欠压保护电路
- 格式:docx
- 大小:33.50 KB
- 文档页数:1
欠电压保护器工作原理
欠电压保护器是一种电气设备,用于保护电气设备或电力系统不受欠电压(即电压低于设定阈值)的影响。
其工作原理如下:
1. 检测:欠电压保护器通过连接到电源或电路中的电压传感器来实时监测电压的变化。
传感器将电压信号转化为可用数值。
2. 比较:欠电压保护器将监测到的电压数值与预设的阈值进行比较。
如果监测到的电压低于设定的阈值,欠电压保护器将判断欠电压事件发生。
3. 触发:一旦欠电压保护器检测到欠电压事件发生,它将触发相关的操作。
通常情况下,欠电压保护器会断开电路,防止电器设备继续运行或遭受损坏。
有些保护器还可以通过触发警报或发送信号来警示操作员。
4. 复位:在电压恢复正常之后,欠电压保护器通常有一个自动复位功能,它将重新连接电路,使电器设备能够继续正常供电。
总的来说,欠电压保护器通过实时监测电压,并在电压低于设定阈值时采取相应的保护措施,以防止电器设备受到损坏或故障。
这种保护器在各种电力系统和设备中广泛使用,以确保电压稳定,保护设备正常运行。
UVLO欠压保护电路原理1. UVLO(欠压锁定)概述- 定义与基本原理:UVLO是一种欠压保护技术,用于防止电路在输入电压低于某个阈值时正常工作。
它通过监测输入电压,当电压降至设定值以下时,触发保护机制,防止设备损坏。
- 应用领域:UVLO广泛应用于各种电子设备,如电源管理模块、电源适配器、DC-DC转换器等。
它确保这些设备在不稳定或低电压条件下能够正常工作,提高系统的可靠性。
- 工作原理:UVLO工作原理基于一个比较器,监测输入电压并将其与设定的阈值进行比较。
当输入电压低于阈值时,UVLO触发,切断电源或启动相应的保护机制。
2. UVLO的设计要点- 阈值设定:UVLO的有效性取决于准确的阈值设定。
设计师需根据特定应用的电源要求选择适当的阈值,确保在低电压条件下及时触发保护。
- 滞回特性:UVLO通常设计具有一定的滞回特性,以防止在边缘电压处于临界值时发生不稳定的切换。
滞回确保在电压上升时,设备不会过早地恢复正常工作。
- 延时机制:为防止瞬态干扰触发误报,UVLO常常包含延时机制。
通过延时,可以确保输入电压在一段时间内稳定在低电压区域,而不是由于瞬时波动导致误报。
- 精准度与灵敏度:UVLO的精准度和灵敏度对系统性能至关重要。
高精度和灵敏的UVLO能够更精确地监测电压变化,并在必要时迅速作出响应。
3. UVLO与系统稳定性- 防止欠压故障:UVLO通过防止系统在欠压状态下工作,有效地防止了由于电压不足而导致的系统故障。
这对于电源管理至关重要,特别是对于一些对电压要求较高的敏感设备。
- 稳定电源输出:UVLO有助于维持电源输出的稳定性。
在低电压条件下,电源可能无法提供足够的电流和功率,从而导致系统不稳定。
UVLO的作用在于及时发现并避免这种情况。
- 降低热损耗:在欠压状态下工作可能导致电源电路大量电流通过,产生过多的热损耗。
UVLO通过阻止在不稳定条件下的运行,有助于减少这种热损耗。
4. UVLO的实际应用案例- 电源管理芯片:UVLO广泛嵌入在各种电源管理芯片中,如稳压器、开关电源控制器等。
半球电磁炉欠压保护电路通常采用市电L、N两端经两只二极管或两只电阻与桥式整流器中的两只负极二极管组成桥式整流电路,产生脉动直流电压,此电压再通过电阻分压、电容滤波后产生较低电压,作为电磁炉的基准电压。
当市电电压下降到欠压保护电压时,电容两端电压下降,电容放电,通过电阻R32将电流送到热敏电阻SENSOR的另一端,此时热敏电阻的电阻值会随着温度升高而减小,从而使得SENSOR两端的电压变高,使同步电路检测到的电压不正常,从而触发欠压保护功能。
当市电电压恢复正常时,电容重新充电,电路回到正常工作状态。
输出过压保护电路当用户在使用电源模块时,可能会由于某种原因,造成模块输出电压升高,为了保护用户电路板上的器件不被损坏,当模块的输出电压高于一定值时,模块必须封锁脉冲,阻止输出电压的继续上升。
D320产生一个5.1V电压基准送至运放U301反相输入端,R330、R334、R336用于检测输出电压、检测电压值送至运放U301同相输入端。
输出电压没有达到过压保护点时,运放U301 5脚的电压小于6脚的电压,运放输出为低电平,输出正常。
输出电压Vo升高到设定检测点电压时,电阻R336、R334、R330检测的分压比送入运放U301的5脚,此时5脚电压高于6脚电压,运放U301输出高电平,封闭控制芯片PWM信号,模块输出电压为零。
过流保护电路实例(1)图2.过流保护电路实例工作原理T2采集模块原边开关管的输入电流,采样电流经取样电阻R18转换成电压信号,再经两路开关二极管(D6)整流形成两路控制信号。
一路峰值信号去控制38C43的3脚;另一路准峰值电平进入38C43 EA的反相输入端2脚。
采用CT作电流采样的好处是采样电路功耗小,采样电路灵活,CT可以放置在MOSFET开关管的D极或S极,也可以串联于主变压器原边的Vin+端。
缺点是电路稍复杂,体积大,CT存在大占空比时不能有效复位的问题。
CT采样一般用于中大功率的模块。
3843PWM芯片介绍图3.3843芯片内部结构图芯片工作原理虚线所框部分为38C43芯片内置的误差放大器和电流放大器。
误差放大器的输出经过内部分压后(被钳位到1V),进入电流放大器的反相输入端,与电流采样信号比较后进入PWM产生电路。
最终在芯片的6脚输出PWM信号。
在这里,误差放大器被用来作OCP保护,电流控制放大器I/A作峰值电流限流保护。
误差放大器E/A用于准峰值限流。
当38C43反相输入端2脚的直流电平达到2.5V时,误差放大器E/A起作用,使38C43的6脚输出驱动信号占空比D减小,达到模块OCP之目的。
36v欠压保护电路图大全(六款模拟电路设计原理图详解)36v欠压保护电路图(一)电路工作原理:输出电压低于规定值时,反映了输入直流电源、开关稳压器内部或者输出负载发生了异常。
输入直流电源电压下降到规定值之下时,会导致开关稳压器的输出电压跌落,输入电流增大,既危及开关三极管,也危及输入电源。
因此,要设欠电压保护。
简单的欠电压保护如图1所示。
当未稳压输入的电压值正常时,稳压管ZD击穿,晶体管V导通,继电器动作,触点吸合,开关稳压器加电。
当输入低于所允许的最低电压值时,稳压管ZD不通,V截止,触点跳开,开关稳压器不能工作。
开关稳压器内部,由于控制电路失常或者开关三极管失效会使输出电压下降;负载发生短路也会使输出电压下降。
特别在升压型或反相升压型的直流开关稳压器中欠电压的保护是跟过电流保护紧密相关的,因而更加重要。
实现方法是在开关稳压器的输出端接电压比较器,如图2所示。
正常时,比较器没有输出,一旦电压跌落在允许值之下比较器就翻转,驱动告警电路;同时反馈到开关稳压器的控制电路,使开关三极管截止或切断输入电源。
36v欠压保护电路图(二)电路工作原理:本电路由11个元件组成,电路简洁,反应灵敏,其应用范围也比较宽广,电压范围和功率容量可以通过使用不同的器件而改变,并且可采用贴片元件,使体积进一步减小。
电路如上图所示。
在电压正常的情况下,b点电位较高,故a点电位相应也较高;晶闸管导通,所以Ql导通,输出端的负载正常1工作。
当输入电压降低到一定程度时.b点电位相应下降,Q2导通程度减弱使a点电位降低,可控硅关断,使Ql截止,切断了对负载的供电。
当外部电压正常或电池充足电后,对其手动复位即可。
若需安装指示电路可按下图所示安装,采用三色发光二极管进行指示即可。
本电路可用于电动车、充电灯、矿灯等对铅酸电池进行过放电保护,也可接入低压直流供电回路中保护负载。
在此,在应用铅酸电池的场合中,应尽量加装欠压保护器,并能在单格电压降至1.9V左右时实行保护,以延长电池的使用寿命。
电池欠压保护电路电池欠压保护电路是一种用于保护电池不被欠压损坏的电路设计。
当电池电压降低到一定阈值以下时,该电路将会切断电池供电,以保护电池不被进一步放电。
下面是一些与电池欠压保护电路相关的参考内容。
1. 电池欠压保护电路的原理电池欠压保护电路的工作原理是通过监测电池电压,一旦电压低于设定的阈值,就会触发保护电路动作,切断电池供电,以防止电池继续放电。
常见的欠压保护电路采用比较器和逻辑门来实现,比较器用于比较电压与设定阈值大小,逻辑门用于控制电池供电的开关。
2. 欠压保护电路的设计要点欠压保护电路的设计要点包括:设定阈值的选择、比较器和逻辑门的选型、电路的稳定性设计等。
首先,设定阈值需要根据电池的额定电压和性能特点来选择,以确保在电池电压降低到一定程度时触发保护,同时不会过于敏感导致误触发。
接下来,比较器的选型要考虑电池的工作电压范围和转换速度等因素,以满足电路的要求。
最后,电路的稳定性设计是确保保护电路能够稳定可靠地工作的关键,包括参考电压的稳定性、耐压能力等。
3. 欠压保护电路的应用场景欠压保护电路广泛应用于各种电池供电的设备和系统中,包括移动电源、无线通信设备、家用电器等。
在这些设备中,由于电池供电工作时电压会逐渐降低,如果电压过低,可能会导致电池永久性损坏或无法正常工作,因此需要欠压保护电路来保护电池。
4. 欠压保护电路的特点和优势欠压保护电路的特点和优势主要包括:可以有效保护电池免受欠压损坏,提高电池的使用寿命;简单可靠,成本较低;适用于各种类型的电池,如锂电池、铅酸电池等;对设备和系统的性能和安全性有重要影响,具有重要的保护作用。
5. 欠压保护电路的改进和发展趋势随着电子技术的不断发展,欠压保护电路也在不断改进和发展。
目前,一些新型的欠压保护电路采用了更复杂的控制算法和更精确的电路设计,以提高保护电路的精度和稳定性。
此外,一些智能电池管理系统也开始出现,能够根据电池的工作状态和实时负载情况来动态调整欠压保护电路的阈值,以提高电池的利用率和效能。
开关电源欠压保护电路的设计保护电路的设计,无疑是电源设计中一个非常重要的环节,它对于提高电源工作的安全可靠性、延长电源的使用寿命都起着十分重要的作用。
在设计保护电路时,一方面要保证其功能完善,工作稳定可靠;另一方面应力求简单明了,避免繁复。
本文介绍的开关电源欠压保护电路,欠压检测与反馈控制合用同一只光耦,可以对电源输出欠压作出准确灵敏的反应并充分利用了3842自身的电路特点,使用简单的阻容元件实现了欠压保护电路的自动恢复功能。
2 3842的内部结构及其控制电路3842的工作原理已为大家所熟知,本文在此不作重复介绍。
值得注意的是3842误差放大器的输出结构,在2脚接地时,误差放大器会完全截止,不再吸入电流,这就使3842的应用具有了一定的灵活性。
图1、图2是两种常用的3842控制电路。
图1是标准的3842控制电路,误差放大器的图1 3842控制电路一补偿电路Zi和Zf可以为控制回路提供必要的零极点补偿,通过对控制回路传递函数的校正,使电源的动态响应得到改善。
在图2所示的控制电路中,由于2脚接地,3842的误差放大器始终处于截止状态,PWM比较器的比较电压直接由反馈光耦控制,这种控制方法简单易行,也可避免图2 3842控制电路二止状态,PWM比较器的比较电压直接由反馈光耦控制,这种控制方法简单易行,也可避免因误差放大器补偿不当造成的电源工作不稳定,在电源设计中也获得了广泛应用。
本文所介绍的开关电源欠压保护电路就是基于这种控制模式设计的。
3 单光耦自恢复欠压保护电路以3842单端反激电源为例,当电源供电电压过低或电源输出端过载、短路时,电源的初级电流都会大幅度增加,由于采样电阻Rs的限流作用,使得电源的工作占空比缩小,输出电压下降,电源处于非正常工作状态。
特别是当输出端短路时,变压器中磁通的释放能力近似为零,随着磁通的积累,变压器将处于磁饱和状态。
在初级功率管导通时,供电电压几乎全部加在功率管上,虽然采样电阻Rs可以为功率管提供短时间的保护,但长时间的短路必然会导致功率管严重发热乃至损坏,所以在电源设计时必须增加欠压检测和保护电路,当检测到电源输出端出现欠压现象时,应及时关闭电源控制器,以防电源损坏。
摘要本设计介绍的是市电欠压、过压自动保护器。
能在市电高于限定电压或低于限定电压时起自动保护动作,切断负载(用电设备)的工作电源。
而在市电恢复正常后,又能自动恢复供电。
设计中主要有桥式整流电路、滤波电路、稳压电路、控制电路,电路结构简单,电路工作原理清晰明了,性能优良。
此设计经过检测和分析,它具有自动保护功能。
当市电电源电压低于或高于设定的电压时,切换负载供电,还可根据需要延时供电。
它能在市电电压低于170V或者高于240V时,自动切断负载的供电线路,可防止用电设备因欠电压或者过电压而损坏。
关键词时基电路;欠压保护;过压保护;自动保护第1章绪论1.1 选题的目的及意义随着现在电气设备的普及,给工农业生产、国防事业、科技带来了革命性的变化,加快了社会的发展,人们步入了电气化时代,也使人们的生活质量得到了大幅度的提高,也越来越离不开这些电器设备。
随着科技的发展,电器设备的精度也逐渐提高,发生了翻天覆地的变化,但是如何保护好这些电器设备的不受外界的干扰,成了当今科技发展关注的主要问题。
目前我国的电网正在普及,庞大的电网系统给了我们许多方便。
但是随着接入电网的用户增多,和用户电器的多样化,也造成了电网电压的不稳定,忽高忽低的电压,也成了损坏电器设备的主要因素。
如何在电压变化较大时保护好用电设备,成了人们现在研究的一个方向。
1.2 概述本设计介绍的是市电过电压与欠压自动保护器,它的主要功能是在市电电压低于170V或者高于240V时,自动切断负载的供电线路,以达到防止用电设备内因欠电压或者过电压而损坏的目的。
1.2.1 过电压过电压是指工频下交流电压均方根值升高,超过额定值的10%,并且持续时间大于1分钟的长时间电压变动现象;过电压的出现通常是负荷投切的结果,例如:切断某一大容量负荷或向电容器组增能(无功补偿过剩导致的过电压)。
电力系统在特定条件下所出现的超过工作电压的异常电压升高。
属于电力系统中的一种电磁扰动现象。
电源过压欠压保护电路报告目录一、摘要 (2)二、方案论证 (2)三、电路工作原理及说明 (3)1。
电压比较电路 (3)2。
比较器与运算放大器的差别 (7)3.执行电路 (7)4.总电路图 (9)四、电路性能指标的测试 (10)五、设计心得 (10)附录 (13)附录一 (13)参考文献 (14)电源过压欠压保护电路一、摘要随着微控技术的日益完善和发展,在工业控制中,用电设备通常工作至三相电源中,而很多用电设备在使用中对相应提供的工作电源有着较高的要求。
但通常电网产生的电压偏高(是指给定的瞬间设备端电压U与设备额定电压Un之差),以及大功率电动机的起动,电焊机的工作,特别是大型电弧炉和大型轧钢机冲击性负荷的工作,均会引起负荷的急剧变动,使电网电压损耗随之产生相应变动,从而使用户公共供电点的电压出现波动现象。
而上述情况所造成的电压波动,又会给用电设备造成不应有的过压、欠压现象。
如长时间供给用电设备,则会极大的损坏用电设备。
所以在用电设备使用中,会加入相应的保护电路,以保证用电设备在正常的供电状态下使用。
当供电线路出现过、欠压时,保护电路进行有效保护,从而确保用电设备安全正常运行。
二、方案论证本课题主要设计电源过压/欠压保护电路。
主要设计思想为:在正常情况下,即电压在标准电压附近的时候,电路正常工作,报警器不工作。
当有过压、欠压或者掉电的时候,输入电压经过整流滤波稳压后与已知标准电压相差很大时,电路使晶体管工作,从而驱动报警器报警,提示工作人员进行必要的措施,防止不必要的损失。
经过理论推理,进行分析比较并逐步模拟,确立以下比较合理的方案。
过压、欠压保护电路原理框图如图1所示。
该电路设计过压/欠压掉电报警器电路,由比较电路、报警器装置组成。
图1 过压/欠压保护电路原理框图三、电路工作原理及说明1.电压比较电路保护电路中主要是电压比较器在起作用,电压比较器可以看作是放大倍数接近“无穷大”的运算放大器。
比较电路主要由两个理想运放组成,这是电路正常工作的核心。
欠压保护电路原理(二)
欠压保护电路原理
引言
•介绍欠压保护电路的作用和重要性。
什么是欠压保护电路
•解释欠压保护电路的定义和主要功能。
•提及欠压保护电路的应用领域。
欠压保护电路原理
•介绍欠压保护电路的工作原理。
•讲解原理中涉及的基本电路组成部分。
欠压保护电路设计要点
•阐述设计欠压保护电路需要考虑的关键因素。
–欠压检测电路的选择和设计。
–触发保护动作的阈值设置。
–保护动作的延时控制。
常见的欠压保护电路类型
•介绍几种常见的欠压保护电路类型:
–压差检测电路。
–过压比较电路。
–定时延时电路。
欠压保护电路实现示例
•提供一个具体的欠压保护电路实现示例。
–列出所需元件和连接方式。
–描述电路的运行原理和效果。
欠压保护电路的应用案例
•介绍一些实际应用欠压保护电路的案例。
•提及案例中欠压保护电路的效果和意义。
总结
•总结欠压保护电路原理的重要性和特点。
•强调欠压保护电路对电子设备的保护作用。
以上文章架构可以根据具体内容加以调整和扩展,确保文章的条理清晰和逻辑性。
欠压保护电路
初始上电:Qa1和Qa2导通情况,可能由于电源电压的不同而结果不同。
若初始电压大于12.7V,则Qa1导通,Qa2关断,此时输出一直为高电平,若初始电压小于8.6V,(图中的参数)由VDD*(R1+R2)/(R1+R2+R4+R5)=0.7V计算得出,则Qa1关断,Qa2导通,输出为低电平。
那么在过压保护电路中,就可以将12.7V设置为电压上限,在欠压保护电路中,就可以将8.6V设置为电压下限,由使用决定。
正常工作状态下(要么小于8.6V,要么大于12.7V),分析欠压电路情况:电路大于12.7V 正常工作,若某种情况下,出现欠压,Qa2仍然关断,此时由于R1、R2、R4、R5组成的回路,使得Qa1一直导通,直到VDD<8.6V时,不足以使得Qa1导通(Vbe<0.7V),此时Qa2导通,输出低电平。
也就是说,欠压保护的低压值为8.6V。
当电压回升后,由于Qa2一直导通,所以R5右电压始终几乎为0,直到VDD大于12.7V时,依靠稳压管产生0.7V 的电压,使得Qa1再次导通,Qa2关断,输出为高。
因此,在欠压应用下,可以实现的电压保护范围是<8.6V,开启范围是>12.7V,同样,在过压保护中,可以实现的是正常工作<8.6V开启,大于12.7V截止,逻辑与欠压下相反。
通过调节R5的阻值,可以改变保护的下限值,通过调节稳压管,可以改变保护的上限值。
上限值为:Vd1+0.7V。
下限值为0.7*(R1+R2+R4+R5)/(R1+R2)=V。
此电路中,迟滞窗口为8.6V-12.7V。
对上述电路的使用,可以将输出作为MOS管的控制信号,也可以经过光耦电平转换,输入到MCU进行电压检测判断。