物理学名词及解释
- 格式:pdf
- 大小:3.93 MB
- 文档页数:74
1/4波片 quarter-wave plate:利用四分之一波片和一个检偏镜,按一定的步骤可以检验各种偏
振光;
偏振光:光是一种电磁波,电磁波是横波;而振东方向和光波前进方向构成的平面叫做振动面,
光的振动面只限于某一固定方向的,叫做平面偏振光或线偏振光;(汽车车灯;立体电影;摄像
机镜头)
CG矢量耦合系数 Clebsch-Gordan vector coupling coefficient; 简称“CG[矢耦]系
数”。 两个角动量耦合时,他们的本征函数的组合系数
X射线摄谱仪 X-ray spectrograph :配有照相或其他记录装置,能同时取得一定波长范围X
射线光谱;
X射线衍射 X-ray diffraction:1912年劳埃等人根据理论遇见,并实验证实了X射线与晶体
相遇时能发生衍射现象,证明了X射线具有电磁波的性质;
衍射:波在传播时,如果被一个大小接近于或小于波长的物体阻挡,就绕过这个物体,继续进
行;如果通过一个大小近于或小于波长的孔,则以孔为中心,形成唤醒波向前传播;超声波较短
,不易发生衍射;
X射线衍射仪 X-ray diffractometer:利用衍射原理,精确测定物质的晶体结构,织构及应力
,精确的进行物相分析,定性分析,定量分析;
[玻耳兹曼]H定理 [Boltzmann] H-theorem/[玻耳兹曼]H函数 [Boltzmann] H-function:路德维
希玻尔兹曼,奥地利物理学家,是热力学和统计物理学的奠基人之一;最伟大的功绩是发展了
通过原子的性质(例如,原子量,电荷量,结构等等)来解释和预测物质的物理性质(例如,粘性,
热传导,扩散等等)的统计力学,并从统计意义对热力学第二定律进行了阐释;
[冲]击波 shock wave:是一种不连续峰在介质中的传播,这个峰导致介质的压强、温度、密度等
物理性质跳跃式改变;任何波源,当运动速度超过了其波的传播速度时,这种波动形式都可以称
为冲击波;
[冲]击波前shock front
[狄拉克]δ函数 [Dirac] δ-function
[第二类]拉格朗日方程 Lagrange equation:一般而言,如果要建立系统在特殊位置的动力学关
系,可以考虑应用动力学普遍方程;如果要建立系统在任意一般位置的动力学关系,则应考虑应
用拉格朗日方程;
[电]极化强度 [electric] polarization:描述电介质极化程度和极化方向的物理量,是矢量;电极
化强度P定义为单位体积内分子电偶极矩P的矢量和;
[反射]镜 mirror在光学玻璃的背面,镀一层金属银或铝薄膜,使入射光反射的光学元件; [光]谱线 spectral line:由于电子云中的电子在环绕原子核时,只能受限拥有一些特定的能量,
所以一旦电子能量有变化,此能量差就会产生该原子特有的光子,这就是谱线的由来;特定谱线
的出现,就表示存在着某些元素,通过谱线的强度可观测出此元素含量的多寡;谱线如果在波
长上有位移,则通过多普勒效应,还可得到光源朝向或远离观察者的运动速度;
[光]谱仪 spectrometer:又称分光仪;以光电倍增管等光探测器测量谱线不同波长位置强度的
装置;
[光]照度 illuminance:通常所说的勒克司度,表示被摄主体表面单位面积上受到的光通量;
[光学]测角计 [optical] goniometer
[核]同质异能素 [nuclear] isomer:质量数和原子序数相同,在可测量的时间内具有不同能量
和放射性的两个或多个核素;对任何一种同位素而言,他可以具有不同的能量状态;根据量子
力学理论,这些能量状态都是量子化的,最低的能量状态称为基态;而其他的能量状态称为激
发态;当这个同位素处于某个激发态时,按照自然规律,它迟早要回到基态去;但是,某些激发态
很特殊,同位素可以在该状态下维持很长时间之后才回到基态去,这样的长寿命态称为同质异能态;从字面上理解即为,相同质子数不同的能量的状态;但“质”其实是指“同位素”;即相同的
核内质子数以及中子数,但不同的能量的状态;核同质异能素是第四代核武器关键能源之一,稳
定的核同质异能素中含有最高激发能的为铪-178;高能炸药能量级别为1KJ/g,而核同质异能
素大约是1GJ/g,比高能炸药的能量大一百万倍,其核裂变反应能量更大,达到80GJ/g;目前
一些研究所正在系统研究核同质异能素的性质和释放能量的方法,例如美国和发过的有关研
究所根据美国原战略防御计划局和北约签订的合同所进行的研究:通过重离子碰撞或惯性约束
聚变中微爆炸产生的中子脉冲进行核合成,可得到核同质异能素;像金属氢一样,核同质异能
素克作为“常规武器”,也可以作为“干净”氢弹的扳机;
[化学]平衡常量 [chemical] equilibrium constant [基]元电荷 elementary charge:基元电荷,电荷的天然单位,基本物理常量之一,记为e,其值为
1.60217733×10^(-19)库仑。1910年 R.A.密立根通过油滴实验精确测定,并认证其 基元性。电子的
电荷为-1个基元电荷,质子的电荷为+1个基元电荷,已发现的全部带电亚原子粒子的电荷都等于基元
电荷的整数倍值 [激光]散斑 speckle:1730年牛顿已经注意到"恒星闪烁"而行星不闪烁,光源发出的光被随机介质散射
在空间形成的一种斑纹 。1960年世界出现了激光器,高度相干性的激光照在粗糙表面很容易看到这种图
样,散斑携带大量有用信息。散斑在工程技术方面等各方面有广泛的应用。散斑的理论是统计光学的一部
分,与光的相干理论在很多地方相似和相通;电磁波或粒子束经受介质的无规散射后,都会形成一种无规
分布的散射场,可见光形成的散斑光源——完全相干光,部分相干光和非相干光散射体——强散射屏和
弱散射屏
[吉布斯]相律 [Gibbs] phase rule : 他在热力学平衡与稳定性方面做了大量的研究工作并取得丰硕的
成果,于1873-1878年间连续发表了3篇热力学论文,奠定了热力学理论体系的基础.其中第三篇论文《论多相物质的平衡》是其最重要的成果.在这篇文章中,吉布斯提出了许多重要的热力学概念,至今仍被广泛使
用.他完成了相律的推导.作为物理化学的重要基石之一,相律解决了化学反应系统平衡方面的众多问题.他还
提出了作为化学反应平衡判据的吉布斯自由能.吉布斯对于科学发展的另一大贡献集中于统计力学方面,他
于1902年出版了<<同热力学合理基础有特殊联系而发展起来的统计力学的基本原理>>一书.在书中,他
提出了系综理论,导出了相密度守恒原理,实现了统计物理学从分子运动论到统计力学的重大飞跃.他被誉为
富兰克林以后美国最伟大的科学家,是世界科学史上的重要人物之一
[可]变形体 deformable body [克劳修斯-]克拉珀龙方程 [Clausius-] Clapeyron equation :19世纪,克拉伯龙和克劳修斯分
别用热力学理论推导出了纯水面和饱和水汽压随温度升高而增大的数学表达式;气温的变化,对
蒸发和凝结有重要影响。温度升高时,饱和水汽压变大,使原来饱和的空气变得不饱和,重新出现蒸发;
相反,降低饱和空气的温度,饱和水汽压则减小,空气达到过饱和,多余的水汽就会凝结出来;对于饱和
空气降低同样的温度,高温时凝结出的水汽量比低温时多,所以暖季饱和空气中形成的云雾含水量要大些
[量子]态 [quantum] state:电子做稳恒的运动,具有完全确定的能量。这种稳恒的运动状态称为量子
态;量子态是由一组量子数表征,这组量子数的数目等于粒子的自由度数;环形量子和球星量子
之争;量子传输;量子通信应用;隐形传输距离;量子计算机;
[麦克斯韦-]玻耳兹曼分布 [Maxwell-]Boltzmann distribution :麦克斯韦-玻尔兹曼分布是一个
概率分布,在物理学和化学中有应用。最常见的应用是统计力学的领域。任何(宏观)物理系统的温度都
是组成该系统的分子和原子的运动的结果。这些粒子有一个不同速度的范围,而任何单个粒子的速度都因
与其它粒子的碰撞而不断变化。然而,对于大量粒子来说,处于一个特定的速度范围的粒子所占的比例却
几乎不变,如果系统处于或接近处于平衡。麦克斯韦-玻尔兹曼分布具体说明了这个比例,对于任何速度
范围,作为系统的温度的函数。它以詹姆斯·克拉克·麦克斯韦和路德维希·玻尔兹曼命名
[麦克斯韦-]玻耳兹曼统计法 [Maxwell-]Boltzmann statistics
[普适]气体常量 [universal] gas constant [气]泡室 bubble chamber:气泡室(bubble chamber)是探测高能带电粒子径迹的一种有效的仪
器,它曾在50年代以后一度成了高能物理实验的最风行的探测设备,为高能物理学创造了许多重大发现
的机会。它是1952年美国人D.A.格拉泽发明的。它曾给高能物理实验带来许多重大的发现,如新粒子、
共振态、弱中性流等等;气泡室是由一密闭容器组成,容器中盛有工作液体,液体在特定的温度和压力下
进行绝热膨胀,由于在一定的时间间隔内(例如50ms)处于过热状态,液体不会马上沸腾,这时如果有
高速带电粒子通过液体,在带电粒子所经轨迹上不断与液体原子发生碰撞而产生低能电子,因而形成离子
对,这些离子在复合时会引起局部发热,从而以这些离子为核心形成胚胎气泡,经过很短的时间后,胚胎
气泡逐渐长大,就沿粒子所经路径留下痕迹。如果这时对其进行拍照,就可以把一连串的气泡拍摄下来,
从而得到记录有高能带电粒子轨迹的底片。照相结束后,在液体沸腾之前,立即压缩工作液体,气泡随之
消失,整个系统就很快回到初始状态,准备作下一次探测。工作液可用液氢或液氘,需在甚低温下工作,