三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告
- 格式:doc
- 大小:572.00 KB
- 文档页数:13
正反转双重互锁实习报告一、实习目的1. 掌握三相异步电动机的点动控制和自锁控制特点以及在机床控制中的应用。
2. 掌握三相异步电动机正反转的原理和方法,加深对电气控制系统各种保护、自锁、互锁等环节的理解。
3. 掌握接触器联锁正反转、按钮联锁正反转控制线路的不同接法,并熟悉在操作过程中有哪些不同之处。
4. 通过对三相鼠笼式异步电动机延时正反转控制线路的安装接线,掌握由电气原理图接成实际操作电路的方法。
5. 学会分析、排除继电-接触控制线路故障的方法。
二、实习内容及原理1. 实验原理三相异步电动机的正反转控制主要是通过改变电动机定子绕组中电源相序来实现的。
在控制电路中,利用接触器、按钮等元件来实现电动机的启动、停止和正反转切换。
2. 实验内容本次实习主要进行了三相异步电动机的点动控制、自锁控制以及正反转互锁控制实验。
实验过程中,分别采用了接触器联锁和按钮联锁两种不同的控制方式。
3. 实验步骤及操作方法(1) 点动控制实验:通过控制电路中的接触器,实现电动机的点动控制。
操作方法为:按下点动按钮,接触器吸合,电动机启动;松开按钮,接触器释放,电动机停止。
(2) 自锁控制实验:利用自锁触点,实现电动机的自锁控制。
操作方法为:按下启动按钮,接触器吸合,电动机启动;松开按钮,自锁触点闭合,电动机保持运行状态。
(3) 正反转互锁控制实验:采用接触器联锁和按钮联锁相结合的方式,实现电动机的正反转互锁控制。
操作方法为:按下正转启动按钮,接触器KM1吸合,电动机正转;按下反转启动按钮,接触器KM2吸合,电动机反转;按下停止按钮,接触器释放,电动机停止。
4. 实验结果与分析(1) 点动控制实验结果:通过操作按钮,可以实现电动机的点动控制,满足机床等设备对电动机控制的需求。
(2) 自锁控制实验结果:实验过程中,电动机能够实现自锁运行,保证了电动机在启动后能保持运行状态,提高了控制系统的可靠性。
(3) 正反转互锁控制实验结果:采用双重互锁控制方式,有效防止了电动机在正反转过程中出现相间短路现象,保证了电动机的安全运行。
电气控制实训报告题目:三相异步电动机控制实训姓名:曹聘专业:电气工程及其自动化班级:电气12-1班学号:1214216120指导教师:常炳双、侯世瑞2015年目录一、实训目的 (2)二、实训设备 (2)三、实训内容 (2)1、三相异步电动机接触器点动、自锁控制 (2)(一)点动 (2)Ⅰ.实训器件 (2)Ⅱ.原理简介 (2)Ⅲ.分析总结 (2)(二)自锁 (3)Ⅰ.实训器件 (3)Ⅱ.原理简介 (3)Ⅲ.分析总结 (4)2、接触器联锁的三相异步电动机正反转控制 (5)Ⅰ.实训器件 (5)Ⅱ.原理简介 (5)Ⅲ.分析总结 (6)3、三相异步电动机的多地控制 (7)Ⅰ.实训器件 (7)Ⅱ.原理简介 (7)Ⅲ.分析总结 (7)4、三相异步电动机顺序控制 (8)Ⅰ.实训器件 (8)Ⅱ.原理简介 (8)Ⅲ.分析总结 (9)一、实训目的通过此项目的实训,熟悉各元器件的结构和使用方法,掌握三相异步电动机的继电接触器控制电路的工作原理、实际线路连接方法、故障排查方法等,掌握使用万用表检查电路的方法。
二、实训设备:THPJC-3型电工实训考核装置三、实训内容:1、三相异步电动机接触器点动、自锁控制(一)点动Ⅰ.实训器件Ⅱ.原理简介点动控制电路中,电动机的启动、停止,是通过手动按下或松开按钮来实现的。
电动机的运行时间较短,无需过载保护装置。
点动控制电路原理图如图1-1所示,合上电源开关QS,只要按下点动按钮SB,使接触器KM线圈得电吸合,KM 主触点闭合,电动机即可起动;当手松开按钮SB时,KM线圈失电,使得主触点分开,停止向电动机M供电,电动机即停止转动。
本线路图具有的功能是点动控制电路的开启与断开,实现电动机M随按随动。
Ⅲ.分析总结1、电路一通电电动机就开始运转分析处理:按钮接线端接成常闭。
重新接线,保证接准确。
2、通电后尽管按按钮电动机也不运转分析处理:少接线或接线不牢靠,导致线路不能构成回路或接触不良。
仔细检查接线回路,保证接线准确牢靠。
三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告图2-5 按钮联锁的正反转控制线路按图2-5接线,实验操作步骤如下:(1) 按控制屏启动按钮,接通三相交流电源;(2) 按正向起动按钮SB1,电动机正向起动,观察电动机的转向及接触器的动作情况。
按停止按钮SB3,使电动机停转;(3) 按反向起动按钮SB2,电动机反向起动,观察电动机的转向及接触器的动作情况。
按停止按钮SB3,使电动机停转。
实验完毕,按控制屏停止按钮,切断实验线路电源。
实验现象:按正向启动按钮SB1,电机正转,接触器KM1工作,按下SB3电机停止运行;按反向启动按钮SB2,电机反转,接触器KM2工作,按下SB3电机停止运行;2. 接触器和按钮双重联锁的正反转控制线路按图2-6接线,经检查无误后,方可进行通电操作。
实验操作步骤如下:图2-6 接触器和按钮双重联锁的正反转控制线路(1) 按控制屏启动按钮,接通三相交流电源。
(2) 按正向起动按钮SB1,电动机正向起动,观察电动机的转向及接触器的动作情况。
按停止按钮SB3,使电动机停转。
(3) 按反向起动按钮SB2,电动机反向起动,观察电动机的转向及接触器的动作情况。
按停止按钮SB3,使电动机停转。
(4) 按正向(或反向)起动按钮,电动机起动后,再去按反向(或正向)起动按钮,观察有何情况发生?(5) 电动机停稳后,同时按正、反向两只起动按钮,观察有何情况发生?(6) 失压与欠压保护按起动按钮SB1(或SB2)电动机起动后,按控制屏停止按钮,断开实验线路三相电源,模拟电动机失压(或零压)状态,观察电动机与接触器的动作情况,随后,再按控制屏上启动按钮,接通三相电源,但不按SB1(或SB2),观察电动机能否自行起动?实验完毕,按控制屏停止按钮,切断实验线路电源。
实验现象:按下SB1,电机正向旋转,KM1正常工作,按下SB3电机停止运行。
按下SB2,电机反向旋转,KM2正常工作,按下SB3电机停止运行。
课程名称:电器原理指导老师:_ 孙丹_______成绩:__________________ 实验名称:三相异步电机的点动、自锁与正反转控制实验类型:__同组学生姓名:一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1.通过对三相异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气原理图变换成安装接线图的知识;2.通过实验进一步加深理解点动控制和自锁控制的特点以及在机床控制中的应用。
3.掌握三相异步电动机正反转的原理和方法,加深对电气控制系统各种保护、自锁、互锁等环节的理解;4.掌握接触器联锁正反转、按钮联锁正反转控制线路的不同接法,并熟悉在操作过程中有哪些不同之处;5.通过对三相鼠笼式异步电动机延时正反转控制线路的安装接线,掌握由电气原理图接成实际操作电路的方法。
6.学会分析、排除继电--接触控制线路故障的方法.二、实验内容和原理1.继电接触控制在各类生产机械中获得广泛的应用,交流电动机继电接触控制电路的主要设备是交流接触器,其主要构造为:(1) 电磁系统─铁心、吸引线圈和短路环;(2) 触头系统─主触头和辅助触头,还可按吸引线圈得电前后触头的动作状态,分动合(常开)、动断(常闭)两类;(3) 消弧系统─在切断大电流的触头上装有灭弧罩以迅速切断电弧;(4) 接线端子,反作用弹簧等。
2.在控制回路中常采用接触器的辅助触头来实现自锁和互锁控制。
要求接触器线圈得电后能自动保持动作后的状态,这就是自锁,通常用接触器自身的动合触头与起动按钮相并联来实现,以达到电动机的长期运行,这一动合触头称为“自锁触头”。
使两个电器不能同时得电动作的控制,称为互锁控制,如为了避免正、反转两个接触器同时得电而造成三相电源短路事故,必须增设互锁控制环节。
为操作的方便,也为防止因接触器主触头长期大电流的烧蚀而偶发触头粘连后造成的三相电源短路事故,通常在具有正、反转控制的线路中采用既有接触器的动断辅助触头的电气互锁,又有复合按钮机械互锁的双重互锁的控制环节。
三相异步电动机实训报告范文三相异步电机实验心得体会10篇为期30天的矿机班学生电动机实训结束了,作为从初中毕业升上来的中专的学生,理论知识水平不高,但是,对实践动手有一定的积极性,实验室学习效果很好。
对这段实践做个总结,为以后的实验教学和培训学生参加比赛积累经验。
关键词:电动机实训;实验教学;经验这学期我所教的班级是11矿机的两个班,学生课堂学习积极性不高,但是对上实验课动手操作还是挺有兴趣的。
在实验前我反复讲解学生在实验室需遵守的安全管理规定,第一天上实训又根据实验室设备讲解了一次,根据学生的基础,安排实验内容,从容易到难。
第一个实验是电动机的点动实验,首先讲解了实验报告的写法并在黑板上画出电路图。
刚开始做实验需要仔细讲解电路,左边是主电路,右边是控制电路。
主电路最上面是u,v和w三相交流电,接着是开关、熔断器和接触器的三个主触头,热继电器及三相异步电动机。
控制电路中需讲到fr是继电器的热保护,sb1是控制按钮和km是接触器的线圈。
我们使用的是插线式电动机试验台,所以,学生只需要看清楚电路图后就可以接线了。
一、点动控制的工作过程按下按钮sb1接触器km线圈得电,接触器的主触头闭合,电动机转动。
接线要求学生从主电路开始接起,从上到下一个个元器件接下来,接好主电路后接控制电路,接线思路也是从上到下一个个元器件接下来的。
实验过程需要两个同学一组,在一个同学连接好电路后,另一个仔细检查一下确定正确后方可通电,这样提高了实验的正确性。
在学生实验做成功后开始写实验报告,尤其注意让学生对实验做总结。
在学生理解掌握点动实验后开始做电动机单向自锁运行控制实验。
首先,介绍自锁。
自锁又叫自保,就是通过启动按钮启动后让接触器线圈持续有电,保持接点通路状态。
在这近两个月的电工实习中,我学到了很多东西,也更深刻地认识到实践的重要性。
掌握扎实的理论知识,并能在实践中学以致用是非常重要的。
通过这近两个月的学习,我觉得自己在以下几个方面有收获:一、通过这次实习,我熟悉掌握了几种基本的电工工具的使用。
实验一三相异步电动机点动和自锁控制一、实验目的了解使用 PLC 代替传统继电器控制回路的方法及编程技巧, 理解并掌握三相异步电动机的点动和自锁控制方式及其实现方法。
二、实验仪器1.THPJW-1A 型高级维修电工实训考核装置一台2. 安装有 GX Developer编程软件的计算机一台3.SC-09下载电缆一根4. 实验导线若干5. 三相异步电动机一台三、实验内容及说明在传统的强电控制系统中, 使用了大量的接触器 . 中间继电器 . 时间继电器等分立元器件。
由于使用的元器件数量和品种多,使得系统接线复杂,给系统调试以及修改接线带来困难。
因其潜在故障点多,故降低了整个系统的安全可靠性。
采用 PLC 对强电系统进行控制, 就可以取代传统的继电接触控制系统, 还可构成复杂的过程控制网络。
在需要大量中间继电器以及时间继电器和计数继电器的场合, PLC 无需增加硬件设备,利用微处理器及存储器的功能,就可以很容易地完成这些逻辑组合和运算, 大大降低了控制成本。
因此用 PLC 作为强电系统的控制器件是一种行之有效的解决方案。
本实验中, PLC 对电机的控制方式分两种:1. 点动控制启动:按启动按钮 SB1, X0的动合触点闭合, Y1线圈得电,即接触器 KM2的线圈得电, 0.1S 后 Y0线圈得电,即接触器 KM1的线圈得电,电动机作星形连接启动。
每按动 SB1一次,电机运转一次。
2. 自锁控制启动:按启动按钮 SB2,X1的动合触点闭合, Y1线圈得电,即接触器 KM2的线圈得电, 0.1S 后 Y0线圈得电,即接触器 KM1的线圈得电,电动机作星形连接启动。
只有按下停止按钮 SB3时电机才停止运转。
★四、实验接线图五、梯形图参考程序★ 1、确定系统的输入、输出设备。
输入 :输出:★ 2、控制系统的梯形图(参考★六、实验验证 Y0 Y1 启动(KM1 启动(KM2 X2 X1 X0 停止(SB3 自锁启动(SB2 点动(SB1。
相异步电动机点动控制和自锁控制及联锁正反转控制实验报告实验报告:相异步电动机点动控制、自锁控制及联锁正反转控制一、引言二、实验目的1.了解相异步电动机的基本结构和工作原理;2.掌握相异步电动机点动控制、自锁控制及联锁正反转控制的方法;3.分析控制方法的实施步骤和原理;4.通过实验验证控制方法的有效性。
三、实验材料1.相异步电动机;2.控制电路板;3.电源;4.开关、按钮等控制元件。
四、实验方法及步骤1.点动控制实验:(1)将电动机接入电源,并接入控制电路板。
(2)将控制电路板中的相异步电动机点动控制电路连接好。
(3)按下点动按钮,观察电动机的运动情况,并记录实验结果。
2.自锁控制实验:(1)将电动机接入电源,并接入控制电路板。
(2)将控制电路板中的相异步电动机自锁控制电路连接好。
(3)按下自锁按钮,观察电动机的运动情况,并记录实验结果。
3.联锁正反转控制实验:(1)将电动机接入电源,并接入控制电路板。
(2)将控制电路板中的相异步电动机联锁正反转控制电路连接好。
(3)按下正转按钮,观察电动机的运动情况,并记录实验结果。
(4)按下反转按钮,观察电动机的运动情况,并记录实验结果。
五、实验结果与分析1.点动控制实验结果:实验结果表明,当按下点动按钮时,电动机会运动一小段时间后停止。
这是因为控制电路通过控制信号,使电动机转动一个固定的角度,然后停止。
2.自锁控制实验结果:实验结果表明,当按下自锁按钮时,电动机会一直运动直到再次按下自锁按钮,电动机才会停止。
这是因为通过自锁控制电路,电动机会一直保持运行状态。
3.联锁正反转控制实验结果:实验结果表明,当按下正转按钮时,电动机会顺时针旋转。
而当按下反转按钮时,电动机会逆时针旋转。
这是因为通过联锁正反转控制电路,可以控制电动机的旋转方向。
六、实验心得通过本次实验,我们深入了解了相异步电动机的基本结构和工作原理,以及常见的控制方法。
实验结果也验证了这些控制方法的有效性。
实验一三相鼠笼式异步电动机点动、自锁控制和正反转控制一、实验目的1. 通过对三相鼠笼式异步电动机点动控制和自锁控制线路的实际安装接线,掌握由电气原理图变换成安装接线图的知识。
2. 通过对三相鼠笼式异步电动机正反转控制线路的安装接线,掌握由电气原理图接成实际操作电路的方法。
3. 加深对电气控制系统各种保护、点动控制、自锁、互锁等环节的理解。
4. 学会分析、排除继电--接触控制线路故障的方法。
二、原理说明1. 继电─接触控制在各类生产机械中获得广泛地应用,凡是需要进行前后、上下、左右、进退等运动的生产机械,均采用传统的典型的正、反转继电─接触控制。
交流电动机继电─接触控制电路的主要设备是交流接触器,其主要构造为:(1) 电磁系统─铁心、吸引线圈和短路环。
(2) 触头系统─主触头和辅助触头,还可按吸引线圈得电前后触头的动作状态,分动合(常开)、动断(常闭)两类。
(3) 消弧系统─在切断大电流的触头上装有灭弧罩,以迅速切断电弧。
(4) 接线端子,反作用弹簧等。
2. 在控制回路中常采用接触器的辅助触头来实现自锁和互锁控制。
(1)自锁。
要求接触器线圈得电后能自动保持动作后的状态,这就是自锁,通常用接触器自身的动合触头与起动按钮相并联来实现,以达到电动机的长期运行,这一动合触头称为“自锁触头”。
(2)互锁。
使两个电器不能同时得电动作的控制,称为互锁控制,如为了避免正、反转两个接触器同时得电而造成三相电源短路事故,必须增设互锁控制环节。
为操作的方便,也为防止因接触器主触头长期大电流的烧蚀而偶发触头粘连后造成的三相电源短路事故,通常在具有正、反转控制的线路中采用既有接触器的动断辅助触头的电气互锁,又有复合按钮机械互锁的双重互锁的控制环节。
○1电气互锁为了避免接触器KM1(正转)、KM2(反转)同时得电吸合造成三相电源短路,在KM1(KM2)线圈支路中串接有KM1(KM2)动断触头,它们保证了线路工作时KM1、KM2不会同时得电(如图30-1),以达到电气互锁目的。
三相异步电动机的点动和自锁控制一、实验目的1.进一步熟悉三相异步电动机、交流接触器、热继电器、按钮的结构、作用和接线。
2.培养电气线路安装接线并进行操作的能力。
3.加深理解点动和自锁控制的原理。
二、实验原理 1.点动控制点动控制是用按钮和接触器控制三相异步电动机的最简单的控制线路,其原理如图1所示。
线路的动作原理如下: 合上电源开关QS起动:按住按钮SB (不松手) 接触器KM 线圈得电KM 主触点闭合 电动机M 接通三相交流电源,起动运转。
停止:松开按钮SB 接触器KM 线圈失电 KM 主触点断开 电动机M 脱离三相交流电源,自然停转。
2.具有过载保护的自锁控制电动机经过按钮起动后,要想在松开按钮后仍能连续运转,则必须在电路中加入“自锁”功能。
电动机在运转过程中,如果长期负载过大、频繁操作、或断相运行等都会引起电动机绕组过热,影响电动机的使用寿命,甚至会烧坏电动机。
因此,对电动机要采用过载保护,一般采用热继电器作为过载保护元件。
具有过载保护的自锁控制线路原理图如图2所示。
(1)自锁控制 线路的动作原理如下: 合上电源开关QS图1 点动控制线路 图2 具有过载保护的自锁控制线路辅助常开触点闭合自锁起动:按下SB2 KM线圈得电主触点闭合电动机M运转松开起动按钮SB2,由于并在SB2两端的KM辅助常开触点闭合自锁,控制回路仍保持接通,KM线圈依然通电,电动机M不会停转。
辅助常开触点断开,解除自锁停止:按下SB1 KM主触点断开电动机M停转(2)过载保护线路动作原理如下:电动机在运行过程中由于过载或其它原因使负载电流超过额定值时,经过一定时间,串接在主回路中的热继电器的热元件因受热弯曲,使串在控制回路中的常闭触点断开,切断控制回路,接触器KM的线圈断电,其主触点断开,电动机M脱离电源停止转动,达到了过载保护的目的。
三、实验设备四、实验内容与步骤1.点动控制实验(1) 开起控制屏上的“电源总开关”,按下“开”按钮,向顺时针方向旋转控制屏左侧端面上的调压器旋钮,将三相调压器电源输出的线电压调到220V,以后保持不变。