二元一次方程组专题训练
- 格式:doc
- 大小:137.00 KB
- 文档页数:6
二元一次方程组练习题一.解答题(共16 小题)x 2 y 11.解下列方程组 3 2( 9)( 10) 2x 2 1 y ( 1)( 2) 3 12( 3)5x2 y11a(a为已知数 ) ( 4)4 x 4 y 6a2.求适合的x,y的值.(5)(6).3.已知关于x, y 的二元一次方程y=kx+b 的解有和.( 1)求 k, b 的值.( 2)当 x=2 时, y 的值.( 3)当 x 为何值时, y=3?( 7)x( y 1) y(1 x) 2 ( 8)1) y x 2 0x(x..1.解下列方程组(1)(2);(9)(10);(3);(4)2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错(5).(6)了方程组中的b,而得解为.( 1)甲把 a 看成了什么,乙把 b 看成了什么?(2)求出原方程组的正确解.( 7)(8). .二元一次方程组解法练习题参精考选答案与试题解析故原方程组的解为.一.解答题(共 16 小题)( 2)①× 3﹣②×2得,﹣ 13y=﹣39,1.求适合的 x, y 的值.解得, y=3,把 y=3 代入①得,2x﹣3×3=﹣ 5,解得 x=2.考点:解二元一次方程组.故原方程组的解为.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出 y 的值,继而求出x 的值.( 3)原方程组可化为,解答:解:由题意得:,①+②得, 6x=36,x=6,①﹣②得, 8y=﹣ 4,由( 1)×2 得: 3x﹣ 2y=2( 3),由( 2)×3 得: 6x+y=3 ( 4),y=﹣.所以原方程组的解为.(3)×2得: 6x﹣ 4y=4( 5),(5)﹣( 4)得: y=﹣,( 4)原方程组可化为:,把 y 的值代入( 3)得: x= ,①× 2+②得, x= ,∴.把 x= 代入②得, 3×﹣ 4y=6 ,点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.y=﹣.2.解下列方程组所以原方程组的解为.( 1)( 2)( 3)( 4).点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;考点:解二元一次方程组.②其中一个未知数的系数为 1 时,宜用代入法.分析:( 1)(2)用代入消元法或加减消元法均可;( 3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣ x=﹣ 2,3.解方程组:解得 x=2,把 x=2 代入①得, 2+y=1,解得 y=﹣ 1.考解二元一次方程组.. 点:专计算题.题:分先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.析:解答:解:原方程组可化为,①× 4﹣②× 3,得7x=42,解得 x=6.把 x=6 代入①,得y=4.所以方程组的解为.点;评:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法..考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4 ,①+②,得 s﹣t=6 ,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x, y 的二元一次方程y=kx+b 的解有和.4.解方程组:( 1)求 k, b 的值.( 2)当 x=2 时, y 的值.( 3)当 x 为何值时, y=3?考点:解二元一次方程组.专题:计算题.考点:解二元一次方程组.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.专题:计算题.解答:分析:的值代入方程得出关于k、 b 的二元一次方程组,再运用加减消元解:(1)原方程组化为,( 1)将两组 x, y法求出 k、 b 的值.①+②得: 6x=18,∴x=3.代入①得: y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.( 2)将( 1)中的 k、b 代入,再把x=2 代入化简即可得出y 的值.( 3)将( 1)中的 k、b 和 y=3 代入方程化简即可得出x 的值.解答:解:( 1)依题意得:①﹣②得: 2=4k,所以 k=,所以 b=.5.解方程组:( 2)由 y= x+,word 版本.把 x=2 代入,得 y= .(3)由 y= x+把 y=3 代入,得 x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,( 2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①× 2﹣②得:y=﹣ 1,将 y=﹣ 1 代入①得:x=1.∴方程组的解为;( 2)原方程可化为,即,①× 2+②得:17x=51,x=3,将 x=3 代入 x﹣4y=3 中得:y=0.∴方程组的解为..点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得 10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把 x=3 代入第一个方程,得4y=11,y=...化和运用.解之得.11.解方程组:点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:( 1)运用代入法,把①代入②,可得出x, y 的值;( 2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y) +2y=﹣ 1,所以 y=﹣,把 y=﹣代入③,得 x=4﹣ = .所以原方程组的解为.(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组( 1)需要先化简,再根据方程组的特点选择解法;方程组( 2)采用换元法较简单,设x+y=a, x﹣ y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设 x+y=a, x﹣ y=b,∴原方程组可化为,解得,∴∴原方程组的解为.( 2)原方程组整理为,点评:此题考查了学生的计算能力,解题时要细心.③× 2﹣④× 3,得 y= ﹣24,把 y=﹣ 24 代入④,得 x=60,12.解二元一次方程组:所以原方程组的解为( 1);.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强.(2).考点:解二元一次方程组.专题:计算题.分析:( 1)运用加减消元的方法,可求出x、 y 的值;( 2)先将方程组化简,然后运用加减消元的方法可求出x、 y 的值.解答:解:(1)将①× 2﹣②,得15x=30,x=2,把 x=2 代入第一个方程,得y=1.则方程组的解是;( 2)此方程组通过化简可得:,①﹣②得: y=7,把 y=7 代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把 a 看成了什么,乙把 b 看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:( 1)把甲乙求得方程组的解分别代入原方程组即可;( 2)把甲乙所求的解分别代入方程②和①,求出正确的a、 b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,.得,解得:.把代入方程组,得,解得:.∴甲把 a 看成﹣ 5;乙把 b 看成 6;( 2)∵正确的 a 是﹣ 2, b 是 8,∴方程组为,解得: x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由( 1) +( 2),并解得x=(3),把( 3)代入( 1),解得y=.∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①× 3,得 3x+3y=1500③,②﹣③,得x=350.把 x=350 代入①,得 350+y=500,∴y=150.故原方程组的解为.( 2)化简整理为,①× 5,得 10x+15y=75③,②× 2,得 10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把 y=1 代入①,得 2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程..16.解下列方程组:( 1)( 2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①× 2﹣②得: x=1,将 x=1 代入①得:2+y=4,y=2.∴原方程组的解为;( 2)原方程组可化为,①× 2﹣②得:﹣y=﹣ 3,y=3.将 y=3 代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.。
二元一次方程组解法练习题精选一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3.解方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b 的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2).13.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1)(2).16.解下列方程组:(1)(2)参考答案一、1,B ;2,B ;3,C ;4,D ;5,B ;6,C ;7,B ;8,C ;9,C ;10,D .二、11,ax 2+bx +c 、≠0、常数;12,x =1;13,y =2x 2+1;14,答案不唯一.如:y =x 2+2x ; 15,C >4的任何整数数;16,112;17,二;18,x =3、1<x <5. 三、19,43;20,(1)设这个抛物线的解析式为c bx ax y ++=2由已知,抛物线过)0,2(-A ,B (1,0),C (2,8)三点,得⎪⎩⎪⎨⎧=++=++=+-8240024c b a c b a c b a 解这个方程组,得4,2,2-===c b a ∴ 所求抛物线的解析式为y =2x 2+2x -4.(2)y =2x 2+2x -4=2(x 2+x -2)=2(x +12)2-92;∴ 该抛物线的顶点坐标为)29,21(--. 21,(1)y =-x 2+4x =-(x 2-4x +4-4)=-(x -2)2+4,所以对称轴为:x =2,顶点坐标:(2,4).(2)y =0,-x 2+4x =0,即x (x -4)=0,所以x 1=0,x 2=4,所以图象与x 轴的交点坐标为:(0,0)与(4,0).22,(1)因为AD =EF =BC =x m ,所以AB =18-3x .所以水池的总容积为1.5x (18-3x )=36,即x 2-6x +8=0,解得x 1=2,x 2=4,所以x 应为2或4.(2)由(1)可知V 与x 的函数关系式为V =1.5x (18-3x )=-4.5x 2+27x ,且x 的取值范围是:0<x <6.(3)V =-4.5x 2+27x =-92(x -3)2+812.所以当x =3时,V 有最大值812.即若使水池有总容积最大,x 应为3,最大容积为40.5m 3.23,答案:①由题意得y 与x 之间的函数关系式30y x =+(1160x ≤≤,且x 整数)②由题意得P 与x 之间的函数关系式二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题) 1.求适合的x ,y 的值.析:解:由题意得:,,∴2.解下列方程组 (1)(2)(3)(4).故原方程组的解为故原方程组的解为)原方程组可化为,.所以原方程组的解为)原方程组可化为:,x=×.所以原方程组的解为3.解方程组::原方程组可化为所以方程组的解为4.解方程组:)原方程组化为y=.所以原方程组的解为5.解方程组::,解得所以方程组的解为6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?二元一次方程组)依题意得:,.y=x+y=y=x+7.解方程组:(1);(2).)原方程组可化为,∴方程组的解为;)原方程可化为即∴方程组的解为8.解方程组::原方程组可化为,则原方程组的解为9.解方程组::原方程变形为:,y=解之得10.解下列方程组:(1)(2))﹣代入﹣=所以原方程组的解为)原方程组整理为,所以原方程组的解为.11.解方程组:(1)(2)解得∴原方程组可化为解得∴∴原方程组的解为12.解二元一次方程组:(1);(2).则方程组的解是;)此方程组通过化简可得:则方程组的解是.13.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.代入方程组,解得:代入方程组,解得:∴方程组为,则原方程组的解是14.答:x=y=∴原方程组的解为15.解下列方程组:(1);(2).)化简整理为故原方程组的解为)化简整理为故原方程组的解为16.解下列方程组:(1)(2)∴原方程组的解为)原方程组可化为,∴原方程组的解为。
二元一次方程组解法练习题精选(含答案)【1】一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3.解方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2).13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1);(2).16.解下列方程组:(1)(2)17.方程组的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组的解?二元一次方程组解法练习题精选(含答案)参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y 的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:注意:二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=,∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.2022年3月23日;第11页共10页。
实用文档标准二元一次方程组练习题一.解答题(共16小题) 1.解下列方程组 (1)(2)(3))(6441125为已知数a a y x ay x ⎩⎨⎧=-=+ (4)(5)(6).(7)(8)⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(9)(10) ⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x2.求适合的x ,y 的值.3.已知关于x ,y 的二元一次方程y=kx+b 的解有和.(1)求k ,b 的值.(2)当x=2时,y 的值. (3)当x 为何值时,y=3?1.解下列方程组(1)(2);(3);(4)(5).(6)(7)(8)(9)(10);2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.word版本二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x ﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.word版本专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.分析:(1)将两组x ,y 的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.word 版本(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.word版本10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y )+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.word版本专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;word版本2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.word版本。
二元一次方程组练习题一.选择题1.以下方程中,是二元一次方程的是()A . x -5y=6zB . 5xy+3=0 C. 1+2y=3D.x=y 22.x-2y=1x4二元一次方程 有无数多个解,以下四组解中不是该方程的解的是()xx 1x 1 x 1A .1BC.y1 .yD .1y2y3 方程 2x+y=8 的正整数解的个数是()组A . 4 B. 3C.2 D.14. 一轮船顺水航行的速度为 a 千米 / 小时,逆流航行的速度为b 千米 / 小时,(a > b > 0).那么船在静 . 水中的速度为()千米 / 小时.A . a+bB.1(ab)C.1( a b)D. a-b225. 在“六 ?一”小孩节那一天,某商场推出A 、B 、C 三种特价玩具.若购置A 种 2 件、B 种 1件、 C 种 3 件,共需 23 元;若购置 A 种 1 件、 B 种 4 件、 C 种 5 件,共需 36 元.那么小明 购置 A 种 1件、B 种 2件、 C 种 3 件,共需付款()A .21 元B .22 元 C.23 元D.不可以确立5. 1 有甲,乙,丙三种商品,假如购甲3 件,乙 2 件,丙 1 件共需 315 元钱,购甲 1 件,乙 2 件,丙 3 件共需 285 元钱,那么购甲,乙,丙三种商品各一件共需()A . 50B. 100C. 150D. 2005. 2 如图,三个天平的托盘中形状同样的物体质量相等.图( 1)、图( 2)所示的两个天平处于均衡状态,要使第三个天平也保持均衡,则需在它的右盘中搁置()A .3 个球B .4 个球C .5 个球D .6 个球 二.填空题6. x 2的解,那么 k=已知是方程 x-ky=1y 37. 请你写出一个二元一次方程组,使它的解为 x 1y,这个方程组是28. 某人买了 60 分和 80 分的邮票共 20 枚,用去 13 元 2 角,设买了 60 分邮票 x 枚,买了80分邮票 y 枚,则可列方程组为x=y+5 2x-y=5 9. 已知方程组和方程组有同样的解,则 m 的值是x+y+m=0x+y+m=010. 若 a :b : c=2:3: 7,且 a-b+3=c-2b ,则 c 值为三.解答题6 6 1 4(x-y-1)=3(1-y)-2xy 2x y11. 解方程组( 1)3 (2)832 + =2x =103y3x y z 4x 2y 3z 18 0( 3) 2x 3y z 12( 4) x 3y 2z 8 0x y z 6 x y 2z 24 0x 1x212. 已知和都是方程 y=ax+b 的解,求 a 和 b 的值.y 0y313. 1 为了防控甲型 H1N1 流感,某校踊跃进行校园环境消毒,购置了甲、乙两种消毒液共100 瓶,此中甲种 6 元 / 瓶,乙种 9 元/ 瓶.假如购置这两种消毒液共用780 元,求甲、乙两种消毒液各购置多少瓶?学校文艺部组织部分文艺踊跃分子看演出,共购得 8 张甲票, 4 张乙票, 总计用了 112 元.已知每张甲票比乙票贵 2 元,则甲票、乙票的票价分别是()我国古代数学巨着《孙子算经》中的“鸡兔同笼”题为: “今有雉(鸡)兔同笼,上有三十五头,下有九十四足.问雉兔各几何” .(即鸡和兔子一共有 35 只,一共有94 条腿,问鸡和兔子各有多少只?)14 某城市规定:出租车起步价同意履行的最远行程为 3 千米,超出 3 千米的部分按每千米另行收费,甲说: “我乘这种出租车走了 11 千米,付了 17 元”;乙说:“我乘这种出租车走了 23 千米,付了 35 元”.请你算一算这种出租车的起步价是多少元?以及超出 3 千米后,每千米的车资是多少元?某商铺经销一种商品,因为进价降低了 5%,销售价不变,使得收益由 m%提升到( m+6)%,则 m的值为多少在某浓度的盐水中加入一杯水后,获得新盐水,它的浓度为20%,又在新盐水中加入与前述1一杯水的重量相等的纯盐混淆,盐水浓度变成33 % ,那么本来盐水的浓度是多少?316.甲、乙、丙三队要达成 A、 B两项工程. B 工程的工作量比 A 工程的工作量多 25%,甲、乙、丙三队独自达成 A 工程所需的时间分别是20 天、24 天、 30 天.为了共同达成这两项工程,先派甲队做 A 工程,乙、丙二队做 B 工程;经过几日后,又调丙队与甲队共同达成A 工程.问乙、丙二队合作了多少天?1-4.DBBC3.. 解:∵ 2x+y=8 ,∴y=8-2x ,∵x、 y 都是正整数,∴x=1 时, y=6;x=2 时, y=4;x=3 时, y=2.∴二元一次方程2x+y=8 的正整数解共有 3 对.应选 B.4 题的等量关系:顺水航行的速度- 静水中的速度=静水中的速度- 逆流航行的速度.5.设 A、B、C三种特价玩具单价分别为x、y、z 元,列方程组,用待定系数法求解.解答:解:设 A、B、 C 三种特价玩具单价分别为x、 y、 z 元,由题意,得{2x+y+3z=23 , x+4y+5z=36 ,设 x+2y+3z=m( 2x+y+3z ) +n(x+4y+5z )比较系数,得 {2m+n=1, m+4n=2, 3m+5n=3,解得 {m=27, n=37∴x+2y+3z= ( 2/7 )(2x+y+3z ) +( 3/7 )( x+4y+5z )=2/7 × 23+3/7 × 36=22.应选 B.评论:此题是三元不定方程组,解决这种问题,需要设待定系数,比较系数求解.5. 1 解:设购甲,乙,丙三种商品各一件需要x 元、 y 元、 z 元.依据题意,得{3x+2y+z=315x+2y+3z=285,双方程相加,得4x+4y+4z=600 ,x+y+z=150.则购甲,乙,丙三种商品各一件共需150 元.5. 2 目中的方程实质是说了然两个相等关系:设球的质量是x,小正方形的质量是y,小正三角形的质量是z.依据第一个天平获得:5x+2y=x+3z ;依据第二个天平获得:3x+3y=2y+2z ,把这两个式子构成方程组,解这个对于y, z 的方程组即可.解答:解:设球的质量是x,小正方形的质量是y,小正三角形的质量是z.依据题意获得:{5x+2y=x+3z , 3x+3y=2y+2z .解得: {y=x , z=2x ,第三图中左侧是:x+2y+z=5x ,因此需在它的右盘中搁置 5 个球.应选 C.6. k=-17, 答案不独一。
二元一次方程组练习题100道(卷一)(范围:代数: 二元一次方程组)一、判断1、⎪⎩⎪⎨⎧-==312y x 是方程组⎪⎪⎩⎪⎪⎨⎧=-=-910326523y x y x 的解 …………( ) 2、方程组⎩⎨⎧=+-=5231y x xy 的解是方程3x -2y =13的一个解( )3、由两个二元一次方程组成方程组一定是二元一次方程组( )4、方程组⎪⎪⎩⎪⎪⎨⎧=-++=+++25323473523y x y x ,可以转化为⎩⎨⎧-=--=+27651223y x y x ( )5、若(a 2-1)x 2+(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( )6、若x +y =0,且|x |=2,则y 的值为2 …………( )7、方程组⎩⎨⎧=+-=+81043y x xm my mx 有唯一的解,那么m 的值为m ≠-5 …………( )8、方程组⎪⎩⎪⎨⎧=+=+623131y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组⎩⎨⎧=+=-3513y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组⎩⎨⎧=+=-3513y x y x 的解 ………( )11、若|a +5|=5,a +b =1则32-的值为b a ………()12、在方程4x -3y =7里,如果用x 的代数式表示y ,则437yx +=( ) 二、选择:13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解;(C )三个解; (D )无数多个解;14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( ) (A )5个 (B )6个 (C )7个 (D )8个 15、如果⎩⎨⎧=+=-423y x ay x 的解都是正数,那么a 的取值范围是( )(A )a <2; (B )34->a ; (C )342<<-a ; (D )34-<a ;16、关于x 、y 的方程组⎩⎨⎧=-=+m y x my x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1;(D )-2;17、在下列方程中,只有一个解的是( ) (A )⎩⎨⎧=+=+0331y x y x(B )⎩⎨⎧-=+=+2330y x y x(C )⎩⎨⎧=-=+4331y x y x(D )⎩⎨⎧=+=+3331y x y x18、与已知二元一次方程5x -y =2组成的方程组有无数多个解的方程是( )(A )15x -3y =6 (B )4x -y =7 (C )10x +2y =4 (D )20x -4y =3 19、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114y x y x (B )⎩⎨⎧=+=+75z y y x(C )⎩⎨⎧=-=6231y x x(D )⎩⎨⎧=-=-1y x xyy x20、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a =-3,b =-14 (B )a =3,b =-7 (C )a =-1,b =9(D )a =-3,b =14 21、若5x -6y =0,且xy ≠0,则y x yx 3545--的值等于( )(A )32 (B )23 (C )1 (D )-122、若x 、y 均为非负数,则方程6x =-7y 的解的情况是( ) (A )无解 (B )有唯一一个解 (C )有无数多个解 (D )不能确定23、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )12 24、已知⎩⎨⎧-==24y x 与⎩⎨⎧-=-=52y x 都是方程y =kx +b 的解,则k 与b 的值为( ) (A )21=k ,b =-4 (B )21-=k ,b =4 (C )21=k ,b =4(D )21-=k ,b =-4 三、填空:25、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______ 若x 、y 都是正整数,那么这个方程的解为___________; 26、方程2x +3y =10中,当3x -6=0时,y =_________;27、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________; 28、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ;□x +5y =13 ①4x -□y =-2 ② 29、方程|a |+|b |=2的自然数解是_____________; 30、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 31、已知方程组⎩⎨⎧-=+=+my x ay x 26432有无数多解,则a =______,m =______;32、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;33、若4x +3y +5=0,则3(8y -x )-5(x +6y -2)的值等于_________;34、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________; 35、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;36、已知a -3b =2a +b -15=1,则代数式a 2-4ab +b 2+3的值为__________;四、解方程组37、⎪⎪⎩⎪⎪⎨⎧=-=-1332343n m nm ; 38、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+;39、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ; 40、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x ; 41、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x yx y x ; 42、⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x ;43、⎪⎩⎪⎨⎧=-+-=-+=-+3113y x z x z y z y x ; 44、⎪⎩⎪⎨⎧=+=+=+101216x z z y y x ;45、⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 46、⎪⎩⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:47、甲、乙两人在解方程组 时,甲看错了①式中的x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;48、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;49、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是28,试求出这个代数式;50、要使下列三个方程组成的方程组有解,求常数a 的值。
二元一次方程组解法练习题精选一.解答题(共16小题)1.求适合的x,y的值.2.解下列方程组(1)(2)(3)(4).3.解方程组:4.解方程组:5.解方程组:6.已知关于x,y的二元一次方程y=kx+b 的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?7.解方程组:(1);(2).8.解方程组:9.解方程组:10.解下列方程组:(1)(2)11.解方程组:(1)(2)12.解二元一次方程组:(1);(2).13.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.14.15.解下列方程组:(1)(2).16.解下列方程组:(1)(2)参考答案一、1,B ;2,B ;3,C ;4,D ;5,B ;6,C ;7,B ;8,C ;9,C ;10,D 。
二、11,ax 2+bx +c 、≠0、常数;12,x =1;13,y =2x 2+1;14,答案不唯一。
如:y =x 2+2x ; 15,C >4的任何整数数;16,112;17,二;18,x =3、1<x <5。
三、19,43;20,(1)设这个抛物线的解析式为c bx ax y ++=2由已知,抛物线过)0,2(-A ,B(1,0),C (2,8)三点,得⎪⎩⎪⎨⎧=++=++=+-8240024c b a c b a c b a 解这个方程组,得4,2,2-===c b a ∴ 所求抛物线的解析式为y =2x 2+2x -4.(2)y =2x 2+2x -4=2(x 2+x -2)=2(x +12)2-92;∴ 该抛物线的顶点坐标为)29,21(--. 21,(1)y =-x 2+4x =-(x 2-4x +4-4)=-(x -2)2+4,所以对称轴为:x =2,顶点坐标:(2,4).(2)y =0,-x 2+4x =0,即x (x -4)=0,所以x 1=0,x 2=4,所以图象与x 轴的交点坐标为:(0,0)与(4,0).22,(1)因为AD =EF =BC =x m ,所以AB =18-3x .所以水池的总容积为 1.5x (18-3x )=36,即x 2-6x +8=0,解得x 1=2,x 2=4,所以x 应为2或4.(2)由(1)可知V 与x 的函数关系式为V =1.5x (18-3x )=-4.5x 2+27x ,且x 的取值范围是:0<x <6.(3)V =-4。
二元一次方程组计算题100题1.解方程组:2x+9y=81,3x+y=34.2.解方程组:9x+4y=35,8x+3y=30.3.解方程组:7x+2y=52,7x+4y=62.4.解方程组:4x+6y=54,9x+2y=87.5.解方程组:2x+y=7,2x+5y=19.6.解方程组:x+2y=21,3x+5y=56.7.解方程组:5x+7y=52,5x+2y=22.8.解方程组:5x+5y=65,7x+7y=203.9.解方程组:8x+4y=56,x+4y=21.10.解方程组:5x+7y=41,5x+8y=44.11.解方程组:7x+5y=54,3x+4y=38.12.解方程组:x+8y=15,4x+y=29.13.解方程组:3x+6y=24,9x+5y=46.14.解方程组:9x+2y=62,4x+3y=36.15.解方程组:9x+4y=46,XXX。
16.解方程组:9x+7y=135,4x+y=41.17.解方程组:3x+8y=51,x+6y=27.18.解方程组:9x+3y=99,4x+7y=95.19.解方程组:9x+2y=38,3x+6y=18.20.解方程组:5x+5y=45,7x+9y=69.21.解方程组:8x+2y=28,7x+8y=62.22.解方程组:x+6y=14,3x+3y=27.23.解方程组:7x+4y=67,2x+8y=26.24.解方程组:5x+4y=52,7x+6y=74.25.解方程组:7x+y=9,4x+6y=16.26.解方程组:6x+6y=48,XXX。
27.解方程组:8x+2y=16,7x+y=11.28.解方程组:4x+9y=77,8x+6y=94.29.解方程组:6x+8y=68,7x+6y=66.30.解方程组:2x+2y=22,7x+2y=47.31.解方程组:5x+3y=8,3x+5y=8.32.解方程组:6x-7y=5,x+2y=4.33.解方程组:10x-8y=14,x+y=5.34.解方程组:4x+7y=3,x+y=0.35.解方程组:3x+y=10,7x-y=20.36.解方程组:44x+10y=27,x+y=1.37.解方程组:8x-y=0,x+y=18.38.解方程组:11x-y=12,11y-x=-12.39.解方程组:5x+6y=27,2x+3y=12.40.解方程组:2x+3y=12,7x-2y=4.41.解方程组:2x-5y=0,2x+y=2.42.解方程组:7x-3y=3,3x+2y=21.43.解方程组:7x+2y=21,6x-y=1.54.5x+6y=4805x+3y=240改写:将第一行乘以0.5,得到第二行。
专题01 二元一次方程组(五大题型)【题型1 二元一次方程的概念】【题型2 根据二元一次方程的定义求参数】【题型3 二元一次方程的解】【题型4 解二元一次方程】【题型5 二元一次方程组的概念】【题型1 二元一次方程的概念】1.(2023春•浦北县月考)下列选项中,是二元一次方程的是( )A.y=x B.x+y2=2C.x﹣y D.x+y=z 【答案】A【解答】解:A.y=x是二元一次方程,故此选项符合题意;B.x+y2=2是二元二次方程,故此选项不合题意;C.x﹣y不是等式,不是方程,故此选项不合题意;D.x+y=z是三元二次方程,故此选项不合题意.故选:A.2.(2023春•松北区期末)下列方程中,属于二元一次方程的是( )A.3x2+y=8B.x﹣1=﹣4C.x+y﹣2=0D.x﹣y﹣z=10【答案】C【解答】解:A.方程3x2+y=8的最高次数是2,选项A不符合题意;B.方程x﹣1=﹣4是一元一次方程,选项B不符合题意;C.方程x+y﹣2=0是二元一次方程,选项C符合题意;D.方程x﹣y﹣z=10是三元一次方程,选项D不符合题意.故选:C.3.(2023春•任丘市期末)在下列方程中,是二元一次方程的为( )A.2x﹣6=y B.y﹣1=5C.yz=8D.【答案】A【解答】解:A.该方程是二元一次方程,故符合题意;B.该方程是一元一次方程,故不符合题意;C.该方程符合二元二次方程的定义,故不符合题意;D.该方程不是整式方程,故不符合题意.故选:A.4.(2023春•连山区月考)下列方程中,二元一次方程的个数为( )①xy=1;②2x=3y;③;④x2+y=3;⑤.A.1个B.2个C.3个D.4个【答案】B【解答】解:∵2x=3y,是二元一次方程;xy=1,,x2+y=3不是二元一次方程,∴所有方程中,只有方程①和方程⑤共2个二元一次方程,故选:B.【题型3 二元一次方程的解】11.(2023春•云阳县期末)下列哪对x ,y 的值是二元一次方程x +2y =6的解( )A .B .C .D .【答案】C【解答】解:A .当x =﹣2,y =﹣2,得x +2y =﹣6,那么x =﹣2,y =﹣2不是x +2y =6的解,故A 不符合题意.B .当x =0,y =2,得x +2y =4,那么x =0,y =2不是x +2y =6的解,故B 不符合题意.C .当x =2,y =2,得x +2y =2+4=6,那么x =2,y =2是x +2y =6的解,故C 符合题意.D .当x =3,y =1,得x +2y =3+2=5,那么x =3,y =1不是x +2y =6的解,故D 不符合题意.故选:C .12.(2023春•丹徒区期末)是下面哪个二元一次方程的解( )A .y =﹣x +2B .x ﹣2y =1C .x =y ﹣2D .2x ﹣3y =1【答案】D【解答】解:把x =5代入A ,得y =﹣5+2=﹣3,所以不是二元一次方程A 的解;把x =5代入B ,得y =(5﹣1)÷2=2,所以不是二元一次方程B 的解;把x =5代入C ,得y =5+2=7,所以不是二元一次方程C 的解;把x =5代入D ,得y =(10﹣1)÷3=3,所以是二元一次方程D 的解.故选:D .13.已知21x y =ìí=î是二元一次方程3kx y -=的一个解,那么k 的值是( )A .1k =B .2k =C .1k =-D .2k =-【答案】B【分析】本题主要考查二元一次方程的解,熟练掌握二元一次方程的解的定义是解题的关键.【详解】解:把21x y =ìí=î代入二元一次方程3kx y -=得:213k -=,解得:2k =;故选:B .14.下列四组数值是二元一次方程26x y -=的解的是( )A .26x y =ìí=îB .42x y =ìí=îC .24x y =ìí=-îD .23x y =ìí=î【答案】B【分析】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.将各项中x与y的值代入方程检验即可.【详解】解:A、把26xy=ìí=î代入方程得:左边462=-=-,右边6=,左边¹右边,不符合题意;B、把42xy=ìí=î代入方程得:左边826=-=,右边6=,左边=右边,符合题意;C、把24xy=ìí=-î代入方程得:左边448=+=,右边6=,左边¹右边,不符合题意;D、把23xy=ìí=î代入方程得:左边431=-=,右边6=,左边¹右边,不符合题意;故选:B.15.(2023•西山区校级开学)二元一次方程2x+y=8的正整数解有( )A.1组B.2组C.3组D.4组【答案】C【解答】解:由2x+y=8得:y=8﹣2x,当x=1时,y=6;当x=2时,y=4;当x=3时,y=2;∴二元一次方程2x+y=8的正整数解有3组,故选:C.16.(2023春•霸州市期末)已知关于x,y的二元一次方程●x﹣2y=4中x的系数让墨迹盖住了,但是知道它一组解是,那么●的值是( )A.2B.1C.﹣3D.﹣2【答案】C【解答】解:设•=a,由题意得:﹣2a﹣2=4,解得:a=﹣3,【题型4 解二元一次方程】19.(2023春•怀安县期末)已知二元一次方程3x﹣y=6,用x表示y的式子为( )A.y=3x+6B.y=﹣3x﹣6C.y=3x﹣6D.y=﹣3x+6【解答】解:移项,得﹣y=6﹣3x,系数化1,得y=3x﹣6.故选:C.20.(2023春•天津期末)把二元一次方程2x﹣3y=4写成用含y的式子表示x的形式,正确的是( )A.B.C.D.【答案】A【解答】解:2x﹣3y=4,2x=4+3y,x=,故选:A.21.(2023春•浠水县校级期末)把方程3x+y﹣1=0改写成用含x的式子表示y的形式,正确的是( )A.x=B.x=C.y=3x﹣1D.y=1﹣3x【答案】D【解答】解:3x+y﹣1=0,y=1﹣3x.故选:D.22.(2023春•梁园区期末)把方程2x+y=3改写成用含x的代数式表示y的形式为( )A.y=2x+3B.y=2x﹣3C.y=﹣2x+3D.y=﹣2x﹣3【答案】C【解答】解:方程2x+y=3,解得:y=﹣2x+3.故选:C.23.(2022秋•朝阳区校级期末)已知方程2x+y=6,用含x的代数式表示y,则y= 6﹣2x .【答案】6﹣2x.【解答】解:2x+y=6,移项,得y=6﹣2x.故答案为:6﹣2x.∴二元一次方程24x y +=的正整数解为21x y =ìí=î,故答案为:21x y =ìí=î.【题型5 二元一次方程组的概念】26.(2023春•攸县期中)下列方程组是二元一次方程组的是( )A .B .C .D .【答案】C【解答】解:A 、有3个未知数,不是二元一次方程组,故A 不符合题意;B 、有2个未知数,但是最高次数是2,不是二元一次方程组,故B 不符合题意;C 、有两个未知数,方程的次数是1次,所以是二元一次方程组,故C 符合题意;D 、有两个未知数,第二个方程不是整式方程,不是二元一次方程组,故D 不符合题意.故选:C .27.(2023春•威海期末)下列方程组中,是二元一次方程组的是( )A .B .C .D .【答案】C【解答】解:A .第一个方程是二次方程,不是二元一次方程组,故本选项不符合题意;B .含有三个未知数,不是二元一次方程组,故本选项不符合题意;C .是二元一次方程组,故本选项符合题意;D .第二个方程是分式方程,不是二元一次方程组,故本选项不符合题意;故选:C .28.(2023春•东兰县期末)下列方程组中,是二元一次方程组的是( )。
二元一次方程组专题训练
一、 基本概念
(一) 二元一次方程(组)
1、 下列选项中,是二元一次方程的是:_______________;
①x-y=2;②x+y+z=-1;③ ;④3a-4b=11;⑤2x-3=5;⑥ 2、 下列选项中,是二元一次方程组的是:_______________;
①⎩⎨⎧=+=+4
222y x y x ; ②⎩⎨⎧=+=-1222b a b a ; ③⎩⎨⎧-==13y x ;
④⎩⎨
⎧<->+42122x x x ; ⑤⎩⎨⎧=+=+2
2
z y y x
(二) 二元一次方程(组)的解
3、下列选项中,是方程x+y=4的解的是____________;
①⎩⎨⎧==31y x ②⎩⎨⎧==22y x ③⎩⎨⎧-==13y x ④⎩
⎨⎧-==15
y x 4、⎩⎨
⎧==1
1
y x 是下列哪个二元一次方程组的解________ ①⎩⎨
⎧=+=+422y x y x ②⎩⎨⎧=+=-02y x y x ③⎩⎨⎧-=-=+1232y x y x ④⎩⎨⎧=-=+0
2
y x y x
二、解方程组
用适当的方法解下列方程
(1)⎩⎨⎧-==+x y y x 21023 (2) ⎩
⎨⎧=-=+52342y x y x
(
012=++x x 2
<-y x
(3)⎩⎨⎧=+-=-632223y x y x (4)⎪⎩
⎪
⎨⎧-=++=-+=++2
11430
45z y x z y x z y x
三、方程模型
1,运用二元一次方程组解实际问题的常见题型: (1)行程问题:
例1:甲乙两人相距6km ,两人同时出发相向而行,1小时相遇;同时出发同向而行,甲3小时可追上乙。
两人的平均速度各是多少?
(2)配对问题:解决方法:绘画表格
例2、木厂有27工人,1个人一天可以加工2张桌子或4张椅子,现在如何安排劳动力,使生产的1张桌子与4把椅子配套? 分析:假设生产桌子有x 人,生产椅子有y 人
(3)工程问题
某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两
端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.
(1)求甲、乙两个班组平均每天各掘进多少米?
(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多
掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工速度,能够比原来少用多少天完成任务?
(4)数字问题
例4 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.
(5)分配调运问题
某校师生到甲、乙两个工厂参加劳动,如果从甲厂抽9人到乙厂,则两厂的人数相同;如果从乙厂抽5人到甲厂,则甲厂的人数是乙厂的2倍,到两个工厂的人数各是多少?
解:设到甲工厂的人数为x 人,到乙工厂的人数为y 人
题中的两个相等关系:1、抽9人后到甲工厂的人数=到乙工厂的人数
可列方程为:x -9=
2、抽5人后到甲工厂的人数= 可列方程为:
(5)货运问题
例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?
达标练习
1、下列方程组中,不是二元一次方程组的是( )
A. 123x y =⎧⎨+=⎩
B. 12x y x y +=⎧⎨-=⎩
C. 10x y xy -=⎧⎨=⎩
D. 21
y x x y =⎧⎨-=⎩
2、若关于x 的二元一次方程kx+3y=5有一组解是21x y =⎧⎨=⎩,则k 的值是( )
A. 1
B. -1
C. 0
D. 2
3、二元一次方程x+2y=12在正整数范围内的解有( )组. A. 3 B. 4 C. 5 D. 无数
4、方程组25,
1
x y x y -=⎧⎨+=⎩的解是( )
A. 31x y =⎧⎨=⎩
B. 01x y =⎧⎨=⎩
C. 21x y =-⎧⎨=⎩
D. 21x y =⎧⎨=-⎩
7、已知1
2
x y =⎧⎨=-⎩是方程2x-my=3的一个解,则m=___________.
8、解二元一次方程组
(1)⎩⎨⎧=+=+1341632y x y x (2)⎩⎨⎧=-=-10
835
72y x y x
(3)⎩⎨⎧+=-+=-)5(3)1(55)1(3x y y x (4) ⎪⎩
⎪
⎨⎧=+=+-=+7
32
x z z y y x
9、列方程组解决实际问题
(1) 4辆拖车和5辆卡车一次能运货27吨,10辆拖车和3辆卡车一次能运货20吨,
问一辆拖车和一辆卡车一次各运货多少吨?
(2) A 、B 两地相距20千米,甲、乙两人分别从A 、B 两地同时相向而行,
两小时后在途中相遇,然后甲返回A 地,乙仍继续前进,当甲回到A 地时,乙离A 地时还有4千米,求甲、乙两人的速度.
10题空
(1)、写出二元一次方程12-=+y x 的一个整数解_________________________ (2)、4.若x 、y 互为相反数,且x +3y =4,,3x -2y =_____________.
(3)、已知方程组51mx n my m +=⎧⎨
-=⎩的解是1
2x y =⎧⎨=⎩,则m =________,n =________.
(4)、已知方程组:⎩
⎨
⎧+=+=3454
4x y x y ,指出下列方法中比较简捷的解法是( )
A.利用①,用含x 的式子表示y ,再代入②;
B.利用①,用含y 的式子表示x ,再代入②;
C.利用②,用含x 的式子表示y,再代入①;
D.利用②,用含x 的式子表示x ,再代人①
11、小明和小亮解答同一个方程组51542ax y x by +=⎧⎨-=-⎩
,.①
②急性子的小明把方程①中的a 看错
了,得到方程组的解为31
x y =-⎧⎨
=-⎩,
,而马虎的小亮把方程②中的b 看错了,得到方程组的解为54x y =⎧⎨=⎩
,
你能利用上述条件求出这个方程组的解吗?方程组的解是多少.
开放探索创新
6、小颖在拼图时发现8个一样大小的矩形,恰好可以
拼成一个大的矩形,•如图(1)所示.小彬看见了,说:“我来试一试”.结果小彬七拼八凑,拼成如图(2)那样的正方形.中间还留下一个洞,恰好是边长为2mm 的小正方形.
你能帮他们解开其中的奥秘吗?。