等差数列、等比数列知识点梳理
- 格式:doc
- 大小:706.00 KB
- 文档页数:7
数列的等差与等比性质知识点总结数列是由一系列数字按照一定规律排列组成的序列,而等差与等比性质是数列中常见的两种规律。
在数学中,掌握数列的等差与等比性质对于解题和推导数学公式都具有重要意义。
本文将对数列的等差与等比性质进行详细总结。
一、等差数列1. 定义:若数列中相邻两项之差保持不变,则称该数列为等差数列。
2. 通项公式:设等差数列的首项为a1,公差为d,则第n项的通项公式为an = a1 + (n-1)d。
3. 性质:a) 任意一项与它的前一项的差等于公差,即an - an-1 = d。
b) 等差数列的前n项和为Sn = (a1 + an) * n / 2。
c) 等差数列的任意一项可以表示为前一项与公差之和,即an = an-1 + d。
d) 若等差数列的前两项之和等于第三项,即a1 + a2 = a3,则该等差数列为等差数列。
二、等比数列1. 定义:若数列中相邻两项之比保持不变,则称该数列为等比数列。
2. 通项公式:设等比数列的首项为a1,公比为r,则第n项的通项公式为an = a1 * (r^(n-1))。
3. 性质:a) 任意一项与它的前一项的比等于公比,即an / an-1 = r。
b) 等比数列的前n项和为Sn = (a1 * (1 - r^n)) / (1 - r)。
c) 等比数列的任意一项可以表示为前一项与公比之积,即an = an-1 * r。
d) 若等比数列的前两项之积等于第三项,即a1 * a2 = a3,则该等比数列为等比数列。
三、等差与等比的联系与区别1. 联系:等差与等比数列都是按照一定规律排列的数列,且都有其通项公式和前n项和的公式。
2. 区别:a) 等差数列的相邻项之差相等,等比数列的相邻项之比相等。
b) 等差数列的公差为常数d,等比数列的公比为常数r。
c) 等差数列的通项公式为an = a1 + (n-1)d,等比数列的通项公式为an = a1 * (r^(n-1))。
1.等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d 叫做等差数列的公差,即d a a n n =--1(d 为常数)(2≥n );.2.等差中项:(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a3.等差数列的通项公式:一般地,如果等差数列{}n a 的首项是1a ,公差是d ,可以得到等差数列的通项公式为:()d n a a n 11-+=推广: d m n a a m n )(-+=. 从而mn a a d mn --=; 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+211()22d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a .(3) 数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4) 数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。
6.等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔ {}n a 是等差数列.(1)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.(2) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列(3)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和 1.当项数为偶数n 2时,()121135212n n n n a a S a a a a na --+=+++⋅⋅⋅+==奇 ()22246212n n n n a a S a a a a na ++=+++⋅⋅⋅+==偶 ()11=n n n n S S na na n a a nd ++-=-=-偶奇 11n n n n S na a S na a ++==奇偶2、当项数为奇数12+n 时,则21(21)(1)1n S S S n a S n a S n S S a S na S n +⎧=+=+=+⎧+⎪⎪⇒⇒=⎨⎨-==⎪⎪⎩⎩n+1n+1奇偶奇奇n+1n+1奇偶偶偶 (其中a n+1是项数为2n+1的等差数列的中间项). 1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A = 注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数)5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法:依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(1)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。
等差数列与等比数列的知识点总结
等差数列和等比数列是数学中的两个重要概念,它们在日常生活和科学研究中有着广泛的应用。
以下是关于等差数列和等比数列的主要知识点总结:
等差数列:
1. 定义:一个数列,其中任意两个相邻项的差是一个常数,这个数列被称为等差数列。
2. 通项公式:$a_n = a_1 + (n - 1)d$,其中 $a_1$ 是首项,$d$ 是公差,$n$ 是项数。
3. 求和公式:$S_n = \frac{n}{2} [2a_1 + (n - 1)d]$,其中 $S_n$ 是前$n$ 项的和。
4. 等差中项:任意两项的算术平均值等于第三项。
5. 等差数列的性质:如果两个数列都是等差数列,那么它们的和也是一个等差数列。
等比数列:
1. 定义:一个数列,其中任意两个相邻项的比是一个常数,这个数列被称为等比数列。
2. 通项公式:$a_n = a_1 \times q^{n-1}$,其中 $a_1$ 是首项,$q$ 是公比,$n$ 是项数。
3. 求和公式:对于 $q \neq 1$,有 $S_n = \frac{a_1(1 - q^n)}{1 - q}$;对于 $q = 1$,有 $S_n = na_1$。
4. 等比中项:任意两项的几何平均值等于第三项。
5. 等比数列的性质:如果两个数列都是等比数列,那么它们的乘积是一个等比数列。
以上是关于等差数列和等比数列的主要知识点总结。
在学习这些内容时,可以通过做练习题来加深理解和巩固知识。
数列的等差数列与等比数列知识点总结数列是数学中经常出现的概念,它是按照一定规律排列的一组数的集合。
其中,等差数列和等比数列是两种常见的数列类型。
本文将对等差数列和等比数列的基本概念、性质、求和公式以及应用进行总结。
一、等差数列等差数列是指数列中相邻两项之差均相等的数列。
用通项公式表示为:an = a1 + (n-1)d,其中an表示第n项,a1为首项,d为公差。
1. 等差数列的基本概念等差数列中,每一项与它的前一项的差值都相等,这个差值称为公差。
等差数列可以是正差、零差或负差的数列。
2. 等差数列的性质(1)首项和末项之和等于中间项之和的两倍:a1 + an = 2Sn,其中Sn表示前n项和。
(2)任意一项与首项之和等于任意一项与末项之和:ai + aj = a1 + an。
(3)等差数列的前n项和Sn等于首项与末项之和乘以项数的一半:Sn = (a1 + an) × n / 2。
3. 求等差数列的和求解等差数列的和可以利用求和公式Sn = (a1 + an) × n / 2,其中n 为项数。
4. 等差数列的应用等差数列在实际问题中有广泛的应用,如金融投资、房贷分期还款等均可以利用等差数列的性质进行计算。
二、等比数列等比数列是指数列中相邻两项之比均相等的数列。
用通项公式表示为:an = a1 × r^(n-1),其中an表示第n项,a1为首项,r为公比。
1. 等比数列的基本概念等比数列中,每一项与它的前一项的比值都相等,这个比值称为公比。
等比数列可以是正比、零比或负比的数列。
2. 等比数列的性质(1)相邻两项之商等于任意一项与首项之商等于任意一项与末项之商:ai/aj = a1/ai = ai/an。
(2)等比数列的前n项和Sn等于首项与末项之差除以公比减1:Sn = (a1 - an × r^n) / (1 - r)。
3. 求等比数列的和求解等比数列的和可以利用求和公式Sn = (a1 - an × r^n) / (1 - r),其中r不等于1。
等差数列等比数列知识点归纳总结等差数列和等比数列是高中数学中非常重要的概念,它们在解决各种数学问题中都起着重要的作用。
本文将对等差数列和等比数列的基本概念、性质、求和公式以及应用进行归纳总结。
一、等差数列等差数列是指一个数列中的每一项与前一项之间的差都相等。
这个相等的差值被称为等差数列的公差,通常用字母d表示。
1. 基本概念一个等差数列可以以通项公式的形式表示为:an = a1 + (n - 1) * d,其中an表示数列的第n项,a1表示第一项,d表示公差。
2. 性质(1)公差:等差数列的公差d是等差数列中相邻两项的差,公差可以是正数、负数或零。
(2)公式:等差数列的通项公式为an = a1 + (n - 1) * d,其中n表示项数。
(3)前n项和:等差数列的前n项和可以通过求和公式Sn = n * (a1 + an) / 2来计算。
3. 应用等差数列广泛应用于数学和物理等领域,常见的应用包括:(1)数学题目中的差额、间隔、递推关系等。
(2)物理问题中的匀速直线运动、连续等差分布等。
(3)经济学中的利润、销售额等。
二、等比数列等比数列是指一个数列中的每一项与前一项之间的比都相等。
这个相等的比值被称为等比数列的公比,通常用字母r表示。
1. 基本概念一个等比数列可以以通项公式的形式表示为:an = a1 * r^(n-1),其中an表示数列的第n项,a1表示第一项,r表示公比。
2. 性质(1)公比:等比数列的公比r是等比数列中相邻两项的比值,公比可以是正数、负数或零。
(2)公式:等比数列的通项公式为an = a1 * r^(n-1),其中n表示项数。
(3)前n项和:等比数列的前n项和可以通过求和公式Sn = a1 * (1 - r^n) / (1 - r)来计算。
3. 应用等比数列也广泛应用于数学和物理等领域,常见的应用包括:(1)数学题目中的倍数关系、增长衰减等。
(2)物理问题中的连续等比分布、指数增长等。
数列的等差数列与等比数列知识点总结在数学的广袤领域中,数列是一个重要的概念,而等差数列和等比数列则是其中最为基础且关键的两种类型。
理解和掌握它们的知识点,对于解决各种数学问题以及培养逻辑思维能力都具有至关重要的意义。
一、等差数列(一)定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。
这个常数叫做等差数列的公差,常用字母\(d\)表示。
例如:数列\(2, 4, 6, 8, 10\cdots\)就是一个公差为\(2\)的等差数列。
(二)通项公式等差数列的通项公式为:\(a_n = a_1 +(n 1)d\),其中\(a_n\)表示第\(n\)项的值,\(a_1\)表示首项,\(n\)表示项数,\(d\)表示公差。
比如,在等差数列\(3, 5, 7, 9, 11\cdots\)中,首项\(a_1 = 3\),公差\(d = 2\),那么第\(5\)项\(a_5 = 3 +(5 1)×2 = 11\)。
(三)等差中项若\(a\),\(b\),\(c\)成等差数列,则\(b\)为\(a\),\(c\)的等差中项,且\(b =\frac{a + c}{2}\)。
例如:\(4\)是\(2\)和\(6\)的等差中项,因为\(\frac{2 +6}{2} = 4\)。
(四)前\(n\)项和公式等差数列的前\(n\)项和公式有两个:\(S_n =\frac{n(a_1 + a_n)}{2}\)\(S_n = na_1 +\frac{n(n 1)d}{2}\)假如有一个等差数列\(1, 3, 5, 7, 9\cdots\),要求前\(5\)项的和。
首项\(a_1 = 1\),第\(5\)项\(a_5 = 9\),项数\(n = 5\),那么\(S_5 =\frac{5×(1 + 9)}{2} = 25\)或者,利用另一个公式,公差\(d = 2\),\(S_5 = 5×1 +\frac{5×(5 1)×2}{2} = 25\)(五)性质1、若\(m + n = p + q\),则\(a_m + a_n = a_p + a_q\)。
等差等比数列知识点归纳总结数学中的数列是一系列按照一定规律排列的数的集合。
在数列中,等差数列和等比数列是两种常见的形式。
它们具有一些特定的性质和规律,对于理解数学的推理和应用领域都具有重要意义。
本文将对等差数列和等比数列的知识点进行归纳总结,以帮助读者更好地理解和运用这些概念。
一、等差数列的概念和性质等差数列是指数列中的相邻两项之差保持恒定的数列。
每一项与它的前一项之差称为等差d。
等差数列通常表示为{a,a + d,a + 2d,...},其中a是首项,d是公差。
等差数列具有以下性质:1. 公差:等差数列的公差是相邻两项之差,常用字母d表示。
2. 通项公式:等差数列的通项公式可以通过首项和公差来表示。
通项公式为an = a + (n - 1)d,其中an表示第n项,a表示首项,d表示公差。
3. 首项和末项:等差数列的首项为a,末项为an。
4. 求和公式:等差数列的前n项和可以使用求和公式来表示。
求和公式为Sn = (n/2)(a + an),其中Sn表示前n项和。
5. 通项之和:对于相等间隔的等差数列,任意两项之和都等于首项和末项的和。
二、等比数列的概念和性质等比数列是指数列中的相邻两项之商保持恒定的数列。
每一项与它的前一项之比称为公比r。
等比数列通常表示为{a,ar,ar^2,...},其中a是首项,r是公比。
等比数列具有以下性质:1. 公比:等比数列的公比是相邻两项之比,常用字母r表示。
2. 通项公式:等比数列的通项公式可以通过首项和公比来表示。
通项公式为an = a * r^(n-1),其中an表示第n项,a表示首项,r表示公比。
3. 首项和末项:等比数列的首项为a,末项为an。
4. 求和公式:等比数列的前n项和可以使用求和公式来表示。
求和公式为Sn = a * (1 - r^n) / (1 - r),其中Sn表示前n项和。
5. 通项之积:对于相等间隔的等比数列,任意两项之积都等于首项和公比的幂次方之积。
等差数列与等比数列知识点复习总结的公比计算方法:①后一项除以前一项:q = an+1an②前两项之比:q = a2a1③前一项与后一项的平方根之比:q = √(an+1an3、等比数列an的通项式:①ana1q^(n-1)②anamq^(n-m)③anb*q^n (b为常数)4、等比数列an的性质:①两项性质:若m+n=p+q,则 a manapaq②等比中项性质:若x,A,y成等比数列,则 2A = x+y③下标成等比数列的项仍成等比数列。
若数列an是等比数列,公比为q,则数列akak+mak+2mak+3m仍构成等比数列,公比为q^m。
5、等比数列an的前n项和:Sna1q^n-1)/(q-1)等比数列前n项和性质:①首项为a1,公比为q的等比数列的前n项和为Sn=a1(1-q^n)/(1-q)②首项为a1,公比为q的等比数列的前n项和为Sn=a1(q^n-1)/(q-1)③特别地,首项为1,公比为q的等比数列的前n项和为Sn=(1-q^n)/(1-q)6、等比数列前n项和性质:①首项为a1,公比为q的等比数列的前n项和为Sn=a1(1-q^n)/(1-q)②首项为a1,公比为q的等比数列的前n项和为Sn=a1(q^n-1)/(q-1)③特别地,首项为1,公比为q的等比数列的前n项和为Sn=(1-q^n)/(1-q)等差数列前n项和性质:①片段和性质:等差数列{an}的前n项和为Sn,公差为d,则Sn,S2n-Sn,S3n-S2n。
即a1+a2+。
+am,am+1+am+2+。
+a2m,a2m+1+a2m+2+。
+a3m也成等差数列,公差为md。
②若两个等差数列{an},{bn}的前n项和分别是An,Bn,则a1+b1,a2+b2.an+bn也成等差数列,公差为d1+d2.其它性质:(任何数列都适用)①Sn与Sn-1之间的关系:an=Sn-Sn-1(n=1),a1=S1②S2n-1与S2n之间的关系:an=1/2(S2n-S2n-1)(n≥2)③通项公式:an=S(n)-S(n-1)④题型:已知Sn与n的关系,求数列的通项公式an;已知Sn与an的关系,求数列的通项公式an。
数列基础知识点和方法归纳1. 等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+-等差中项:x A y ,,成等差数列2A x y ⇔=+前n 项和()()11122n n a a n n n S na d +-==+ 性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2;(3)若三个成等差数列,可设为a d a a d -+,,(4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --= (5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,2. 等比数列的定义与性质 定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=. 等比中项:x G y 、、成等比数列2G xy ⇒=,或G =前n 项和:()11(1)1(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩(要注意!) 性质:{}n a 是等比数列(1)若m n p q +=+,则mn p q a a a a =··(2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q . 注意:由n S 求n a 时应注意什么?1n =时,11a S =;2n ≥时,1n n n a S S -=-.4. 求数列前n 项和的常用方法(1) 裂项法(2)错位相减法如:2311234n n S x x x nx -=+++++……① ()23412341n n n x S x x x x n x nx -=+++++-+·……② ①—②()2111n n n x S x x x nx --=++++-…… 1x ≠时,()()2111n n nx nx S x x -=---,1x =时,()11232n n n S n +=++++=……。
等差数列和等比数列知识点梳理第一节:等差数列的公式和相关性质1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d a a n n =--1(d 为公差)(2≥n ,*n N ∈)注:下面所有涉及n ,*n N ∈省略,你懂的。
2、等差数列通项公式:1(1)n a a n d =+-,1a 为首项,d 为公差推广公式:()n m a a n m d =+-变形推广:mn a a d mn --= 3、等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2ba A +=或b a A +=2(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a4、等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+ 211()22d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0)特别地,当项数为奇数21n +时,1n a +是项数为2n+1的等差数列的中间项()()()12121121212n n n n a a S n a +++++==+(项数为奇数的等差数列的各项和等于项数乘以中间项)5、等差数列的判定方法(1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔{}n a 是等差数列.(2)等差中项:数列{}n a 是等差数列)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a(3)数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4)数列{}n a 是等差数列⇔2n S An Bn =+,(其中A 、B 是常数)。
6、等差数列的证明方法定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )⇔{}n a 是等差数列.7、等差数列相关技巧:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d、n 、n a 及n S ,其中1a 、d 称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。
(2)设项技巧:①一般可设通项1(1)n a a n d =+-②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d )8、等差数列的性质:(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222n n n d dS na d n a n -=+=+-是关于n 的二次函数且常数项为0。
(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
(3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=。
(注:12132n n n a a a a a a --+=+=+=⋅⋅⋅,)当然扩充到3项、4项……都是可以的,但要保证等号两边项数相同,下标系数之和相等。
(4){}n a 、{}n b 为等差数列,则{}{}12n n n a b a b λλλ++,都为等差数列 (5) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列 (6) 数列{}n a 为等差数列,每隔k(k ∈*N )项取出一项(23,,,,m m k m k m k a a a a +++⋅⋅⋅)仍为等差数列(7){}n a 、{}n b 的前n 和分别为n A 、n B ,则2121n n n n a A b B --=(8)等差数列{}n a 的前n 项和m S n =,前m 项和n S m =,则前m+n 项和()m n S m n +=-+,当然也有,n m a m a n ==,则0m n a +=(9)求n S 的最值法一:因等差数列前n 项和是关于n 的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*n N ∈。
法二:(1)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和即当,,001<>d a 由⎩⎨⎧≤≥+001n n a a 可得n S 达到最大值时的n 值.(2) “首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。
即 当,,001><d a 由⎩⎨⎧≥≤+01n n a a 可得n S 达到最小值时的n 值.或求{}n a 中正负分界项法三:直接利用二次函数的对称性:由于等差数列前n 项和的图像是过原点的二次函数,故n 取离二次函数对称轴最近的整数时,n S 取最大值(或最小值)。
若S p = S q 则其对称轴为2p qn +=注意:1(2)n n n S S a n --=≥,对于任何数列都适用,但求通项时记住讨论当1n =的情况。
解决等差数列问题时,通常考虑两类方法:①基本量法:即运用条件转化为关于1a 和d 的方程; ②巧妙运用等差数列的性质,一般地运用性质可以化繁为简,减少运算量。
(以上加上蓝色的性质希望读者能够自己证明,不是很难,并能够学会运用)第二节:等比数列的相关公式和性质1、等比数列的定义:()()12nn a q q n a -=≠≥0,q 为公比 2、通项公式:11n n a a q -=,1a 为首项,q 为公比推广公式:n m n m a a q -=, 从而得n m nma q a -= 3、等比中项(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项.即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个(两个等比中项互为相反数)(2)数列{}n a 是等比数列⇔211n n n a a a -+=⋅ 4、等比数列的前n 项和n S 公式: (1) 当1q =时,1n S na = (2) 当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数) 5、等比数列的判定方法(1)用定义:对任意的n,都有11(0)n n n n na a qa q q a a ++==≠或为常数,⇔{}n a为等比数列(2) 等比中项:211n n n a a a +-=(11n n a a +-≠0)⇔{}n a 为等比数列 (3) 通项公式:()0n n a A B A B =⋅⋅≠⇔{}n a 为等比数列 (4) 前n 项和公式:()'',,','n n n n S A A B S A B A A B A B =-⋅=-或为常数⇔{}n a 为等比数列6、 等比数列的证明方法 依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1n n a qa +=⇔{}n a 为等比数列 7、等比数列相关技巧:(1)等比数列的通项公式及前n 和公式中,涉及到5个元素:1a 、q 、n 、n a 及n S ,其中1a 、q 称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。
(2)为减少运算量,要注意设项的技巧,一般可设为通项:11n n a a q -=如奇数个数成等比,可设为…,22,,,,a aa aq aq q q…(公比为q ,中间项用a 表示);注意隐含条件公比q 的正负 8、等比数列的性质: (1) 当1q ≠时①等比数列通项公式()1110n nn n a a a q q A B A B q-===⋅⋅≠是关于n 的带有系数的类指数函数,底数为公比q ②前n 项和()111111''1111n n n n n n a q a a q a a S q A A B A B A qq q q--==-=-⋅=-----,系数和常数项是互为相反数的类指数函数,底数为公比q(2) 对任何m,n ∈*N ,在等比数列{}n a 中,有n m n m a a q -=,特别的,当m=1时,便得到等比数列的通项公式。
因此,此公式比等比数列的通项公式更具有一般性。
(3) 若m n s t +=+(,,,m n s t ∈*N ),则n m s t a a a a ⋅=⋅。
特别的,当2m n k +=时,得2n m k a a a ⋅=注:12132n n n a a a a a a --⋅=⋅=⋅⋅⋅(4) 列{}n a ,{}n b 为等比数列,则数列{}nka ,{}n k a ⋅,{}k n a ,{}n n k ab ⋅⋅{}n na b (k 为非零常数) 均为等比数列。
(5) 数列{}n a 为等比数列,每隔k(k ∈*N )项取出一项(23,,,,m m k m k m k a a a a +++⋅⋅⋅)仍为等比数列(6) 如果{}n a 是各项均为正数的等比数列,则数列{log }a n a 是等差数列 (7) 若{}n a 为等比数列,则数列n S ,2n n S S -,32,n n S S -⋅⋅⋅,成等比数列 (8) 若{}n a 为等比数列,则数列12n a a a ⋅⋅⋅⋅⋅⋅,122n n n a a a ++⋅⋅⋅⋅⋅⋅,21223n n n a a a ++⋅⋅⋅⋅⋅⋅⋅成等比数列(9)①当1q >时,②当1q <0<时,110{}0{}{n n a a a a ><,则为递增数列,则为递减数列, 110{}0{}{n n a a a a ><,则为递减数列,则为递增数列③当q=1时,该数列为常数列(此时数列也为等差数列); ④当q<0时,该数列为摆动数列。
(10)在等比数列{}n a 中,当项数为2n (n ∈*N )时,1S S q=奇偶,。
(11)若{}n a 是公比为q 的等比数列,则n n m n m S S q S +=+⋅注意:在含有参数的数列时,若是等比数列,一定要考虑到公比1q =的特殊情况。
解决等比数列问题时,通常考虑两类方法:①基本量法:即运用条件转化为关于1a 和q 的方程; ②巧妙运用等比数列的性质,一般地运用性质可以化繁为简,减少运算量。