水煤气的变换工艺
- 格式:ppt
- 大小:10.43 MB
- 文档页数:65
水煤气工艺流程水煤气是一种重要的燃料,它可以通过水煤气工艺流程来生产。
水煤气工艺流程是一个复杂的过程,包括了多个步骤和反应。
在这篇文章中,我们将详细介绍水煤气工艺流程的各个步骤和反应。
1. 煤气化。
煤气化是水煤气工艺流程的第一步,它是将煤转化为可燃气体的过程。
在煤气化过程中,煤被加热并与气化剂(通常是水蒸气)反应,生成一种混合气体,其中包括一氧化碳、氢气和其他气体。
这些气体将被用作水煤气的原料。
2. 水煤气变换。
水煤气变换是水煤气工艺流程的第二步,它是将煤气中的一氧化碳和水反应,生成更多的氢气和二氧化碳的过程。
这个反应通常在高温和高压下进行,需要使用催化剂来加速反应速率。
水煤气变换可以提高水煤气的氢气含量,使其更适合作为燃料使用。
3. 水煤气净化。
水煤气净化是水煤气工艺流程的第三步,它是将水煤气中的杂质和有害物质去除的过程。
在这个步骤中,水煤气会经过冷却、洗涤和吸附等过程,去除其中的硫化氢、氨、苯等有害物质,以及灰尘和其他固体杂质。
经过净化后的水煤气将更加纯净,可以用于生产燃料或化工原料。
4. 水煤气利用。
经过以上步骤后,水煤气将成为一种纯净的可燃气体,可以用于生产燃料或化工原料。
水煤气可以用作城市煤气、工业燃料或化工原料,也可以通过合成反应生成甲醇、合成氨等化工产品。
总的来说,水煤气工艺流程是一个复杂而重要的过程,它可以将煤转化为可燃气体,为人们的生活和工业生产提供能源和原料。
随着技术的进步,水煤气工艺流程也在不断改进,以提高生产效率和降低环境污染。
希望通过不断的研究和创新,水煤气工艺流程能够更好地为人类社会的发展和进步做出贡献。
水煤气变换(Water gas shift)是一种液相反应,用于将一种称为水煤气(syngas)的混合气体转化为更高纯度的氢气和二氧化碳。
该反应通常在催化剂存在下进行。
水煤气通常由一氧化碳(CO)和氢气(H2)组成,通过部分氧化碳氢化物或其他方法产生。
水煤气变换反应的化学方程式如下:
CO + H2O ⇌CO2 + H2
在此反应中,一氧化碳与水蒸气发生反应生成二氧化碳和氢气。
这是一个平衡反应,正向反应和逆向反应同时进行。
在水煤气变换反应中,常使用催化剂来促进反应速率和平衡转化。
常用的催化剂包括铁、镍、钼等金属催化剂,它们具有较高的活性和选择性,可降低反应温度并提高反应效率。
水煤气变换反应的应用广泛,其中最重要的是在氨制备和甲醇制备过程中。
通过水煤气变换反应,可以调节一氧化碳和氢气的比例,满足不同化学反应过程的需求。
此外,水煤气变换反应也是一种重要的清洁能源领域的关键反应,用于生产高纯度氢气以供燃料电池等设备使用。
2011-2012学年第二学期《专外与文献检索》课程考查成绩细则成绩:《专外与文献检索》课程考查低温水煤气变换反应研究进展摘要:低温水煤气变化反应由于它在许多工业过程起着重要作用,引起了研究者的极大兴趣,一直是研究领域的一个热点问题。
本文简要介绍了低温水煤气反应与起反应机理,对国内外水煤气变换反应催化剂研究进展进行概括与总结,重点陈述了负载金超微粒子催化剂的发展、催化机理、制备方法及载体的选取。
关键字:水煤气变换反应反应机理催化剂负载金催化剂低温水煤气变换反应( Water- Gas Shift Reaction, 简称WGSR) 的工业应用已有90多年历史,在以煤、石油和天然气为原料的制氢工业和合成氨工业具有广泛的应用,在合成气制醇、制烃催化过程中,低温水气变换反应通常用于甲醇重整制氢反应中大量CO 的去除,同时在环境科学甚至在民用化学方面起作用也不可忽视,如汽车尾气的处理、家用煤气降低CO的含量等。
近年来由于在燃料电池电动车上的应用,这一经典化学反应的研究再次引起国内外同行极大关注。
本文在参阅大量文献资料的基础上,简要介绍了国内外水煤气变换反应催化剂研究的进展。
1.WGSR的反应机理WGSR是一放热反应, 较低的反应温度有利于化学平衡, 但反应温度过低则会影响反应速率[1],从纯化学的角度来看,WGSR反应的正向反应是水合反应,逆向反应是一个加氢及脱水反应,对于这类反应的研究,具有一定的代表性。
CO+H2=CO2+H2△H=-41.1kJ/mol水煤气变换反应属于中等程度放热。
按照操作温度, 可分为低温水气变换反应( 180~250℃) 和中温水气变换反应( 220~350℃) 。
虽然近年来人们对WGSR 进行了广泛而深的研究, 但但鉴子各个研究者的实验手段及催化剂制备等方面的差异, 使得不同的研究者对其有着不同的看法。
截止目前, 已见报导的低变反应机理类型主要有以下四种[2]:(1)氧化还原机理H2O+M=H2+MO MO+CO=CO2+MM为铜系金属,MO为与M相对应的金属氧化物(2)三途反应机理H2O+(CO)=CO2+H2CO+(H2O)=CO2+H2CO+MO=CO2+M H2O+M=H2+MOH2O+M=H2+MO(CO)、(H2O)表示被吸附的CO、H2O,M为铜系金属,MO为与M相对应的金属氧化物。
⽔煤⽓变换(1)反应⼯程课程设计⼀.对课题的概述⼀氧化碳和氢⽓都是会燃烧的⽓体,⼯业上把这样的混合⽓叫“⽔煤⽓”。
CO 和H2因为⽔(H2O)的分⼦⾥有⼀个氧(O)原⼦和两个氢(H)原⼦,⽔⼀遇上⽕热的煤(C),氧原⼦⽴刻被煤(C)夺⾛了,结果⽣成⼀氧化碳(CO)和氢⽓(H2)。
⽔煤⽓⼀种低热值煤⽓。
由蒸汽与灼热的⽆烟煤或焦炭作⽤⽽得。
主要成分为氢⽓和⼀氧化碳,也含有少量⼆氧化碳、氮⽓和甲烷等组分;各组分的含量取决于所⽤原料及⽓化条件。
主要⽤作台成氨、合成液体燃料等的原料,或作为⼯业燃料⽓的补充来源。
⼯业上,⽔煤⽓的⽣产⼀般采⽤间歇周期式固定床⽣产技术。
炉⼦结构采⽤UGI ⽓化炉的型式。
在⽓化炉中,碳与蒸汽主要发⽣如下的⽔煤⽓反应:C+H2O→CO+H2C+2H2O→CO2+2H2以上反应均为吸热反应,因此必须向⽓化炉内供热。
通常,先送空⽓⼊炉,烧掉部分燃料,将热量蓄存在燃料层和蓄热室⾥,然后将蒸汽通⼊灼热的燃料层进⾏反应。
由于反应吸热,燃料层及蓄热室温度下降⾄⼀定温度时,⼜重新送空⽓⼊炉升温,如此循环。
当⽬的是⽣产燃料⽓时,为了提⾼煤⽓热值,有时提⾼出炉煤⽓温度,借以向热煤⽓中喷⼊油类,使油类裂解,即得所谓增热⽔煤⽓。
近年来,正在开发⾼温⽓冷堆的技术,⽤氦为热载体将核反应热转送⾄⽓化炉作为热源,以⽣产⽔煤⽓。
在⼯业⽣产中绝⼤多数的化学反应过程是在变温条件下进⾏。
这⼀⽅⾯由于化学反应过程都伴随着热效应,有些热效应还相当⼤,即使采⽤各种换热⽅式移⾛热量(放热反应)或者输⼊热量(吸热反应),对于⼯业反应器都难以维持等温。
特别是⽓固相固定床催化反应器,要想达到等温更为困难。
另⼀⽅⾯许多反应过程等温操作的效果并不好,⽽要求有⼀最佳温度分布。
如⼯业上进⾏合成氨,合成甲醇之类的可逆放热反应,便属于这种情况。
再者,对于⼀些复杂反应、其主、副反应的活化能⼤⼩不同,温度的⾼低对主、副反应速率的影响也不同。
所以,可通过改变温度的⽅法来改变产物的分布,使⽬的产物的收率最⼤。
水煤气变换催化剂摘要:水煤气变换反应(WGRS)在化工生产中起着积极而重要的作用,一是人们研究的课题之一。
催化反应进行的催化剂是近年来的研究热点。
本文对各种催化剂的制备及性能、影响因素做了详细的阐述,并就我国低温水煤气变换催化剂的研发提出了一些见解。
关键词:水煤气;催化剂;发展0 引言众所周之,氢是工业领域中一种至关重要的天然材料,它已经在合成氨工业中广泛应用,分解高分子的天然油脂和脱硫。
除此之外,氢也是一种不平常的燃料,它的能量密度或者发热量远高于其他气体或者液体燃料。
氢的天然存在量很少,需要工业大量合成,水煤气变换反应是工业用氢气的主要来源。
水煤气变换反应(CO+H2O==CO+H2,△H=一41.9 Kmol/mo1),在合成氨、合成甲醇等制氢工业中)是一重要的反应过程。
水煤气变换反应速度相对较慢,需高性能的催化剂使放映得以进行。
工业化的变换催化剂均是固体催化剂,如铁系高温变换催化剂、铜锌系低温变换催化剂、钴钼系耐硫宽温变换催化剂等,且均采用固定床反应器[1]。
国外对气一水溶液体系水煤气变换反应一直没有间断过研究,研究主要从两个方面进行。
一是对各种无机化合物作为催化剂反应系统的效能进行考察,另一方面是对各种贵金属有机化合物作为催化剂进行研究,无机化合物作为催化剂的反应体系适用性较好,对氧气有一定的承受能力,而金属有机化合物作为催化剂的反应体系,对氧非常敏感,几乎要求在无氧条件下进行,PPM 级的杂质氧就能使催化剂失活[2],国内在这方面的研究也在不断进行。
1 水煤气变换反应关于水煤气变换反应的反应机理,目前普遍接受的是表面氧化还原机理,可表示为[3]:H 2O(g)一H2O(S) (1)H2O(S)一OH(S)+H(S) (2) OH(S)一O(S)+H(S) (3)2H(S)一H2(g) (4)CO(g)一CO(S) (5)CO(S)+O(S)一CO(S) (6)CO2(S)一CO2(g) (7)式中,g表示气态,S表示表面吸附态。
变换工段操作规程一、工艺概述经过脱硫、除尘后的水煤气中,除含有双氧水生产时所需要的氢气外,还含有26~30%的一氧化碳及其它气体。
直接分离一氧化碳是比较困难的,但在一定的温度条件下,借助低变催化剂的催化作用,可使水煤气中一氧化碳与水蒸汽发生反应,生成二氧化碳和氢气。
二、化学反应原理变换的主要反应是在一定的温度条件下,气体中的一氧化碳与水蒸汽反应生成氢气和二氧化碳,反应方程式如下:CO+H 2O (g 2+H 2+41KJ/mol这个反应的特点是:(1)反应前后体积没有变化;(2)反应前后是放热的;(3)是完全可逆的反应,当正反两个方面进行的速度相等时,反应达到平衡。
1、影响化学平衡的因素(1)温度的影响,变换反应是放热反应,温度降低、平衡向生成氢气和二氧化碳的方面移动。
(2)反应物浓度的影响,增加反应物浓度或减少生成物浓度,反应向有利于生成二氧化碳和氢气的方向进行,可采用增加蒸汽量来实现。
2、影响反应速度的因素,变换反应在有催化剂存在时,才能大大加快反应 速度,另外提高温度和增加蒸汽用量对加快变换反应的速度也有很大作用。
三、工艺流程1、水煤气气体流程:压缩机 → 冷却器 → 除油器 → 热交换器 → 电加热器 → 变换炉一 、二段 → 变换炉三段 → 热交换器 →冷却器 →气水分离器 → 精脱硫塔(A ) →精脱硫塔(B ) → PSA 提氢装置。
2、软化水流程:由电厂送的软化水 →加压水泵 →变换炉二、三段。
3、蒸汽流程:由电厂送的蒸汽 →汽水分离器 → 电加热器 →变换炉一段。
4、循环水流程:凉水泵→冷却器→热水池→热水泵→冷却塔→凉水池→凉水泵。
四、主要设备及性能1、水煤气压缩机:L—40/0.2—8型往复式压缩机,Q:40m3/min,N:280KW,压缩机的任务是把水煤气输送到后工段,并提供过程进行所必要的压力条件。
2、变换炉φ1600×7000,变换一段上层装填抗氧剂和抗毒剂,变换二、三段上层均装填耐火球,下部装填低变催化剂,是完成一氧化碳和水蒸汽反应生成二氧化碳和氢气的主要设备。
水煤气变换反应方程式水煤气的变换反应:将水蒸气通过炽热的煤层可制得较洁净的水煤气,现象为火焰腾起更高,而且变为淡蓝色。
水煤气变换反应是放热反应,从纯化学的角度来看,水煤气变换反应的正向反应是水合反应,逆向反应是一个加氢及脱水反应。
水煤气变换反应属于中等程度放热。
按照操作温度,可分为低温水气变换反应(180~250℃)和中温水气变换反应(220~350℃)。
制取水煤气的化学方程式如下:1、C+H₂O(g)===(高温)CO+H₂。
将水蒸气通过高温的煤层可制得较洁净的水煤气(主要成分是CO和H2),现象为火焰腾起更高,变为淡蓝色(氢气和CO燃烧的颜色)。
2、CH₄+H₂O===CO+3H₂甲烷和水进行化合反应也可制得水煤气。
水煤气的用途:水煤气是气体燃料的一种。
主要成分氢和一氧化碳。
由水蒸气和炽热的无烟煤或焦炭作用而得。
工业上大多用蒸气和空气轮流吹风的间歇法,或用蒸气和氧一起吹风的连续法。
热值约为10500千焦/标准立方米。
此外,尚有用蒸气和空气一起吹风所得的“半水煤气”。
可作为燃料,或用作合成氨、合成石油、有机合成、氢气制造等的原料。
可用喷射式无焰烧嘴进行燃烧,空气和煤气不用预热。
与醇、醚相比,简化制造和减少设备,成本和投资更低。
压缩或液化与氢气相近,但不用脱除CO,建站投资较低。
还可用减少的成本和投资部分补偿压缩(制醇醚也要压缩)或液化的投资和成本。
有毒,工业上用作燃料,又是化工原料。
水煤气的危害:1、水煤气发生炉长期运行后极易产生大量硫化氢、焦油、酚水等污染物,影响半径达500米,对农作物、空气环境和人体等都有较大的损害。
2、它产生的多种废气和恶臭,会引起人头痛、头晕,居民难以承受。
3、此外,由于水煤气主要由一氧化碳、氢气等易燃气体组成,一旦泄漏,则极可能发生爆炸和中毒,造成群死群伤事件。