第七章 多重共线性
- 格式:doc
- 大小:50.50 KB
- 文档页数:2
第七章 多重共线性习题与答案1、多重共线性产生的原因是什么?2、检验多重共线性的方法思路是什么?有哪些克服方法?3、考虑一下模型:Y t =β1+β2X t +β3X 1-t +4βX 2-t +5βX 3-t +6βX 4-t +u t其中Y =消费,X =收入,t =时间。
上述模型假定了时间t 的消费支出不仅是时间t 的收入,而且是以前多期的收入的函数。
例如,1976年第一季度的消费支出是同季度收入合1975年的四个季度收入的函数。
这类模型叫做分布滞后模型(distributed lag models )。
我们将在以后的一掌中加以讨论。
(1) 你预期在这类模型中有多重共线性吗?为什么?(2)如果预期有多重共线性,你会怎么样解决这个问题?4、已知回归模型μβα++=N E ,式中E 为某类公司一名新员工的起始薪金(元),N 为所受教育水平(年)。
随机扰动项μ的分布未知,其他所有假设都满足。
(1)从直观及经济角度解释α和β。
(2)OLS 估计量αˆ和βˆ满足线性性、无偏性及有效性吗?简单陈述理由。
(3)对参数的假设检验还能进行吗?简单陈述理由。
5、根据1899—1922年在美国制造业部门的年度数据,多尔蒂(Dougherty )获得如下回归结果:LogY=2.81 - 0.53logK+ 0.91logL + 0.047tSe =(1.38)(0.34) (0.14) (0.021)R 2=0.97 F=189.8其中Y =实际产生指数,K=实际资本投入指数,L=实际劳力投入指数,t =时间或趋势。
利用同样数据,他又获得一下回归:(1)回归中有没有多重共线性?你怎么知道?(2)在回归(1)中,logK 的先验符号是什么?结果是否与预期的一致?为什么或为什么不?(3)你怎样替回归的函数形式(1)做辩护:(提示:柯柏—道格拉斯生产函数。
)(4)解释回归(1)在此回归中趋势变量的作用为何?(5)估计回归(2)的道理何在?(6)如果原先的回归(1)有多重共线性,是否已被回归(2)减弱?你怎样知道?(7)如果回归(2)被别看作回归(1)的一个受约束形式,作者施加的约束是什么呢?(提示:规模报酬)你怎样知道这个约束是否正确?你在哪一种检验?说明你的计算。
第七章多重共线性第七章多重共线性若线性模型不满⾜假定6,就称模型有多重共线性。
§7.1 多重共线性的概念⼀. 基本概念:假定6 ()1k r X k n =+<,是指模型中所有⾃变量12,,,,k x x x 1线性⽆关,也可理解为矩阵X 的列向量线性⽆关。
若不满⾜该假定,即 ()1k r X k <+,则称12,,,,k x x x 1存在完全多重共线性,12,,,,k x x x 1存在严格的线性关系,这是⼀种极端情况;若12,,,,k x x x 1之间的线性关系不是严格的,⽽是⼀种近似的线性关系,则称⾼度相关或存在不完全多重共线性。
如,01122i i i i y x x u βββ=+++ 若12,λλ?不全为零,使11220i i x x λλ+=,完全多重共线性11220i i i x x v λλ++= 不完全多重共线性完全多重共线性和不完全多重共线性统称为多重共线性。
解释变量(⾃变量)之间的线性关系可⽤拟合优度2i R 描述,2i R 表⽰i x 对其它解释变量的拟合优度,21i R = 完全 21i R ≈⾼度 20i R = ⽆⼆. 产⽣的原因:在实际经济问题中主要是不完全多重共线性。
其产⽣的主要原因是:1. 两个解释变量具有相同或相反的变化趋势;(家庭能耗与住房⾯积、⼈⼝)⽣产、需求.......2. 数据收集的范围过窄,造成解释变量之间有相同或相反变化的假象;3. 某些解释变量之间存在某种近似的线性关系;(各解释变量有相同的时间趋势)4. ⼀个变量是另⼀个变量的滞后值;供给5. 解释变量的选择不当也可能引起变量间的多重共线性。
6. 过度决定模型。
(观测值个数少于参数个数)对于正确设置的模型,多重共线性基本上是⼀种样本现象。
§7.2 多重共线性的后果⼀. 完全多重共线性当模型具有完全多重共线性时,⽆法进⾏参数的OLS 估计;设模型 Y XB U =+,若有完全多重共线性,即()1k r X k <+,则()1T r X X k <+ 1()T X X -?不存在1()T TB X X X Y ∧-?=不存在,同样 21()()Tj u jj V X X βσ∧-=也不存在,显著性检验和预测都⽆法进⾏。
第七章 多重共线性及其处理第一部分 学习辅导一、本章学习目的与要求1.理解多重共线性的概念;2.掌握多重共线性存在的主要原因;3.理解多重共线性可能造成的后果;4.掌握多重共线性的检验与修正的方法。
二、本章内容提要本章主要介绍计量经济模型的计量经济检验。
即多重共线性问题。
多重共线性是多元回归模型可能存在的一类现象,分为完全共线与近似共线两类。
模型的多个解释变量间出现完全共线性时,模型的参数无法估计。
更多的情况则是近似共线性,这时,由于并不违背所有的基本假定,模型参数的估计仍是无偏、一致且有效的,但估计的参数的标准差往往较大,从而使得t 统计值减小,参数的显著性下降,导致某些本应存在于模型中的变量被排除,甚至出现参数正负号方面的一些混乱。
显然,近似多重共线性使得模型偏回归系数的特征不再明显,从而很难对单个系数的经济含义进行解释。
多重共线性的检验包括检验多重共线性是否存在以及估计多重共线性的范围两层递进的检验。
而解决多重共线性的办法通常有逐步回归法、差分法以及使用额外信息、增大样本容量等方法。
(一)多重共线性及其产生的原因当我们利用统计数据进行分析时,解释变量之间经常会出现高度多重共线性的情况。
1.多重共线性的基本概念多重共线性(Multicollinearity )一词由弗里希(Frish )于1934年在其撰写的《借助于完全回归系统的统计合流分析》中首次提出。
它的原义是指一个回归模型中的一些或全部解释变量之间存在有一种“完全”或准确的线性关系。
如果在经典回归模型Y X βε=+中,经典假定(5)遭到破坏,则有()1R X k <+,此时称解释变量k X X X ,,,21 间存在完全多重共线性。
解释变量的完全多重共线性,也就是解释变量之间存在严格的线性关系,即数据矩阵X 的列向量线性相关。
因此,必有一个列向量可由其余列向量线性表示。
同时还有另外一种情况,即解释变量之间虽然不存在严格的线性关系,但是却有近似的线性关系,即解释变量之间高度相关。
第七章 多重共线性
基本概念
(1)多重共线性; (2)完全多重共线性;
(3)不完全多重共线性;
练习题
1、什么是变量之间的多重共线性?举例说明。
3、完全多重共线性和不完全多重共线性之间的区别是什么?
4、产生多重共线性的经济背景是什么?
5、多重共线性的危害是什么?为什么会造成这些危害?检验多重共线性的方法思路是什么?有哪些克服方法?
6、考虑下列一组数据
Y
-10 -8 -6 -4 -2 0 2 4 6 8 10 2X 1 2 3 4 5 6 7 8 9 10 11 3X
1
3
5
7
9
11
13
15
17
19
21
现在我们进行如下的回归分析:
12233i i Y X X u βββ=+++
请回答如下问题:
(1)你能估计出该模型的参数吗?为什么? (2)如果不能,你能估计哪一参数或参数组合? 7、将下列函数用适当的方法消除多重共线性: (1)消费函数为
012C W P u βββ=+++
其中C 、W 、P 分别表示消费、工资收入和非工资收入,W 和P 可能高度相关,但研究表明
1
22ββ=。
(2)需求函数为
0123s Q Y P P u ββββ=++++
其中Q 、Y 、P 和s P 分别为需求量、收入水平、该商品价格水平及其替代品价格水平,P 和s P
可能高度相关。
基本概念解释
(1)多重共线性指两个或两个以上解释变量之间存在某种线性相关关系。
(2)完全多重共线性指,在有多个解释变量模型中,解释变量之间的线性关系是准确的。
在此情况下,不能估计解释变量各自对被解释变量的影响。
(3)不完全多重共线性指,在实际经济活动中,多个解释变量之间存在多重共线性问题,但解释变量之间的线性关系是近似的,而不是完全的。
练习题答案
1、如果在经典回归模型Y X U β=+中,如果基本假定6遭到破坏,则有()1k r x k <+,此时称解释变量之间存在完全多重共线性。
解释变量之间的完全多重共线性也就是,解释变量之间存在严格的线性关系。
在实际中还有另外一种情况,即解释变量之间虽然不存在严格的线性关系,却有近似的线性关系,即指解释变量之间高度相关,这种解释变量之间高度相关称之为不完全多重共线性。
完全多重共线性和不完全重共线性,统称为多重共线性。
3、完全多重共线性指的是变量之间的线性关系是准确的,而不完全多重共线性指的是变量之间的线性关系是近似的。
4、在现实经济运行中,许多经济变量在随时间的变化过程中往往存在共同的变化趋势,使之产生多重共现性;使用截面数据建立回归模型时,根据研究的具体问题选择的解释变量常常从经济意义上存在着密切的关联度;在建模过程中由于认识上的局限造成变量选择不当,从而引起变量之间的多重共线性;在模型中大量采用滞后变量也容易产生多重共线性。
5、对于模型01122i i i k ki i Y X X X ββββμ=+++++()1,2,,i n =,如果某两个或多个解释变量之间出现了相关性,则称为模型存在多重共线性。
多重共线性的危害有几个方面:一是在完全共线性下参数估计量不存在,理由是()
1
'X X -不存在;二是近似共线性下OLS 参数估计量非有效,理由是参数估计量的方差将可能变得很大;三是参数估计量经济意义不合理,如当2X 与3X 存在线性关系时,2X 与3X 前的参数并不能反映各自与被解释变量之间的结构关系:四是变量的显著性检验失去意义,因为无论是t 检验还是F 检验,都与参数估计量的方差有关;五是模型的预测功能失效。
检验多重共线性的方法思路:用统计上求相关系数的原理,如果变量之间的相关系数较大则认为它们之间存在多重共线性。
克服多重共线性的方法主要有:排除引起共线性的变量,差分法,减少参数估计量的方差,利用先验信息改变参数的约束形式,增加样本容量,岭回归法等。
6、(1)不能,因为模型存在多重共线性的问题,即3X =22X -1,所以不能得到参数的唯一估计值。
(2)我们可以估计出来(31ββ-)和(322ββ+)。
7、(1)将先验信息1
22ββ=代入到模型中,然后估计(W+P/2)对消费的影响。
(2)可以考虑对模型中的变量取对数,然后进行回归。