线被第三条直线所截,同旁内角互补,故原命题错误,符合题意.错误的有2个,故选:B.利用实数的性质、无理数的定义、三角形的外角的性质及平行线的性质分别判断后即可确定正确的选项.考查了命题与定理的知识,解题的关键是了解实数的性质、无理数的定义、三角形的外角的性质及平行线的性质,难度不大.9.【答案】C【解析】【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.本题考查了勾股定理的应用,作出辅助线构造出正方形是解题的关键.【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,易得△CAB≌△BOF≌△FLG,∴AB=OF=3,AC=OB=FL=4,∴OA=OL=3+4=7,∵∠CAB=∠BOF=∠L=90°,所以四边形AOLP是正方形,OL=7,所以KL=3+7=10,LM=4+7=11,因此矩形KLMJ的面积为10×11=110.故选:C.10.【答案】B【解析】解:由图象可知,甲的速度保持不变,故选项A正确;甲的速度为:800÷180=4米/秒,乙的平均速度为:800÷220=3米/秒,∵4>3,∴乙的平均速度比甲的平均速度小,故选项B错误;在起跑后第180秒时,甲到达终点,乙离终点还有一段距离,他们不相遇,故选项C正确;在起跑后第50秒时,乙在甲的前面,故选项D正确;故选:B.根据题意和函数图象中的数据可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.11.【答案】-【解析】解:∵代数式+1取值最小时,则取到最小,∴2a+1=0,解得:a=-.故答案为:-.根据二次根式的性质代数式+1取值最小,则取到最小,进而求出即可.此题主要考查了二次根式的定义,关键是掌握二次根式中的被开方数为非负数.12.【答案】y=3x+3【解析】解:将直线y=3x向上平移3个单位,得到直线:y=3x+3.故答案为y=3x+3.利用一次函数“上加下减”的平移规律即可得出答案.此题主要考查了一次函图象与平移变换,正确记忆平移规律“左加右减,上加下减”是解题关键.13.【答案】【解析】解:∵直线AB:y=kx+b与直线CD:y=mx+n交于点E(3,1),则关于x的二元一次方程组的解为,故答案为:.利用方程组的解就是两个相应的一次函数图象的交点坐标进行判断.本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.14.【答案】(-2,0)(2,0)【解析】解:∵点A(-2a,a-1)在x轴上,∴a-1=0,解得:a=1,∴A(-2,0),∴A点关于y轴的对称点的坐标(2,0),故答案为:(-2,0)、(2,0).根据x轴上的坐标特点:纵坐标为0可得a-1=0,解出a的值,进而可得A点坐标,再根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.此题主要考查了坐标轴上点的坐标特点,以及关于y轴对称点的坐标特点,关键是掌握点的坐标的变化规律.15.【答案】底角为60°且上底与两腰相等的等腰梯形【解析】试题分析:利用等腰梯形的性质求解.从图得到,梯形的上底与两腰相等,上底角为360°÷3=120°,∴下底角=60°,∴梯形符合底角为60°且上底与两腰相等的等腰梯形条件时,可以经过旋转和翻折形成图案(2).16.【答案】解:原式=-2+2-2-2(-1)×1=-2+2-2-2+2-2.【解析】分别进行负整数指数幂、二次根式的化简、绝对值的化简、零指数幂等运算,然后合并.本题考查了二次根式的混合运算,涉及了负整数指数幂、二次根式的化简、绝对值的化简、零指数幂等知识掌握运算法则是解答本题关键.17.【答案】解:(1)36;9;(2)90°;(3)估计该校学生中选择“文学社团”的人数是3000×=300(人).【解析】【分析】本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.(1)根据体育社团的人数是72人,所占的百分比是40%即可求得调查的总人数,然后利用百分比的意义求得a和b的值;(2)利用360°乘以对应的百分比求解;(3)用样本估计总体,利用总人数乘以对应的百分比求解.【解答】解:(1)调查的总人数是72÷40%=180(人),则a=180×20%=36(人),则b=180-18-45-72-36=9(人).故答案是36;9;(2)书画社团”所对应的扇形圆心角度数是360°×=90°.故答案为90°;(3)见答案.18.【答案】解:设水池的深度为x尺,由题意得:x2+52=(x+1)2,解得:x=12,则x+1=13,答:水深12尺,芦苇长13尺.【解析】首先设水池的深度为x尺,则这根芦苇的长度为(x+1)尺,根据勾股定理可得方程x2+52=(x+1)2,再解即可.此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.19.【答案】解:(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据题意得:,解得:.答:商场购进甲种节能灯40只,购进乙种节能灯60只.(2)40×(40-30)+60×(50-35)=1300(元).答:商场共计获利1300元.【解析】(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,根据幸福商场用3300元购进甲、乙两种节能灯共计100只,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)根据总利润=每只甲种节能灯的利润×购进数量+每只乙种节能灯的利润×购进数量,即可求出结论.本题考查二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.20.【答案】解:(1)如图,△A1B1C1即为所求;(2)由图可得,A1(-1,2)B1(-3,1)C1(2,-1);(3)如图,Q点就是所求的点.【解析】(1)根据轴对称的性质,作出△ABC关于y轴的对称△A1B1C1;(2)根据△A1B1C1各顶点的位置,写出其坐标即可;(3)连接A1B,交y轴于点Q,则QA+QB最小.本题主要考查了轴对称的性质以及轴对称变换的运用,解决问题时注意:凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.21.【答案】解:(1)∵∠A=40°,∠B=70°,∴∠ACB=180°-40°-70°=70°.∵CE是∠ACB的平分线,∴∠BCE=∠ACB=×70°=35°.∵CD⊥AB即∠CDB=90°,∴∠BCD=180°-90°-70°=20°,∴∠DCE=∠BCE-∠BCD=35°-20°=15°.∵DF⊥CE即∠DFC=90°,∴∠CDF=180°-90°-15°=75°;(2)(-x)2•x3•(-2y)3+(2xy)2•(-x)3•y=x2•x3•(-8y3)+4x2y2•(-x3)•y=-8x5y3-4x5y3=-12x5y3.【解析】(1)由DF⊥CE可知,要求∠CDF的度数,只需求出∠FCD,只需求出∠BCE和∠BCD即可;(2)根据整式的混合运算的法则计算即可.本题主要考查了三角形的内角和定理、直角三角形的两锐角互余、角平分线的定义等知识,在三角形中求角度时,通常需利用三角形内角和定理和外角的性质,还考查了整式的混合运算.22.【答案】解:(1)令点P的坐标为P(x0,y0)∵PM⊥y轴∴S△OPM=OM•PM=将代入得∴当x0=2时,△OPM的面积有最大值S max=,即:PM=2,∴PM∥OB,∴即∵直线AB分别交两坐标轴于点A、B,∴A(0,3),B(4,0),∴OA=3,OB=4,∴AB=5,∴AP=;(2)①在△BOP中,当BO=BP时BP=BO=4,AP=1∵P1M∥OB,∴∴,将代入代入中,得∴P1(,);②在△BOP中,当OP=BP时,如图,过点P作PM⊥OB于点N∵OP=BP,∴ON=将ON=2代入中得,∴点P的坐标为P(2,),即:点P的坐标为(,)或(2,).【解析】(1)先设出点P的坐标,进而得出点P的纵横坐标的关系,进而建立△OPM的面积与点P的横坐标的函数关系式,即可得出结论;(2)分两种情况,利用等腰三角形的两边相等建立方程即可得出结论.此题是一次函数综合题,主要考查了三角形的面积公式,等腰三角形的性质,用方程的思想和函数思想解决问题是解本题的关键.。
八年级(上学期)期末数学试卷(含答案)(时间90分钟,满分120分)一、选择题(本大题共16小题,共42.0分)1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.2.分式在实数范围内有意义,则实数x的取值范围是()A. x>4B. x>-4C. x≠4D. x≠-43.小明作△ABC中AC边上的高线,下列三角板的摆放位置正确的是()A. B.C. D.4.下列各组线段中,能组成三角形的是()A. a=2,b=3,c=8B. a=7,b=6,c=13C. a=4,b=5,c=6D. a=2,b=1,c=15.一个多边形的内角和是外角和的2倍,这个多边形是()A. 四边形B. 五边形C. 六边形D. 八边形6.下列运算正确的是()A. a2+a2=a4B. a3•a3=a9C. (ab)2=a2b2D. (a2)3=a57.下列说法正确的有()①平分弦的直径垂直于弦.②三角形的外心是三角形三边垂直平分线的交点.③一条弧所对的圆周角等于它所对的圆心角的一半.④在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等.A. 1个B. 2个C. 3个D. 4个8.如图,图中的两个三角形是全等三角形,其中一些角和边的大小如图所示,那么x的值是()A. 30°B. 45°C. 50°D. 85°9.如图所示,已知AB=AC,PB=PC,下面的结论:①BE=CE;②AP⊥BC;③AE平分∠BAC;④∠PEC=∠PEB,其中正确结论的个数有()A. 1个B. 2个C. 3个D. 4个10.如图,在正方形ABCD中,E是对角线BD上一点,且满足BE=AD,连接CE并延长交AD于点F,连接AE,过B点作BG⊥AE于点G,延长BG交AD于点H.在下列结论中:①AH=DF;②∠AEF=45°;③S四边形EFHG=S△DEF+S△AGH;④BH平分∠ABE.其中不正确的结论有()A. 1个B. 2个C. 3个D. 4个11.等腰三角形的一腰长为6cm,底边长为6cm,则其底角为()A. 120°B. 90°C. 60°D. 30°12.若关于x的分式方程=无解,则m的值为()A. 2B. -2C. 3D. -313.如图,用尺规作出∠AOB的角平分线OE,在作角平分线过程中,用到的三角形全等的判定方法是()A. ASAB. SSSC. SASD. AAS14.随着电影《流浪地球》的热映,其同名科幻小说的销量也急剧上升.某书店分别用2000元和3000元两次购进该小说,第二次数量比第一次多50套,则两次进价相同.该书店第一次购进x套,根据题意,列方程正确的是()A. =B. =C. =D. =15.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列结论正确的个数有()①EF=BE+CF;②设OD=m,AE+AF=n,则S△AEF=mn;③∠BOC=90°+∠A;④点O到∠BAC两边的距离相等;A. 1个B. 2个C. 3个D. 4个16.如图,在△ABC中,BC∥x轴,点A在x轴上,AB=AC=5,点M、N分别是线段BC与BA上两点(与三角形顶点不重合),当△BMN≌△ACO,时,反比例函数(k>0,x>0)的图象经过点M,则k的值是()A. 2B. 3C. 4D. 6二、填空题(本大题共4小题,共12.0分)17.测得某人的头发直径为0.00000000835米,这个数据用科学记数法表示______ m.18.等腰三角形一个角为50°,则此等腰三角形顶角为______.19.△ABC和△DEF关于直线l对称,若△ABC的周长为12cm,△DEF的面积为8cm2,则△DEF的周长为______ ,△ABC的面积为______ .20.已知103=1000,113=1331,123=1728,133=2197,143=2744,153=3375,…,203=8000,213=9261,223=10648,233=12167,243=13824,253=15625,…,则______3=110592.三、解答题(本大题共6小题,共66.0分)21.计算:(1)(-1)2020+π0-2-2;(2)x5•x3-(x2)4+x8÷x.22.(1)计算:;(2)先化简,再求值:,其中3x2+3x-2=0.23.如图1所示,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN.(2)当MN=2BN时,求α的度数.(3)如图2,过P点作PQ⊥AB交AC于Q,连接BQ,判断△ABQ的形状并证明.24.作图并回答问题:(1)如图,在平面直角坐标系中,将坐标分别是(0,3),(1,0),(2,2),(3,0),(4,3)的五个点用线段依次连接起来得到图案①,请画出图案①;(2)若将上述各点的坐标进行如下变化:横坐标分别乘以-1,纵坐标保持不变.将所得的新的五个点用线段依次连接起来得到图案②,请画出图案②;(3)图案②与图案①的位置关系是______;(4)如果某图案与图案①关于x轴对称,则由图案①得到该图案,图案①的上述五个点的坐标进行的变化是:______.25.学习“分式方程应用”时,老师出示例题:为防控“新型冠状病毒”,某药店分别用400元、600元购进两批单价相同的消毒液,第二批消毒液的数量比第一批多20瓶,请问药店第一批消毒液购进了多少瓶?唐唐和瑶瑶根据自己的理解分别列出了如图所示的两个方程.根据以上信息,解答下列问题:(1)唐唐同学所列方程中的x表示______,瑶瑶同学所列方程中的y表示______;(2)两个方程中任选一个,写出它的等量关系;(3)利用(2)中你所选择的方程,解答老师的例题.26.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF 与射线CA相交于点Q.(1)如图1,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图2,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当.BP=a,CQ=时,P,Q两点间的距离(用含a的代数式表示).答案和解析1.【答案】C【解析】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意;故选:C.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴求解即可.此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.【答案】D【解析】解:分式在实数范围内有意义,故x+4≠0,解得:x≠-4.故选:D.直接利用分式有意义的条件得出答案.此题主要考查了分式有意义的条件,正确把握相关性质是解题关键.3.【答案】D【解析】解:作△ABC中AC边上的高线,即过B点作AC的垂线,垂线段为AC边上的高.故选:D.根据三角形高的定义进行判断.本题考查了三角形的高:三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.4.【答案】C【解析】解:A、2+3<8,不能构成三角形,故此选项不合题意;B、6+7=13,不能构成三角形,故此选项不合题意;C、5+4>6,能构成三角形,故此选项符合题意;D、1+1=2,不能构成三角形,故此选项不合题意.故选:C.根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解.本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.5.【答案】C【解析】【分析】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征:任何多边形的外角和都等于360°,n边形的内角和为(n-2)•180°,此题可以利用多边形的外角和和内角和定理求解.【解答】解:设所求多边形边数为n,由题意得(n-2)•180°=360°×2解得n=6.则这个多边形是六边形.故选C.6.【答案】C【解析】解:A.a2+a2=2a2,故本选项不合题意;B.a3•a3=a6,故本选项不合题意;C.(ab)2=a2b2,故本选项符合题意;D.(a2)3=a6,故本选项不合题意.故选:C.选项A根据合并同类项法则判断即可,合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;选项B根据同底数幂的乘法法则判断即可,同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;选项C根据积的乘方运算法则判断即可,积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;选项D根据幂的乘方运算法则判断即可,幂的乘方法则:底数不变,指数相乘.本题考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,掌握幂的运算法则是解答本题的关键.7.【答案】B【解析】解:①平分弦的直径垂直于弦,错误,应该是平分弦(此弦非直径)的直径垂直于弦.②三角形的外心是三角形三边垂直平分线的交点.正确.③一条弧所对的圆周角等于它所对的圆心角的一半.正确.④在同圆或等圆中,如果两条弦相等,那么他们所对的圆周角相等,错误,弦所对的圆周角有两个,这两个角也可能互补.故正确的有②③.故选:B.根据垂径定理,三角形的外角的定义,圆周角定理一一判断即可.本题考查垂径定理,圆周角定理,三角形的外心等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.【答案】C【解析】解:∵图中的两个三角形是全等三角形,∴第二个三角形中x是边长为3对应的角的度数,∵180°-85°-45°=50°,∴第一个三角形中边长为3对应的角的度数是50°,∴x=50°,故选:C.根据全等三角形的性质和三角形内角和,可以求得x的值.本题考查全等三角形的性质\三角形内角和,解答本题的关键是明确题意,利用全等三角形的性质解答.9.【答案】D【解析】解:∵AB=AC,PB=PC,∴AP⊥BC,AE平分∠BAC(三线合一),∵BP=PC,∠BPE=∠CPE=90°,PE=PE,∴△BPE≌△CPE,∴BE=EC,∠PEC=∠PEB,∴四个都正确,故选:D.根据等腰三角形的性质和全等三角形的判定与性质对各个选项进行分析,从而不难得到正确的结论.此题主要考查等腰三角形的性质及全等三角形的判定与性质的综合运用.10.【答案】A【解析】解:∵BD是正方形ABCD的对角线,∴∠ABE=∠ADE=∠CDE=45°,AB=AD,∵BE=AD,∴AB=BE,∵BG⊥AE,∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,∵∠AGH=90°,∴∠DAE=∠ABH=22.5°,在△ADE和△CDE中,,∴△ADE≌△CDE(SAS),∴∠DAE=∠DCE=22.5°,∴∠ABH=∠DCF,在△ABH和△DCF中,,∴△ABH≌△DCF(ASA),∴AH=DF,∠CFD=∠AHB=67.5°,∵∠CFD=∠EAF+∠AEF,∴67.5°=22.5°+∠AEF,∴∠AEF=45°,故①②正确;如图,连接HE,∵BH是AE的垂直平分线,∴AG=EG,∴S△AGH=S△HEG,∵AH=HE,∴∠AHG=∠EHG=67.5°,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,∴EH=ED,∴△DEH是等腰直角三角形,∵EF不垂直DH,∴FH≠FD,∴S△EFH≠S△EFD,∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误;∵∠AHG=67.5°,∴∠ABH=22.5°,∵∠ABD=45°,∴∠ABH=ABD,∴BH平分∠ABE,故④正确;故选:A.此题主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误,根据三角形的内角和和角平分线的定义得到④正确.11.【答案】D【解析】解:如图,作AD⊥BC于D点.则BD=DC=3.∵AC=6,∴cos∠C==,∴∠C=30°.故选D.三角函数的定义和特殊角的三角函数值求解.此题的关键是作底边上的高,构造直角三角形,运用三角函数的定义问题就迎刃而解.这是解决等腰三角形问题时常作的辅助线.12.【答案】A【解析】解:将方程两边都乘以最简公分母(x-3),得:x-5=-m,∵当x=3时,原分式方程无解,∴-2=-m,即m=2;故选:A.将分式方程去分母化为整式方程,由分式方程无解得到x=3,代入整式方程可得m的值.本题主要考查分式方程的解,对分式方程无解这一概念的理解是此题关键.13.【答案】B【解析】解:在△OCE和△ODE中,,∴△OCE≌△ODE(SSS).故选:B.由作图可得CO=DO,CE=DE,OE=OE,可利用SSS定理判定三角形全等.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.【答案】C【解析】【分析】考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.该书店第一次购进x套,则第二次购进(x+50)套,根据两次进价相同列出方程.【解答】解:该书店第一次购进x套,则第二次购进(x+50)套,依题意得:=.故选:C.15.【答案】C【解析】解:在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°-∠A,∴∠BOC=180°-(∠OBC+∠OCB)=90°+∠A;故③正确;在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故②错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,∴点O到∠BAC两边的距离相等,故④正确.故选:C.由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角和定理,即可求得∠BOC=90°+A正确;由平行线的性质和角平分线的定义得出△BEO和△CFO是等腰三角形得出EF=BE+CF 正确;由角平分线的性质得出点O到△ABC各边的距离相等,正确;由角平分线定理与三角形面积的求解方法,即可求得③设OD=m,AE+AF=n,则S△AEF=mn,错误.此题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.16.【答案】C【解析】解:当△BMN≌△ACO时,可得BM=AC=5,过A作AD⊥BC于点D,如图,∵AB=AC,∴BC=2CD=2OA=6,∴CM=BC-BM=6-5=1,∵sin∠ACO=,∴OC=4,∴M点坐标为(1,4),∴k=1×4=4.故选:C.由△BMN≌△ACO可知BM=AC,过A作AD⊥BC,可求得CD、BC的长,从而可求得CM的长,可求得M 点的坐标,代入可求得k.本题主要考查反比例函数的综合应用,涉及反比例函数解析式、全等三角形的性质、等腰三角形的性质、勾股定理等知识点.在本题中求得M点的坐标是解题的关键,注意反比例函数中k=xy的灵活应用.本题所考查知识比较基础,难度不大.17.【答案】【解析】【分析】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000000835=8.35×10-9,故答案为8.35×10-9.18.【答案】50°或80°【解析】解:分为两种情况:当50°是顶角时,顶角为50°当50°是底角时,其顶角是180°-50°×2=80°故答案为50°或80°.已知没有给出50°的角是顶角和是底角,所以要分两种情况进行讨论.本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.19.【答案】12cm;8cm2【解析】【分析】此题主要考查了轴对称图形的性质,得出两图形全等是解题关键.利用关于直线对称图形的性质得出△ABC 和△DEF的周长以及面积相等,进而得出答案.【解答】解:∵△ABC和△DEF关于直线l对称,△ABC的周长为12cm,△DEF的面积为8cm2,∴△DEF的周长为12cm,△ABC的面积为8cm2,故答案为:12cm,8cm2.20.【答案】48【解析】解:∵103=1000,203=8000,303=27000,403=64000,503=125000,∴403<110592<503,∵110592=483,∴483=110592,故答案为:48.根据题目中的数据,可以发现数字的变化规律,从而可以确定110592处于哪两个整拾数之间,然后即可得到哪个数的立方是110592,本题得以解决.本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出所求的数字.21.【答案】解:(1)原式=1+1-=;(2)原式=x8-x8+x7=x7.【解析】(1)根据有理数的乘方的定义,任何非0数的0次幂定义1以及负整数指数幂的定义计算即可;(2)根据同底数幂的乘除法法则以及幂的乘方运算法则化简即可.本题主要考查了实数的运算以及整式的混合运算,熟记相关定义与运算法则是解答本题的关键.22.【答案】解(1)原式=--1+3-+2×=-+=;(2)原式=•-=-===由3x2+3x-2=0.得x2+x=.∴原式==.【解析】本题考查了实数运算与分式的化简求值,熟练掌握实数运算公式与分式混合运算法则是解题的关键.(1)先分别计算负指数幂、零指数幂、绝对值,三角函数值,然后算加减法;(2)先化简,然后将3x2+3x-2=0变形为x2+x=,代入求值即可.23.【答案】(1)证明:∵P是AB的中点,∴PA=PB,在△APM和△BPN中,,∴△APM≌△BPN(ASA);(2)解:由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)△ABQ是等腰三角形,理由如下:由(1)知:△APM≌△BPN,∴AP=PB,∵PQ⊥AB,∴PQ是线段AB的垂直平分线,∴QB=QA,∴△ABQ是等腰三角形.【解析】(1)根据AAS证明:△APM≌△BPN;(2)由(1)中的全等得:MN=2PN,所以PN=BN,由等边对等角可得结论;(3)由全等三角形的性质可得AP=BP,由线段垂直平分线的性质可得BQ=AQ,可得结论.本题是三角形综合题,考查全等三角形的判定和性质,等腰三角形的性质,线段垂直平分线的性质,灵活运用这些性质解决问题是解题的关键.24.【答案】(1)如下图①即为所求;(2)如下图②即为所求;(3)关于y轴对称(4)横坐标保持不变,纵坐标分别乘以-1【解析】解:(1)见答案;(2)见答案;(3)图案②与图案①的位置关系是关于y轴对称.故答案为:关于y轴对称;(4)∵两图案关于x轴对称,∴横坐标保持不变,纵坐标分别乘以-1.故答案为:横坐标保持不变,纵坐标分别乘以-1.【分析】(1)在坐标系内描出各点,再顺次连接即可;(2)将(1)中各点的横坐标分别乘以-1,纵坐标保持不变.将所得的新的五个点用线段依次连接起来即可;(3)根据两个图案中各点坐标的关系可得出结论;(4)根据关于x轴对称的点的坐标特点即可得出结论.本题考查的是作图-轴对称变换,熟知关于x轴对称的点的坐标特点是解答此题的关键.25.【答案】第一批消毒液购进的数量消毒液的单价【解析】解:(1)x表示:第一批消毒液购进的数量,y表示:消毒液的单价,故答案为:第一批消毒液购进的数量;消毒液的单价;(2)选唐唐所列方程,等量关系:药店购进两批消毒液的单价相同;选瑶瑶所列方程,等量关系:第二批消毒液的数量比第一批多20瓶;(3)①选唐唐所列的方程,解:设第一批消毒液购进x瓶,由题意得,,去分母,得2(x+20)=3x,解得x=40,经检验x=40是原分式方程的解;答:药店第一批消毒液购进40瓶;②选瑶瑶所列方程.去分母,得600-400=20y.解得y=10,经检验y=10是原分式方程的解.所以,答:药店第一批消毒液购进40瓶.(1)根据题意即可得到结论;(2)根据药店购进两批消毒液的单价相同解答即可;(3)①解:设第一批消毒液购进x瓶,由题意得到方程为,②选瑶瑶所列方程.解方程即可得到结论.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.26.【答案】解:(1)∵△ABC是等腰直角三角形,∴AB=AC,∠B=∠C=45°.∵AP=AQ,BP=CQ.∵E是BC的中点,BE=CE.在△BPE和△CQE中,∵BP=CQ,∠B=∠C,BE=CE,∴△BPE≌△CQE.(2)∵∠BEF=∠C+∠CQE,∠BEF=∠DEF+∠BEP,且∠DEF=∠C=45°,∴∠BEP=∠CQE.在△BPE和△CEO中,∵∠BEP=∠CQE,∠B=∠C,∴△BPE∽△CEQ.∴.又BE=CE,∴BE2=BP·CO.当BP=α,CQ=a时,BE2=a·.∴BE=,BC=.∵△ABC是等腰直角三角形,∴AB=AC=3 a.∴AP=AB-BP=2 a,AQ=CQ-AC=.∴P,Q两点间的距离PQ=.【解析】本题考查图形变换能力,需要学生在变换过程中抓住不变的因素,此题用到了全等三角形的证明,相似三角形的应用,勾股定理以及三角函数的相关知识.。
八年级上学期期末考试数学试卷(附带答案)一.单选题。
(每小题4分,共40分)1.5的平方根可以表示为()A.±√5B.√±5C.±5D.√52.点A(2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,直线a,b被直线c所截,且a∥b,∠1=55°,则∠2等于()A.55°B.65°C.125°D.135°(第3题图)(第6题图)(第9题图)4.一组数据:65,57,56,58,56,58,56,这组数据的众数是()A.56B.57C.58D.655.方程组{7x+2y=4①7x-3y=﹣6②,由①-②得()A.2y-3y=4-6B.2y-3y=4+6C.2y+3y=4-6D.2y+3y=4+66.已知正比例函数图象如图所示,则这个函数的关系式为()A.y=xB.y=﹣xC.y=﹣3xD.y=﹣x37.甲,乙,丙,丁四组的人数相同,且平均升高都是1.68m,升高的方差分别是S2甲=0.15,S2乙=0.12,S2丙=0.10,S2丁=0.12,则身高比较整齐的组是()A.甲B.乙C.丙D.丁8.已知实数x,y满足|x-3|+√y-2=0,则代数式(y-x)2023的值为()A.1B.﹣1C.2023D.﹣20239.如图,在平面直角坐标系中,三角形ABC三个顶点A,B,C的坐标A(0,4),B(﹣1,b),C(2,c),BC经过原点O,且CD⊥AB,垂足为点D,则AB•CD的值是()A.10B.11C.12D.1410.如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,沿x轴每秒1个单位长度的速度向右移动,且过点P的直线y=﹣x+b也随之平移,设移动时间为t秒,若直线与线段BM 有公共点,则t的取值范围是()A.3≤t≤7B.3≤t≤6C.2≤t≤6D.2≤t≤5(第10题图)二.填空题。
八年级物理(上册)期末试卷及答案(完美版)八年级物理(上册)期末试卷及答案第一部分选择题(共30分)1.下面哪个是物理学基本量的组合?( )A. 功率B. 速度C. 加速度D. 动能答案: B2.压强的公式是( )。
A. P = F/SB. P = F × dC. P = W/tD. P = E/Q答案: A3.工作的单位是( ) 。
A. 焦耳B. 牛C. 瓦特D. 瓦时答案: A4.在一根金属线材中,电荷通过它时,线材会发出哪种波动?A. 音波B. 电波C. 热波D. 光波答案: B5.电动机中,哪个部分转动?A. 定子B. 绕组C. 磁极D. 动子答案: D6.若用小于焦耳的单位来表示能量,则它应为( ) 。
A. 千焦B. 千瓦时C. 瓦时D. 焦答案: D7.晶体管常被用于制作( )。
A. 音响B. 电视C. 电脑D. 线路板8.防雷针的原理是( )。
A. 将人体内部的电荷释放到地上B. 将云中的电荷释放到地上C. 防止地电流产生D. 防止气压的变化答案: B9.下列物体中,哪个物体的密度最大?A. 银块B. 泡沫塑料块C. 大理石块D. 木块答案: A10.下列哪一组机械工作都是由摩擦力造成的?A. 滑轮工作B. 螺丝拧紧C. 车子行驶D. 打钉子答案: D11.光可以分为( )种。
A. 3B. 4C. 5D. 6答案: D12.下列能量中,哪一种能转换成电能?A. 热能B. 光能C. 动能D. 化学能答案: D13.下列哪个单位不是力的单位?A. 牛B. 阿秒C. 磅D. 千克力答案: B14.卖气球的人在气球中加入氢气会发生什么?A. 气球会浮空B. 气球会下沉C. 气球会放出光D. 气球会发声答案: A15.数学符号“Δ”表示哪个物理量的变化?A. 速度B. 加速度C. 动量D. 能量16.物体运动的速度与方向成恒定关系的运动是( )。
A. 匀变速直线运动B. 匀速直线运动C. 匀速圆周运动D. 摆运动答案: B17.在电路中,将单个电池加入电路的但是无法让装置工作,应该加( )。
八年级(上学期)期末物理试卷(含答案解析)(时间90分钟,满分100分)一、单选题(本大题共12小题,共24.0分)1.据报道,我国正在制造并将于2020年升空第一颗“人造月亮”,它的光亮程度比真正的月亮还要亮八倍,到时候“人造月亮”将会取代路上的路灯,将节省很多能源,因为这个月亮是靠太阳能发光的,则下列判断正确的是()A. 月亮和人造月亮都是光源B. 月亮和人造月亮都不是光源C. 月亮是光源,人造月亮不是光源D. 月亮不是光源,人造月亮是光源2.关于声现象,下列说法错误的是()A. “轻声细语”指的是降低声音的音调B. “响鼓也要重锤敲”表明振幅越大,响度越大C. 初中阶段男生一般都要经历的“变声期”是指音调发生了改变D. “隔墙有耳”说明固体也能传声3.小华同学阅读了表中信息后,归纳了一些结论,其中正确的是()A. 不同物质的密度一定不同B. 固体物质的密度一定比液体物质的密度大C. 相同质量的实心铜块和铝块,铜块的体积较大D. 能装下2t水的水箱装不下2t的煤油4.小明在探究凸透镜成像规律时,保持凸透镜的位置不变,先后把蜡烛放在a、b、c、d四点并分别调整光屏的位置,如图所示,探究后他总结出下列说法。
其中正确的是()A. 照相机是利用蜡烛放在a点的成像特点制成的B. 放大镜是利用蜡烛放在b点的成像特点制成的C. 幻灯机是利用蜡烛放在d点的成像特点制成的D. 蜡烛放在b点成的像比它放在c点成的像大5.多次测量一本书的宽度记录为12.38cm、12.36cm、13.34cm、12.37cm、12.34cm,则这本书宽度为()A. 12.36cmB. 12.3625cmC. 12.61cmD. 12.37cm6.会估测物理量,是学好物理的基本功之一.以下估测最接近事实的是()A. 居民楼房每层的高度约为1.5mB. 一个中学生的步幅约为16cmC. 人的正常体温约为36.5℃D. 中学生正常步行的速度约为5m/s7.如图所示的四种现象中,属于光的反射现象的是()A. 白光通过三棱镜分解成色光B. 山在水中形成“倒影”C. 手影的形成D. 笔好像在水面处“折断”8.边长之比为2:1的两个立方体铜块,其质量之比为()A. 2:1B. 1:2C. 8:1D. 1:89.下列现象,能用光的反射现象解释的是A. 世博轴上的阳光谷在水中映出倒影B. 日食的形成C. 一束束阳光穿过树林D. 手影游戏中,影子的形成10.下列关于物态变化的说法,不正确的是()A. 冬天在菜窖里放几桶水,利用了水凝固吸热B. 夏天,从冰箱里面拿出来的饮料罐“出汗”是液化现象C. 霜是水蒸气遇冷凝华形成的D. 晾晒的湿衣服变干是汽化现象11.用刻度尺测物体的长度时,下列要求正确的是()A. 测量时,刻度尺可以歪斜B. 测量时,必须从刻度尺的零刻度线处量起C. 读数时,视线应与尺面平行D. 记录测量结果时,必须在数字后写上单位12.下列各种自然现象形成的过程中,要吸收热量的是()A. 春天,冰雪融化汇成的溪流B. 夏天,冰箱门口飘出的“白气”C. 秋天,草丛之上晶莹的露珠D. 冬天,天上纷纷飘落的雪花二、填空题(本大题共10小题,共26.0分)13.中午休息时,小米在课桌上趴着进入了梦香,梦中小米乘坐宇宙飞船到了月球,若以宇宙飞船为参照物,小米是______,相对于教室的课桌“梦中的小米”是______。
八年级(上)数学试卷1.下列式子正确的是( )A、9)9(2-=-B、525±=C、1)1(33-=-D、2)2(2-=-2.下列汽车的徽标中,是中心对称图形的是()A B C D3.已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是()4.已知菱形ABCD,∠A=72°,将它分割成如图(2)所示的四个等腰三角形,则∠1、∠2、∠3的度数分别是()A、36°,54°,36°B、18°,54°,54°C、54°,18°,72°D、18°,36°,36°5.把△ABC各点的横坐标都乘以-1,纵坐标都乘以-1,符合上述要求的图是()yxCBAOByxCBAOCyxCBAODyxCBAO6.如图,这个图形可以看作是以“基本图形”即原图形的四分之一经过变换形成的,但一定不能经过哪种变换得到。
( )yxyyyxxxA B C DS ( 千米 )t ( 时 )12 3 40 . 51(8 题)乙甲 O A 、旋转 B 、轴对称 C 、平移 D 、轴对称和旋转(6题图) (7题图)7.如图所示的围棋盘,放置在某个直角坐标系中,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8)则黑棋①位于点 ( ) A 、(3,7) B 、(-3,-7) C 、(3,2) D 、(-3,-2)8.甲、乙两人同时沿着一条笔直的公路朝同一方向前行,开始时,乙在甲前2千米处,甲、乙两人行走的路程S (千米)与时间t (时)的函数图象(如图所示),下列说法正确的是 ( ) A 、乙的速度为4千米/时 B 、经过1小时,甲追上乙C 、经过0.5小时,乙行走的路程约为2千米D 、经过1.5小时,乙在甲的前面二、填空题:(每题3分,共24分)9.如果一个正n 边形绕中心至少旋转10°后方能与自身重合,那么n 的值是________10.已知一个直角三角形的两边长分别为3、4,则以第三边为边长的正方形的面积为_____11.在第二象限内的点P 到x 轴的距离是3,到y 轴的距离是4,则点P 的坐标是_______, 点P 关于原点的对称点坐标为_______。
12.一次函数图象如图1所示,则函数关系式是 。
图2得分-2 0 -1y x (图1)E DC B A13.如图2,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 长为___________ 14.如图3,菱形花坛ABCD 的周长为36cm ,∠B=60°, 其中由两个正六边形拼接而成的图形部分种花,其余“四 个角”是绿草地,则种花部分的图形的周长(拼接重 合的边不重复计)为 cm 。
15.如果函数2-=x y 与42+-=x y 的图象的交点坐标是(2,0),那么二元一次方程组⎩⎨⎧=+=-422y x y x 的解是__________________.16.佳佳做作业时不小心洒落了一些墨水,把一道二元一次方程涂黑了一部分: ■312x y -=,但她知道这个方程有一个解为3x =、2y =-.请你帮她把这个涂黑方程补充完整: .三、化简计算(每题6分,共18分) 17.2412001.03--18. - - +219. ( + )( - )-( - )2四、解方程组(每题6分,共12分)得分 得分(图4)AB DC20.21.用作图象的方法解方程组:五、探索规律并填空(14分)22.观察下列计算:21+=21(21)(21)-+-=21-32 +=32(32)(32)-+-=32-43 +=43(43)(43)-+-=43-;……得分则:=___________;=_________(2)从计算结果找出规律;______________________(3)利用这一规律计算:+…+200520061+)(12006+)的值。
六、说理题(每题9分,共18分)23.平行四边形ABCD中,对角线AC,BD相交于点O,若E、F是AC上两动点,分别从A、C 两点以相同的速度1cm/s 向C、A运动(1)四边形DEBF是平行四边形吗?说明理由;(2)若BD=12cm,AC=16cm,当运动时间t为何值时,四边形DEBF是矩形?24.如图,已知□ABCD ,(1)试用三种方法将它分成面积相等的两部分。
(保留作图痕迹,不写作法)A A D A DC B C B C(2)由上述方法,你能得到什么一般性的结论?(3)解决问题:有兄弟俩分家时,原来共同承包的一块平行四边形田地ABCD ,现要进行平均划分,由于在这块地里有一口井P ,如图所示,为了兄弟俩都能方便使用这口井,兄弟俩在划分时犯难了,聪明的你能帮他们解决这个问题吗?(保留作图痕迹,不写作法)A DP ●B C七、解答题:(每题10分,共20分)(1)若这20名学生成绩的平均数为73分,求x 和y 的值;(2)设此班20名学生成绩的众数为a ,中位数为b ,求a 、b 的值。
得分 成绩(分) 50 60 70 80 90人数(人) 1 4 x y 226.学校准备添置一批电脑.方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装工工资等其它费用合计3000元.设学校需要电脑x台,方案1与方案2的费用分别为y1、y(单位:元)2(1)分别写出y1、y2的函数解析式;(2)当学校添置多少台电脑时,两种方案的费用相同?(3)若学校需要添置50台电脑,那么采用哪一种方案较省钱?说说你的理由.八、列方程组解应用题(每题10分,共20分)27.某商场购进物品后,加价50%作为销售价。
商场搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到八折和九折,共付款450元,两种商品原销售价之和为525元,两种商品的进价分别为多少元?28.某山区有23名中、小学生因贫困失学需要捐助.已知资助一名中学生的学习费用需要a元,资助一名小学生的学习费用需要b元.某校学生积极捐款,初中各年级学生的捐款数额以及捐款恰好资助贫困中学生和小学生人数的部分情(1)求a、b的值;(2)九年级学生的捐款解决了其余贫困中小学生的学习费用,请将九年级学生可捐助的贫困中、小学生人数直接填入表中(不需写出计算过程).2007-2008学年度上学期期末考试八年级数学参考答案一、选择题(每小题3分,共24分) 题号 1 2 3 4 5 6 7 8 答案CAADCCBB二、填空(每小题3分,共24分)9、36 10、7或25 11、(-4,3) (4,-3) 12、y=- x -1 13、3cm 14、3315、20x y =⎧⎨=⎩ 16、2312x y -= 三、化简计算(每题6分,共18分) 17.原式 =30.12 3.42--=- ---------------------------------------------6分 18 解:原式= 4 -4 -7 + 10 --------------------------- 3分 =14 -11 ------------------------------3分 19 解:原式= ( ( )2-( ) 2-[( )2-2× × +( )2] ------3分=2-6-[2-2+ ]=-4 ------------------------------------------------------------- 3分四、解方程组(每题6分,共12分) 20解:①×3得:9x+3y=33 ③ -----------------------------------------------------1分③+②,得:16x=48 x=3 ------------------------------------------------2分 把x=3代入①,得y=2 ----------------------------------2分 所以原方程组的解是 (1 ---------------------------------1分 21解:由x +y=4可得:y=-x +4, -------1分同理:由2x -y=-1可得: y=2x +1---------1分 在同一直角坐标系内作出一次函数y=-x +4 的图象L 1和y=2x +1的图象L 2,如图所示, 观察图象,得L 1与L 2的交点为A (1,3) ---3分 所以原方程组的解是 --------- 1分-4 -3 -2 -1 0 1 2 3 4 5yx4321-1-2-3L 2L 1A五..探索规律并填空(14分)22.(1)………………………………………………2分2分(2)n是正整数)…………………4分+…+200520061+)(12006+)1-+…+(20052006-)](12006+)1-- (2005)2006-)(12006+)=(2006-1)(12006+)=2006-1=2005………6分六、说理题(每题9分,共18分)23、(1)答:当E、F不与O重合时,四边形DEBF是平行四边形-------------------------2分∵四边形ABCD是平行四边形∴AO=CO BO=DO ,当E、F分别从A、C两点以相同速度向C、A运动时,CF=AE恒成立,由于AO-AE=CO-CF(当E、F运动至OC、OA上时,有AE-AO=CF-CO)即OE=OF,∴当E、F不与O重合时,由OE=OF,DO=BO可得四边形DEBF是平行四边形。
----4分当E、F与O重合时,不是平行四边形-------------------------------------------------------------1分(2)当t=2s或t=14s时,EF=BD,平行四边形DEBF为矩形。
-----------------------------2分24 、 D D D分(2)结论:过平行四边形ABCD两条对角线的交点任作一条直线,即可将平行四边形----------------------------------------------------------------3分(3) D------------------------------------------------------------3分学 海 无 涯七、解答题(每题10分,共20分)25.(1) 58x y =⎧⎨=⎩ ---------------------------------------------------------------------------6分 (2)a=80 b=75 -------------------------------------------------------------------4分-26、解:(1)y 1=7000x ;y 2=6000x +3000.--------------------------------------- 4分(2)由7000x =6000x +3000,解得x =3.因此当学校添置3台电脑时,两种方案的费用相同.-----------------------------3分(3)当x =50时,y 1=7000×50=350000;y 2=6000×50+3000=303000. 因为303000<350000,所以采用方案2较省钱.----------------------------------3分八、应用题(每题10分,共20分)27解:设甲、乙两种商品进价分别为x 元、y 元,-------------------------------1分根据题意,得:---------------------5分化简得: ------------------------------------1分解得: ------------------------------------2分答:甲、乙两种商品进价分别为150元,200元。