Super battery-- Graphene battery
- 格式:ppt
- 大小:3.73 MB
- 文档页数:8
超高密度硅碳负极电池英文回答:Super high-density silicon-carbon anode batteries have become a popular topic in the field of energy storage due to their high energy density and long cycle life. These batteries are designed to overcome the limitations of traditional lithium-ion batteries by using a silicon-carbon composite material as the anode, which can store more lithium ions and deliver higher energy density.One of the main advantages of super high-densitysilicon-carbon anode batteries is their increased energy density. This means that they can store more energy in the same volume or weight compared to traditional lithium-ion batteries. For example, a smartphone equipped with a super high-density silicon-carbon anode battery can last longer without needing to be recharged.Another advantage of these batteries is their longcycle life. Traditional lithium-ion batteries tend to degrade over time, leading to a decrease in their capacity. However, super high-density silicon-carbon anode batteries have better stability and can maintain their capacity for a longer period. This means that they can be used for a longer time before needing to be replaced.Furthermore, super high-density silicon-carbon anode batteries have faster charging capabilities. This is because the silicon-carbon composite material allows for faster diffusion of lithium ions, resulting in shorter charging times. For example, a smartwatch with a superhigh-density silicon-carbon anode battery can be fully charged in just a few minutes.In addition to these advantages, super high-density silicon-carbon anode batteries also have the potential to be used in electric vehicles (EVs). The increased energy density and long cycle life make them ideal for powering EVs, as they can provide longer driving ranges and require less frequent battery replacements.中文回答:超高密度硅碳负极电池因其高能量密度和长循环寿命而在能源存储领域备受关注。
【在研科研项目】1.国家自然科学基金项目,熔融氧化物体系电解制备液态铁及其合金的基础研究(51474020),2015年-2018年2. 国家自然科学基金项目,电化学冶金(51322402),2014年-2016年3. 国家863计划,新型钒钛磁铁矿清洁冶炼技术研究(2012AA062302),2012年-2015年【代表性学术论文】1.W. Wang, L. Hu, J. Ge, Z. Hu, H. Sun, H. Sun, H. Zhang, S.Q. Jiao*. In situself-assembled FeWO4/Graphene mesoporous composites for Li-Ion and Na-Ionbatteries. Chemistry of Materials, 2014,26:3721-3730.2.W. Wang, B. Jiang, W.Y. Xiong, H. Sun, Z.S. Lin, L.W. Hu, J.G. Tu, J.G. Hou,H.M. Zhu, S.Q. Jiao*. A new cathode material for super-valent battery based onaluminium ion intercalation and detercalation. Scientific Reports,2013,3:33833.S.B. Wang, J.B. Ge, Y.J. Hu, H.M. Zhu, S.Q. Jiao*. Electrochemical reduction ofiron oxide in molten sodium hydroxide based on a Ni0.94Si0.04Al0.02 metallic inert anode. Electrochimica Acta, 2013,87:148-152【Publications 】1. W. Wang, L. Hu, J. Ge, Z. Hu, H. Sun, H. Sun, H. Zhang, S.Q. Jiao*. In situ self-assembled FeWO 4/Graphene mesoporous composites for Li-Ion and Na-Ion batteries. Chemistry of Materials , 2014,26:3721-3730.2. W. Wang, B. Jiang, W.Y . Xiong, H. Sun, Z.S. Lin, L.W. Hu, J.G. Tu, J.G. Hou, H.M. Zhu, S.Q. Jiao*. A new cathode material for super-valent battery based on aluminium ion intercalation and detercalation. Scientific Reports ,2013,3:33833. S.B. Wang, J.B. Ge, Y.J. Hu, H.M. Zhu, S.Q. Jiao*. Electrochemical reduction of iron oxide in molten sodium hydroxide based on a Ni 0.94Si 0.04Al 0.02 metallic inert anode. Electrochimica Acta , 2013,87:148-152Shuqiang Jiao , the professor of State Key Lab. Of Advanced Metallurgy, received his B.E. and M.E. in Corrosion Science from Hunan University, in 1999 and 2003, and his Ph.D. in Physical Chemistry from University of Science and Technology Beijing in 2006. His recent research interest iselectrochemical metallurgy, batteries and renewable energy.。
抗坏血酸还原氧化石墨烯制备硫-石墨烯复合物张胜利;司丹亚;宋延华【摘要】利用环境友好的抗坏血酸常温下通过还原氧化石墨烯制备得硫-石墨烯复合材料,用于锂硫电池正极材料.用XRD、FESEM和电化学测试对复合材料进行结构、形貌和电化学性能分析.结果表明:抗坏血酸成功地还原出石墨烯.将不同抗坏血酸用量制备的复合物装配成扣式电池,当氧化石墨烯(GO)与抗坏血酸的质量比为1∶10时,性能较好,在0.2 mA/cm2电流密度下,1.5~3V区间充放电,首次放电比容量为1 250.19 mAh/g,循环20次保持在1 216.76mAh/g,容量保持率为97.33%.%S-Graphene composites for cathode of lithium-sulfur battery were synthesized by reducing oxidized graphene with environment-friendly ascorbic acid in normal temperature.The structure,morphology and electrochemical performance of composite material were analyzed by XRD,FESEM and electrochemical tests.The results show that ascorbic acid is successful in reducing oxidized graphene.The button cell assembled with composite material in the different amount of ascorbic acid has better performance when the mass ratio of GO to ascorbic acid is 10:1.When charging-discharging in 1.5-3.0 V with the current of 0.2 mA/cm2,its initial discharge specific capacity is 1 250.19 mAh/g.The discharge specific capacity is 1 216.76 mAh/g and the capacity retention ratio is 97.33% after 20 cycles.【期刊名称】《电源技术》【年(卷),期】2018(042)003【总页数】4页(P373-376)【关键词】抗坏血酸;硫-石墨烯复合物;锂硫电池【作者】张胜利;司丹亚;宋延华【作者单位】郑州轻工业学院材料与化学工程学院,河南郑州450002;郑州轻工业学院材料与化学工程学院,河南郑州450002;郑州轻工业学院材料与化学工程学院,河南郑州450002【正文语种】中文【中图分类】TM912.9石墨烯自2004年由英国曼彻斯特大学的物理学家Kostya Novoselov等成功制备出来,在全世界掀起了研究热潮。
第58卷第1期 2021年1月微鈉电子技术Micronanoelectronic TechnologyVol. 58 No. 1January2021j k牛与技术$DOI:10. 13250/j. cnki. wndz. 2021. 01.002基于石墨烯的肖特基结辐射伏特同位素电池王晓或U2,韩运成\张佳辰K2,任雷K2,柳伟平1,李桃生1(1.中国科学院合肥物质科学研究院核能安全技术研究所,合肥230031;2.中国科学技术大学,合肥230027)摘要:从传统肖特基结辐射伏特同位素电池金属电极存在的对放射源衰变粒子的阻挡及导电性不 理想的问题出发,借鉴石墨烯肖特基结太阳电池结构,将石墨烯/硅肖特基结引入辐射伏特同位 素电池中,在f i3N i放射源的照射下验证石墨烯/硅肖特基结换能单元在辐射伏特同位素电池中应 用的可行性。
研究结果发现,基于硝酸掺杂,当少层(3〜5层)石墨烯经过4次转移叠加后,石墨烯/硅肖特基结换能单元在活度为5 mCi/cm2的63N i放射源照射下,获得了 48 m V的开路电 压和30.3 nA/cm2的短路电流密度,能量转换效率约0.1%,其电性能输出显著优于传统金/硅 肖特基结换能单元。
由此可见,使用石墨烯作为金属电极层的肖特基结换能单元,相较于传统的 金属电极,不仅降低了其对放射源p粒子的阻挡作用,还提高了电极层对电子-空穴对的传输作 用,说明了石墨烯在辐射伏特同位素电池中的应用是可行的。
关键词:石墨烯;同位素电池;太阳电池;肖特基结;辐射伏特效应;能量转换效率中图分类号:TM918 文献标识码:A文章编号:167卜4776 (2021) 01-0010-07Betavoltaic Isotope Battery Based on theGraphene Schottky JunctionWang Xiaoyu1,2,Han Yuncheng1,Zhang Jiachen1,2,Ren Lei1,2,Liu Weiping1,Li Taosheng1(1. Institute o f Nuclear Energy S a fe t y Technology,H e fe i Institutes o f Physical Science,Chinese Academ y o fSciences,H e fe i 23Q031,China; 2. University o f Science and Technology o f C hina,H e fe i 23QQ27,China)Abstract:For the problems that the metal electrodes in traditional Schottky junction betavoltaic isotope battery block radioactive decay particles and have poor electrical conductivity, the feasibility of the graphene/silicon Schottky junction energy conversion unit was verified under the radiation of a 63Ni source, during which the graphene/silicon Schottky junction was introduced into the betavoltaic isotope batteries based on the structure of the graphene Schottky junction solar cell.The research results show that after less layer (3 - 5 layers) graphene transferring and superposing for four times based on nitric acid doping and under the irradiation of 63 Ni radioactive source with an activity of 5 mCi/cm2 ♦the graphene/silicon Schottky junction energy conversion unit has an open circuit voltage of 48 mV and a short-circuit current density of 30. 3 nA/cm2, while the收稿日期:2020-08-14基金项目:国家自然科学基金项目(21805283);安徽省自然科学基金项目(1808085MA1U);中国科学院合肥物质科学研究院第六期“大学生创新实践训练计划”项目(30)通信作者:韩运成,E-m ail: **********************.cn10王晓或等:基于石墨烯的肖特基结辐射伏特同位素电池energy conversion efficiency reaches about 0. 1 %. T he electrical performance of the graphene/sili- con Schottky junction energy conversion unit is significantly better than that of the traditional gold/silicon Schottky junction energy conversion unit. T h u s compared with the traditional metal electrodes,the Schottky junction energy conversion unit with graphene as an electrode layer reduces the blocking effect to the (3particles of radioactive sources and improves the transm ission effect of electrode layer to the electron-hole pairs, indicating that the application of graphene in betavoltaic isotope batteries is feasible.Key w ords:g ra p h e n e;isotope b a tte ry;solar cell; Schottky ju n c tio n;betavoltaic effect;energy conversion efficiencyEEACC:8460()引百得益于微电子机械系统(11^0'0 616(;1:1'0~1116(;113:1丨-cal systems,MEMS)的迅猛发展,传统的微能 源,如:微型燃料电池、微型锂蓄电池及微型太阳 电池等已难以满足长寿命电源微型化和集成化日益 增长的需求[1~3]。
收稿日期:2018-10-29石墨烯在电动自行车用铅酸蓄电池中的应用艾宝山,张建华,杨绍坡,马基华(河北超威电源有限公司,河北 邢台 055650)摘要:向铅膏中加入一定含量的石墨烯,使用扫描电子显微镜、X 射线衍射仪技术表征极板活性物质的形貌和结构,证实了石墨烯可使活性物质呈现多孔状态,对极板形成有力的支撑。
同时电池试验表明,石墨烯还可以有效抑制负极硫酸盐化,改善电动自行车用铅酸蓄电池的循环使用寿命。
关键词:石墨烯;铅膏;添加剂;铅酸蓄电池;循环寿命;负极硫酸盐化;多孔中图分类号:TM 912.1 文献标识码:B 文章编号:1006-0847(2019)01-46-05Application of graphene in lead-acid battery for electric bicyclesAI Baoshan, ZHANG Jianhua, YANG Shaopo, MA Jihua (Hebei Chilwee Power Co., Ltd., Xingtai Hebei 055650, China)Abstract: In this paper, a certain amount of graphene was added to the lead paste. The morphology and structure of the active materials of the plates were characterized by SEM and XRD techniques. It was confirmed that graphene could make the active materials porous and form a strong support for the plates. And the battery test showed that grapheme could also effectively inhibit the sulphation of the negative plates and improve the cycle life of the lead-acid batteries for electric bicylces .Keywords: graphene; lead paste; additive; lead-acid battery; cycle life; sulphation of the negative plate; porous 0 引言铅膏硫酸盐化是导致蓄电池循环寿命降低的重要原因之一。
微电子中英文辞典(A-E)半导体微电子专业词汇中英文对照Accelerated testing 加速实验Acceptor 受主Acceptor atom 受主原子Accumulation 积累、堆积Accumulating contact 积累接触Accumulation region 积累区Accumulation layer 积累层Acoustic Surface Wave 声表面波Active region 有源区Active component 有源元Active device 有源器件Activation 激活Activation energy 激活能Active region 有源(放大)区A/D conversion 模拟-数字转换Adhesives 粘接剂Admittance 导纳Aging 老化Airborne 空载Allowed band 允带allowance 容限,公差Alloy-junction device合金结器件Aluminum(Aluminum) 铝Aluminum – oxide 铝氧化物Aluminum Nitride 氮化铝Aluminum passivation 铝钝化Ambipolar 双极的Ambient temperature 环境温度A M light 振幅调制光,调幅光amplitude limiter 限幅器Amorphous 无定形的,非晶体的Amplifier 功放放大器Analogue(Analog) comparator 模拟比较器Angstrom 埃Anneal 退火Anisotropic 各向异性的Anode 阳极Antenna 天线Aperture 孔径Arsenide (As) 砷Array 阵列Atomic 原子的Atom Clock 原子钟Attenuation 衰减Audio 声频Auger 俄歇Automatic 自动的Automotive 汽车的Availability 实用性Avalanche 雪崩Avalanche breakdown 雪崩击穿Avalanche excitation雪崩激发Background carrier 本底载流子Background doping 本底掺杂Backward 反向Backward bias 反向偏置Ball bond 球形键合Band 能带Band gap 能带间隙Bandwidth 带宽Bar 巴条发光条Barrier 势垒Barrier layer 势垒层Barrier width 势垒宽度Base 基极Base contact 基区接触Base stretching 基区扩展效应Base transit time 基区渡越时间Base transport efficiency基区输运系数Base-width modulation基区宽度调制Batch 批次Battery 电池Beam 束光束电子束Bench 工作台Bias 偏置Bilateral switch 双向开关Binary code 二进制代码Binary compound semiconductor 二元化合物半导体Bipolar 双极性的Bipolar Junction Transistor (BJT)双极晶体管Bit 位比特Blocking band 阻带Body - centered 体心立方Body-centred cubic structure 体立心结构Boltzmann 波尔兹曼Bond 键、键合Bonding electron 价电子Bonding pad 键合点Boron 硼Borosilicate glass 硼硅玻璃Bottom-up 由下而上的Boundary condition 边界条件Bound electron 束缚电子Bragg effect 布拉格效应Breadboard 模拟板、实验板Break down 击穿Break over 转折Brillouin 布里渊 FBrillouin zone 布里渊区Buffer 缓冲器Built-in 内建的Build-in electric field 内建电场Bulk 体/体内Bulk absorption 体吸收Bulk generation 体产生Bulk recombination 体复合Burn-in 老化Burn out 烧毁Buried channel 埋沟Buried diffusion region 隐埋扩散区Bus 总线Calibration 校准,检定,定标、刻度,分度Capacitance 电容Capture cross section 俘获截面Capture carrier 俘获载流子Carbon dioxide (CO2) 二氧化碳Carrier 载流子、载波Carry bit 进位位Cascade 级联Case 管壳Cathode 阴极Cavity 腔体Center 中心Ceramic 陶瓷(的)Channel 沟道Channel breakdown 沟道击穿Channel current 沟道电流Channel doping 沟道掺杂Channel shortening 沟道缩短Channel width 沟道宽度Characteristic impedance 特征阻抗Charge 电荷、充电Charge-compensation effects 电荷补偿效应Charge conservation 电荷守恒Charge drive/exchange/sharing/transfer/storage 电荷驱动/交换/共享/转移/存储Chemical etching 化学腐蚀法Chemically-Polish 化学抛光Chemically-Mechanically Polish (CMP) 化学机械抛光Chemical vapor deposition (cvd)化学汽相淀积Chip 芯片Chip yield 芯片成品率Circuit 电路Clamped 箝位Clamping diode 箝位二极管Cleavage plane 解理面Clean 清洗Clock rate 时钟频率Clock generator 时钟发生器Clock flip-flop 时钟触发器Close-loop gain 闭环增益Coating 涂覆涂层Coefficient of thermal expansion 热膨胀系数Coherency 相干性Collector 集电极Collision 碰撞Compensated OP-AMP 补偿运放Common-base/collector/emitter connection 共基极/集电极/发射极连接Common-gate/drain/source connection 共栅/漏/源连接Common-mode gain 共模增益Common-mode input 共模输入Common-mode rejection ratio (CMRR) 共模抑制比Communication 通信Compact 致密的Compatibility 兼容性Compensation 补偿Compensated impurities 补偿杂质Compensated semiconductor 补偿半导体Complementary Darlington circuit 互补达林顿电路Complementary Metal-Oxide-SemiconductorField-Effect-Transistor(CMOS) 互补金属氧化物半导体场效应晶体管Computer-aided design (CAD)/test(CAT)/manufacture(CAM) 计算机辅助设计/ 测试 /制造Component 元件Compound Semiconductor 化合物半导体Conductance 电导Conduction band (edge) 导带(底) Conduction level/state 导带态Conductor 导体Conductivity 电导率Configuration 结构Conlomb 库仑Constants 物理常数Constant energy surface 等能面Constant-source diffusion恒定源扩散Contact 接触Continuous wave 连续波Continuity equation 连续性方程Contact hole 接触孔Contact potential 接触电势Controlled 受控的Converter 转换器Conveyer 传输器Cooling 冷却Copper interconnection system 铜互连系统Corrosion 腐蚀Coupling 耦合Covalent 共阶的Crossover 交叉Critical 临界的Cross-section 横断面Crucible坩埚Cryogenic cooling system 冷却系统Crystal defect/face/orientation/lattice 晶体缺陷/晶面/晶向/晶格Cubic crystal system 立方晶系Current density 电流密度Curvature 曲率Current drift/drive/sharing 电流漂移/驱动/共享Current Sense 电流取样Curve 曲线Custom integrated circuit 定制集成电路Cut off 截止Cylindrical 柱面的Czochralshicrystal 直立单晶Czochralski technique 切克劳斯基技术(Cz法直拉晶体J)) Dangling bonds 悬挂键Dark current 暗电流Dead time 空载时间Decade 十进制Decibel (dB) 分贝Decode 解码Deep acceptor level 深受主能级Deep donor level 深施主能级Deep energy level 深能级Deep impurity level 深度杂质能级Deep trap 深陷阱Defeat 缺陷Degenerate semiconductor 简并半导体Degeneracy 简并度Degradation 退化Degree Celsius(centigrade) /Kelvin 摄氏/开氏温度Delay 延迟Density 密度Density of states 态密度Depletion 耗尽Depletion approximation 耗尽近似Depletion contact 耗尽接触Depletion depth 耗尽深度Depletion effect 耗尽效应Depletion layer 耗尽层Depletion MOS 耗尽MOSDepletion region 耗尽区Deposited film 淀积薄膜Deposition process 淀积工艺Design rules 设计规则Detector 探测器Developer 显影剂Diamond 金刚石Die 芯片(复数dice)Diode 二极管Dielectric Constant 介电常数Dielectric isolation 介质隔离Difference-mode input 差模输入Differential amplifier 差分放大器Differential capacitance 微分电容Diffraction 衍射Diffusion 扩散Diffusion coefficient 扩散系数Diffusion constant 扩散常数Diffusivity 扩散率Diffusion capacitance/barrier/current/furnace 扩散电容/势垒/电流/炉Digital circuit 数字电路Dimension (1)尺寸(2)量钢(3)维,度Diode 二极管Dipole domain 偶极畴Dipole layer 偶极层Direct-coupling 直接耦合Direct-gap semiconductor 直接带隙半导体Direct transition 直接跃迁Directional antenna 定向天线Discharge 放电Discrete component 分立元件Disorder 无序的Display 显示器Dissipation 耗散Dissolution 溶解Distribution 分布Distributed capacitance 分布电容Distributed model 分布模型Displacement 位移Dislocation 位错Domain 畴Donor 施主Donor exhaustion 施主耗尽Dopant 掺杂剂Doped semiconductor 掺杂半导体Doping concentration 掺杂浓度Dose 剂量Double-diffusive MOS(DMOS)双扩散MOSDrift 漂移Drift field 漂移电场Drift mobility 迁移率Dry etching 干法腐蚀Dry/wet oxidation 干/湿法氧化Dose 剂量Dual-polarization 双偏振,双极化Duty cycle 工作周期Dual-in-line package (DIP)双列直插式封装Dynamics 动态Dynamic characteristics 动态属性Dynamic impedance 动态阻抗Early effect 厄利效应Early failure 早期失效Effect 效应Effective mass 有效质量Electric Erase Programmable Read Only Memory(E2PROM) 电可擦除只读存储器Electrode 电极Electromigration 电迁移Electron affinity 电子亲和势Electron-beam 电子束Electroluminescence 电致发光Electron gas 电子气Electron trapping center 电子俘获中心Electron Volt (eV) 电子伏Electro-optical 光电的Electrostatic 静电的Element 元素/元件/配件Elemental semiconductor 元素半导体Ellipse 椭圆Emitter 发射极Emitter-coupled logic 发射极耦合逻辑Emitter-coupled pair 发射极耦合对Emitter follower 射随器Empty band 空带Emitter crowding effect 发射极集边(拥挤)效应Endurance test =life test 寿命测试Energy state 能态Energy momentum diagram 能量-动量(E-K)图Enhancement mode 增强型模式Enhancement MOS 增强性MOSEnteric (低)共溶的Environmental test 环境测试Epitaxial 外延的Epitaxial layer 外延层Epitaxial slice 外延片Epoxy 环氧的Equivalent circuit 等效电路Equilibrium majority /minority carriers 平衡多数/少数载流子Equipment 设备Erasable Programmable ROM (EPROM)可搽取(编程)存储器Erbium laser 掺铒激光器Error function complement 余误差函数Etch 刻蚀Etchant 刻蚀剂Etching mask 抗蚀剂掩模Excess carrier 过剩载流子Excitation energy 激发能Excited state 激发态Exciton 激子Exponential 指数的Extrapolation 外推法Extrinsic 非本征的Extrinsic semiconductor 杂质半导体Fabry-Perot amplifier 法布里-珀罗放大器Face - centered 面心立方Fall time 下降时间Fan-in 扇入Fan-out 扇出Fast recovery 快恢复Fast surface states 快表面态Feedback 反馈Fermi level 费米能级Femi potential 费米势Fiber optic 光纤Field effect transistor 场效应晶体管Field oxide 场氧化层Figure of merit 品质因数Filter 滤波器Filled band 满带Film 薄膜Fine pitch 细节距Flash memory 闪存存储器Flat band 平带Flat pack 扁平封装Flatness 平整度Flexible 柔性的Flicker noise 闪烁(变)噪声Flip-chip 倒装芯片Flip- flop toggle 触发器翻转Floating gate 浮栅Fluoride etch 氟化氢刻蚀Focal plane 焦平面Forbidden band 禁带Formulation 列式,表达Forward bias 正向偏置Forward blocking /conducting 正向阻断/导通Free electron 自由电子Frequency deviation noise 频率漂移噪声Frequency response 频率响应Function 函数Gain 增益Gallium-Arsenide(GaAs) 砷化镓Gallium Nitride 氮化镓Gate 门、栅、控制极Gate oxide 栅氧化层Gate width 栅宽Gauss(ian)高斯Gaussian distribution profile 高斯掺杂分布Generation-recombination 产生-复合Geometries 几何尺寸Germanium(Ge) 锗Gold 金Graded 缓变的Graded (gradual) channel 缓变沟道Graded junction 缓变结Grain 晶粒Gradient 梯度Graphene 石墨烯Grating 光栅Green laser 绿光激光器Ground 接地Grown junction 生长结Guard ring 保护环Guide wave 导波波导Gunn - effect 狄氏效应Gyroscope 陀螺仪Hardened device 辐射加固器件Harmonics 谐波Heat diffusion 热扩散Heat sink 散热器、热沉Heavy/light hole band 重/轻空穴带Hell - effect 霍尔效应Hertz 赫兹Heterojunction 异质结Heterojunction structure 异质结结构Heterojunction Bipolar Transistor(HBT)异质结双极型晶体High field property 高场特性High-performance MOS(H-MOS)高性能MOS器件High power 大功率Hole 空穴Homojunction 同质结Horizontal epitaxial reactor 卧式外延反应器Hot carrier 热载流子Hybrid integration 混合集成Illumination (1)照明(2)照明学Image - force 镜象力Impact ionization 碰撞电离Impedance 阻抗Imperfect structure 不完整结构Implantation dose 注入剂量Implanted ion 注入离子Impurity 杂质Impurity scattering 杂志散射Inch 英寸Incremental resistance 电阻增量(微分电阻)In-contact mask 接触式掩模Index of refraction 折射率Indium 铟Indium tin oxide (ITO) 铟锡氧化物Inductance 电感Induced channel 感应沟道Infrared 红外的Injection 注入Input power 输入功率Insertion loss 插入损耗Insulator 绝缘体Insulated Gate FET(IGFET) 绝缘栅FET Integrated injection logic 集成注入逻辑Integration 集成、积分Integrated Circuit 集成电路Interconnection 互连Interconnection time delay 互连延时Interdigitated structure 交互式结构Interface 界面Interference 干涉International system of unions 国际单位制Internally scattering 谷间散射Interpolation 内插法Intrinsic 本征的Intrinsic semiconductor 本征半导体Inverse operation 反向工作Inversion 反型Inverter 倒相器Ion 离子Ion beam 离子束Ion etching 离子刻蚀Ion implantation 离子注入Ionization 电离Ionization energy 电离能Irradiation 辐照Isolation land 隔离岛Isotropic 各向同性Junction FET(JFET) 结型场效应管Junction isolation 结隔离Junction spacing 结间距Junction side-wall 结侧壁Laser 激光器Laser diode 激光二极管Latch up 闭锁Lateral 横向的Lattice 晶格Layout 版图Lattice binding/cell/constant/defect/distortion 晶格结合力/晶胞/晶格/晶格常熟/晶格缺陷/晶格畸变Lead 铅Leakage current (泄)漏电流Life time 寿命linearity 线性度Linked bond 共价键Liquid Nitrogen 液氮Liquid-phase epitaxial growth technique 液相外延生长技术Lithography 光刻Light Emitting Diode(LED) 发光二极管Linearity 线性化Liquid 液体Lock in 锁定Longitudinal 纵向的Long life 长寿命Lumped model 集总模型Magnetic 磁的Majority carrier 多数载流子Mask 掩膜板,光刻板Mask level 掩模序号Mask set 掩模组Mass - action law 质量守恒定律Master-slave D flip-flop 主从D 触发器Matching 匹配Material 材料Maxwell 麦克斯韦Mean free path 平均自由程Mean time before failure (MTBF) 平均工作时间Mechanical 机械的Membrane (1)薄腊,膜片(2)隔膜Megeto - resistance 磁阻Mesa 台面MESFET-Metal Semiconductor 金属半导体FETMetalorganic Chemical Vapor Deposition MOCVD 金属氧化物化学汽相淀积Metallization 金属化Metal oxide semiconductor (MOS)金属氧化物半导体MeV 兆电子伏Microelectronic technique 微电子技术Microelectronics 微电子学Microelectromechanical System (MEMS) 微电子机械系统Microwave 微波Millimeterwave 毫米波Minority carrier 少数载流子Misfit 失配Mismatching 失配Mobility 迁移率Module 模块Modulate 调制Molecular crystal 分子晶体Monolithic IC 单片MOSFET 金属氧化物半导体场效应晶体管Mount 安装Multiplication 倍增Modulator 调制Multi-chip IC 多芯片ICMulti-chip module(MCM) 多芯片模块Multilayer 多层Multiplication coefficient 倍增因子Multiplexer 复用器Multiplier 倍增器Naked chip 未封装的芯片(裸片)Nanometer 纳米Nanotechnology 纳米技术Negative feedback 负反馈Negative resistance 负阻Negative-temperature-coefficient负温度系数Nesting 套刻Noise figure 噪声系数Nonequilibrium 非平衡Nonvolatile 非挥发(易失)性Normally off/on 常闭/开Nuclear 核Numerical analysis 数值分析Occupied band 满带Offset 偏移、失调On standby 待命状态Ohmic contact 欧姆接触Open circuit 开路Operating point 工作点Operating bias 工作偏置Operational amplifier (OPAMP)运算放大器Optical photon 光子Optical quenching 光猝灭Optical transition 光跃迁Optical-coupled isolator 光耦合隔离器Organic semiconductor 有机半导体Orientation 晶向、定向Oscillator 振荡器Outline 外形Out-of-contact mask 非接触式掩模Output characteristic 输出特性Output power 输出功率Output voltage swing 输出电压摆幅Overcompensation 过补偿Over-current protection 过流保护Over shoot 过冲Over-voltage protection 过压保护Overlap 交迭Overload 过载Oscillator 振荡器Oxide 氧化物Oxidation 氧化Oxide passivation 氧化层钝化Package 封装Pad 压焊点Parameter 参数Parasitic effect 寄生效应Parasitic oscillation 寄生振荡Pass band 通带Passivation 钝化Passive component 无源元件Passive device 无源器件Passive surface 钝化界面Parasitic transistor 寄生晶体管Pattern 图形Payload 有效载荷Peak-point voltage 峰点电压Peak voltage 峰值电压Permanent-storage circuit 永久存储电路Period 周期Permeable - base 可渗透基区Phase-lock loop 锁相环Phase drift 相移Phonon spectra 声子谱Photo conduction 光电导Photo diode 光电二极管Photoelectric cell 光电池Photoelectric effect 光电效应Photonic devices 光子器件Photolithographic process 光刻工艺Photoluminescence 光致发光Photo resist (光敏)抗腐蚀剂Photo mask 光掩模Piezoelectric effect 压电效应Pin 管脚Pinch off 夹断Pinning of Fermi level 费米能级的钉扎(效应)Planar process 平面工艺Planar transistor 平面晶体管Plasma 等离子体Plane 平面的Plasma 等离子体Plate 板电路板P-N junction pn结Poisson equation 泊松方程Point contact 点接触Polarity 极性Polycrystal 多晶Polymer semiconductor 聚合物半导体Poly-silicon 多晶硅Positive 正的Potential (电)势Potential barrier 势垒Potential well 势阱Power electronic devices电力电子器件Power dissipation 功耗Power transistor 功率晶体管Preamplifier 前置放大器Primary flat 主平面Print-circuit board(PCB) 印制电路板Probability 几率Probe 探针Procedure 工艺Process 工艺Projector 投影仪Propagation delay 传输延时Proton 质子Proximity effect 邻近效应Pseudopotential method 赝势法Pump 泵浦Punch through 穿通Pulse triggering/modulating 脉冲触发/调制Pulse Widen Modulator(PWM) 脉冲宽度调制Punchthrough 穿通Push-pull stage 推挽级Q Q值Quality factor 品质因子Quantization 量子化Quantum 量子Quantum efficiency 量子效应Quantum mechanics 量子力学Quasi – Fermi-level 准费米能级Quartz 石英Radar 雷达Radiation conductivity 辐射电导率Radiation damage 辐射损伤Radiation flux density 辐射通量密度Radiation hardening 辐射加固Radiation protection 辐射保护Radiative - recombination 辐照复合Radio 无线电射电射频Radio-frequency RF 射频Raman 拉曼Random 随机Range 测距Radio 比率系数Ray 射线Reactive sputtering source 反应溅射源Real time 实时Receiver 接收机Recombination 复合Recovery diode 恢复二极管Record 记录Recovery time 恢复时间Rectifier 整流器(管)Rectifying contact 整流接触Red light 红光Reference 基准点基准参考点Refractive index 折射率Register 寄存器Regulate 控制调整Relative 相对的Relaxation 驰豫Relaxation lifetime 驰豫时间Relay 中继Reliability 可靠性Remote 远程Repeatability 可重复性Reproduction 重复制造Residual current 剩余电流Resonance 谐振Resin 树脂Resistance 电阻Resistor 电阻器Resistivity 电阻率Regulator 稳压管(器)Resolution 分辨率Response time 响应时间Return signal 回波信号Reverse 反向的Reverse bias 反向偏置Ribbon 光纤带Ridge waveguide 脊形波导Ring laser 环形激光器Rotary wave 旋转波Run 运行Sampling circuit 取样电路Sapphire 蓝宝石(Al2O3)Satellite valley 卫星谷Saturated current range 电流饱和区Scan 扫描Scaled down 按比例缩小Scattering 散射Schematic layout 示意图,简图Schottky 肖特基Schottky barrier 肖特基势垒Schottky contact 肖特基接触Screen 筛选Scribing grid 划片格Secondary flat 次平面Seed crystal 籽晶Segregation 分凝Selectivity 选择性Self aligned 自对准的Self diffusion 自扩散Semiconductor 半导体Semiconductor laser半导体激光器Semiconductor-controlled rectifier 半导体可控硅Sensitivity 灵敏度Sensor 传感器Serial 串行/串联Series inductance 串联电感Settle time 建立时间Sheet resistance 薄层电阻Shaping 成型Shield 屏蔽Shifter 移相器Short circuit 短路Shot noise 散粒噪声Shunt 分流Sidewall capacitance 边墙电容Signal 信号Silica glass 石英玻璃Silicon 硅Silicon carbide 碳化硅Silicon dioxide (SiO2) 二氧化硅Silicon Nitride(Si3N4) 氮化硅Silicon On Insulator 绝缘体上硅Silver whiskers 银须Simple cubic 简立方Simulation 模拟Single crystal 单晶Sink 热沉Sinter 烧结Skin effect 趋肤效应Slot 槽隙Slow wave 慢波Smooth 光滑的Subthreshold 亚阈值的Solar battery/cell 太阳能电池Solid circuit 固体电路Solid Solubility 固溶度Solution 溶液Sonband 子带Source 源极Source follower 源随器Space charge 空间电荷Space Craft 宇宙飞行器Spacing 间距Specific heat(PT) 比热Spectral 光谱Spectrum 光谱(复数)Speed-power product 速度功耗乘积Spherical 球面的Spin 自旋Split 分裂Spontaneous emission 自发发射。
电池给人们带来的好处英语作文The Inestimable Benefits of Batteries: PoweringProgress and Connecting Lives.In the tapestry of human ingenuity, the development of batteries stands as a transformative thread, profoundly impacting countless aspects of our lives. From the dawn of portable electronics to the advent of renewable energy solutions, batteries have become indispensable companionsin our pursuit of convenience, connectivity, and sustainability. Their evolution has not only revolutionized our daily routines but has also played a pivotal role in advancing scientific and technological frontiers.Unleashing the Power of Mobility.The advent of batteries has liberated electronicdevices from the constraints of fixed power sources,granting us unprecedented freedom and mobility. Smartphones, laptops, and tablets have become ubiquitous, empowering usto stay connected, access information, and engage in a myriad of activities on the move. The proliferation of cordless power tools has transformed construction and home improvement projects, enhancing efficiency and safety. Portable Bluetooth speakers have revolutionized the way we enjoy music, allowing us to create immersive auditory experiences wherever we go.Connecting the World.Batteries have played an instrumental role in facilitating global communication and bridging geographical divides. The widespread availability of battery-powered mobile phones has enabled people in even the most remote areas to communicate with loved ones, access news and information, and participate in the global economy. Satellite phones, powered by long-lasting batteries, have become lifelines for emergency responders, explorers, and those venturing into areas beyond terrestrial network coverage.Empowering the Healthcare Industry.The medical field has benefited immensely from the advancements in battery technology. Implantable devices, such as pacemakers and defibrillators, rely on batteries to provide life-sustaining electrical pulses. Portable medical equipment, including electrocardiogram (ECG) machines, pulse oximeters, and glucose monitors, allow healthcare professionals to diagnose and monitor patients outside of traditional healthcare settings. Battery-powered surgical tools offer greater precision and maneuverability, leading to improved patient outcomes.Driving the Green Revolution.The pursuit of sustainable energy solutions has propelled the development of innovative battery technologies. Electric vehicles, powered by high-capacity lithium-ion batteries, are rapidly gaining popularity as a greener alternative to fossil fuel-powered vehicles. Battery-powered energy storage systems are enabling the integration of renewable energy sources, such as solar and wind power, into our electrical grids. These systems storeexcess energy generated during periods of peak production and release it when demand is high, reducing our reliance on non-renewable resources.Expanding Scientific Research.Batteries have also played a crucial role in powering scientific research and exploration. Submarines and underwater vehicles rely on batteries to explore the depths of our oceans, shedding light on the mysteries that lie beneath the waves. Satellites, equipped with batteries to provide backup power during periods of solar eclipse, have revolutionized our understanding of the cosmos. Battery-powered drones are used for aerial surveys, wildlife monitoring, and disaster relief operations, providing valuable data and insights.The Future of Batteries.As the world grapples with climate change and the crescente need for sustainable energy, the future of batteries holds endless possibilities. Researchers areworking on developing new battery chemistries that offer higher energy densities, longer lifespans, and faster charging times. The integration of artificial intelligence (AI) and machine learning into battery management systemsis expected to enhance performance and extend battery life.The development of solid-state batteries, which promise greater safety and stability, has the potential to transform the electric vehicle industry and pave the wayfor new applications in aerospace and defense. Graphene-based batteries, with their exceptional conductivity and flexibility, hold promise for wearable devices and other innovative applications.Conclusion.The benefits of batteries to humanity are immeasurable. They have empowered us with mobility, connectivity, and access to healthcare. They have driven innovation in renewable energy and scientific research. As battery technology continues to evolve, we can expect even greater advancements in the years to come. Batteries are not merelypower sources; they are the engines of progress, connecting lives and shaping the future of our world.。
The Properties of Graphene for EnergyStorageGraphene is a revolutionary material that has the potential to transform the field of energy storage. Graphene is a two-dimensional material that is derived from carbon and has a honeycomb structure. It is known for its exceptional properties, including high electrical conductivity, high thermal conductivity, and high surface area. These properties make graphene an ideal material for energy storage applications.One of the key properties of graphene for energy storage is its high surface area. Graphene has a surface area of up to 2600 m2/g, which makes it an excellent material for energy storage applications. This high surface area means that graphene can store a large amount of energy per unit mass. This is particularly important for batteries, which require a high amount of energy storage per unit mass.Graphene's high electrical conductivity is another important property for energy storage. Graphene has a conductivity of up to 200,000 S/cm, which makes it one of the most conductive materials known to man. This high conductivity allows for efficient transfer of charge in energy storage applications.Graphene's high thermal conductivity is also important for energy storage applications. Graphene has a thermal conductivity of up to 5,000 W/mK, which makes it an excellent material for thermal management in energy storage devices. This high thermal conductivity allows for efficient heat dissipation, which is important for preventing overheating and prolonging the life of energy storage devices.In addition to its electrical and thermal properties, graphene also has excellent mechanical properties. Graphene is one of the strongest materials known to man, with a tensile strength of up to 130 GPa. This makes graphene an ideal material for use in energy storage devices, where strength and durability are important factors.Graphene's properties make it an ideal material for use in a variety of energy storage applications, including batteries, supercapacitors, and fuel cells. Graphene-based batteries, for example, have the potential to store more energy per unit mass than traditional lithium-ion batteries. Graphene-based supercapacitors also have the potential to store more energy than traditional capacitors, while being lighter and more durable.The use of graphene in energy storage devices also has important implications for renewable energy. Renewable energy sources such as solar and wind power are highly variable in nature, and energy storage devices are needed to smooth out the fluctuationsin energy production. Graphene-based energy storage devices have the potential to make renewable energy sources more reliable and cost-effective.In conclusion, the properties of graphene make it an ideal material for energy storage applications. Its high surface area, electrical conductivity, thermal conductivity, and mechanical strength make it a versatile material that can be used in a variety of energy storage devices. The potential benefits of using graphene in energy storage devices are significant, including increased energy storage capacity, improved durability, and lower costs. As research in this area continues, graphene-based energy storage devices are likely to become a key component of the renewable energy landscape.。
收稿日期:2020-12-11*通信作者国产石墨烯应用于铅酸蓄电池的性能研究高鹤,王再红,陈二霞,霍玉龙,孙海涛,闫娜,黄盼盼,张萌,陈志雪*(风帆有限责任公司,河北 保定 071057)摘要:对两种国产石墨烯材料设计了不同添加量方案,并以传统炭材料添加量 0.3 % 为对比。
探究不同石墨烯添加量对单体电池 20 小时率容量、低温起动能力、充电接受能力、循环寿命等性能的影响,并对寿命终止电池进行失效分析。
实验结果表明:石墨烯 B 的添加量为 0.3 % 时电池的容量、低温性能和 17.5 % DOD 寿命综合较好。
石墨烯电池的失效模式为极板泥化和活性物质脱落。
通过改性石墨烯材料或降低充电电压可能会有效地提高电池的充电接受能力、60 ℃ 水损耗和循环寿命性能。
关键词:铅酸蓄电池;石墨烯;充电接受;水损耗;寿命;炭材料中图分类号:TM 912.1 文献标识码:B 文章编号:1006-0847(2021)03-101-05Study on the performances of domestic grapheneused in lead-acid batteriesGAO He, WANG Zaihong, CHEN Erxia, HUO Yulong, SUN Haitao,YAN Na, HUANG Panpan, ZHANG Meng, CHEN Zhixue *(Fengfan Co., Ltd., Baoding Hebei 071057, China)Abstract: Two kinds of domestic graphene materials were designed with different dosage schemes, and compared with the traditional carbon material dosage of 0.3 %. The influences of different graphene addition amounts on the performance of the battery, such as 20-hour rate capacity, low temperature starting, charge acceptance and cycle life, were explored, and the failure analysis of the battery at the end of life was carried out. The experimental results show that the capacity, low temperature performance and 17.5 % DOD life of the battery are better when the additive amount of graphene B is 0.3 %.The failure modes of graphene batteries are plate softening and active material shedding. It is possible to improve the charge acceptance capacity, 60 ℃ water consumption and cycle life performance of the battery by modifying the graphene material or reducing the charging voltage.Keywords: lead-acid battery; graphene; charge acceptance; water loss; life; carbon material 0 引言石墨烯是目前发现的厚度最薄、强度最大、导电导热性能最强的一种新型纳米材料,因此受到锂离子电池及铅酸蓄电池领域的青睐。
石墨烯在储能领域中的应用陈汪洋;陶绪泉;王怀生;李玉超;李娜【摘要】Graphene,a new type of two-dimensional carbon material,is considered to be a new energy storage material with the broadest prospect due to its high electrical and thermal conductivity,high transmittance,stable physical and mechanical properties,large specific surface areas,excellent adsorptive and catalytic properties.The applications of graphene in supercapacitor,secondary battery,solar cell and fuel cell were reviewed.Especially,the applications in secondary battery such as lithium-ion battery,lithium sulfur battery,lithium-air battery and sodium ion battery were summarized.The application prospect was expected.%石墨烯是一种新型的二维碳材料,它具有良好的导热性、高导电性、高透光性、稳定的物理机械性能、超大的比表面积、优异的吸附和催化性能等,被认为是具有广阔应用前景的新型储能材料.概述了石墨烯在超级电容器、二次电池、太阳电池和燃料电池等储能领域中的应用,重点介绍了石墨烯在锂离子电池、锂硫电池、锂空气电池和钠离子电池领域中的应用,并对其应用前景进行了展望.【期刊名称】《电源技术》【年(卷),期】2018(042)004【总页数】3页(P605-607)【关键词】石墨烯;超级电容器;二次电池;太阳电池;燃料电池【作者】陈汪洋;陶绪泉;王怀生;李玉超;李娜【作者单位】聊城大学材料科学与工程学院,山东聊城252000;聊城大学材料科学与工程学院,山东聊城252000;聊城大学化学化工学院,山东聊城252000;聊城大学材料科学与工程学院,山东聊城252000;聊城大学材料科学与工程学院,山东聊城252000【正文语种】中文【中图分类】TM91石墨烯是一种单层的二维平面结构,它由碳原子通过sp2轨道杂化并且按正六边形紧密排列形成。