设 n N * , xn 是曲线 y x2n2 1 在点 (1,2)
处的切线与 x 轴交点的横坐标.
(1)求数列 {xn} 的通项公式;
(2)记Tn x12x32
x2 2n1
,证明
Tn
1 4n
.
在数 1 和 100 之间插入 n 个实数,使得这 n 2 个数 构成递增的等比数列,将这 n 2 个数的乘积记作Tn , 再令 an lg Tn, n≥1.
(2)求数列an 的通项公式;
(3)是否存在实数 a ,使不等式
(1 1 )(1 1 ) (1 1 ) 2a2 3
a1
a2
an 2a 2n 1
对一切正整数 n 都成立?若存在,
求出 a 的取值范围;若不存在,请说明理由.
设数列an 的前 n 项和为 Sn ,满足
2Sn an1 2n1 1 , n N* ,
则数列
1
的前10
项和为_________
an
设数列an,其前 n 项和 Sn 3n2 ,
bn为单调递增的等比数列, b1b2b3 512 , a1 b1 a3 b3
(1)求数列an, bn的通项公式;
(2)若 cn
bn
bn
2 bn
1 n
bn
bn1
1(n
N* )
.
(1)求 an 与 bn ;(2)记数列{anbn} 的前 n 项和为Tn ,求Tn .
已知数列an ,bn , an 3n 1,bn 2n
记 Tn anb1 an1b2 a1bn , n N * ,求:Tn