2015届高三人教版物理总复习03 圆周运动与平抛运动的综合问题Word版含解析
- 格式:doc
- 大小:240.08 KB
- 文档页数:2
专题热点四 平抛运动与圆周运动的综合问题一、水平面内圆周运动与平抛运动的综合问题1.命题角度此类问题往往是物体先做水平面内的匀速圆周运动,后做平抛运动,有时还要结合能量关系分析求解,多以选择题或计算题形式考查.2.解题关键(1)明确水平面内匀速圆周运动的向心力来源,根据牛顿第二定律和向心力公式列方程.(2)平抛运动一般是沿水平方向和竖直方向分解速度或位移.(3)速度是联系前后两个过程的关键物理量,前一个过程的末速度是后一个过程的初速度.【例1】 地面上有一个半径为R 的圆形跑道,高为h的平台边缘上的P 点在地面上P ′点的正上方,P ′与跑道圆心O 的距离为L (L>R),如图4-1所示,跑道上停有一辆小车,现从P 点水平抛出小沙袋,使其落入小车中(沙袋所受空气阻力不计).问:图4-1(1)当小车分别位于A 点和B 点时(∠A OB=90°),沙袋被抛出时的初速度各为多大?(2)若小车在跑道上运动,则沙袋被抛出时的初速度在什么范围内?(3)若小车沿跑道顺时针运动,当小车恰好经过A 点时,将沙袋抛出,为使沙袋能在B 处落入小车中,小车的速率v 应满足什么条件?【解析】 (1)沙袋从P点被抛出后做平抛运动,设它的落地时间为t,则h =12gt 2,解得t=错误! 当小车位于A 点时.有x A =v At =L -R可得v A =(L -R )错误!当小车位于B点时,有x B =v B t =L 2+R 2可得v B =错误!(2)若小车在跑道上运动,要使沙袋落入小车,最小的抛出速度为v 0min =v A =(L-R )\r(\f(g,2h ))若当小车经过C 点时沙袋刚好落入,抛出时的初速度最大,有x C =v0m ax t =L +R可得v 0max =(L+R )错误!所以沙袋被抛出时的初速度范围为(L -R )错误!≤v0≤(L +R )错误!(3)要使沙袋能在B 处落入小车中,小车运动的时间应与沙袋下落的时间相同t AB =(n+14)2πRv (n =0,1,2,3,…) t AB =t =错误!得v =错误!错误!(n=0,1,2,3,…)【答案】 (1)(L -R )错误! 错误!(2)(L -R)\r(\f (g,2h ))≤v 0≤(L +R)\f(g,2h )(3)\f(4n +1πR ,2)错误!(n =0,1,2,3,…)二、竖直面内圆周运动与平抛运动的综合问题1.命题角度此类问题有时物体先做竖直面内的变速圆周运动,后做平抛运动,有时物体先做平抛运动,后做竖直面内的变速圆周运动,往往要结合能量关系求解,多以计算题形式考查.2.解题关键(1)竖直面内的圆周运动首先要明确是“轻杆模型”还是“轻绳模型”,然后分析物体能够到达圆周最高点的临界条件.(2)速度也是联系前后两个过程的关键物理量.图4-2【例2】 如图4-2所示,一不可伸长的轻绳上端悬挂于O 点,下端系一质量m =1.0 k g的小球.现将小球拉到A点(保持绳绷直)由静止释放,当它经过B 点时绳恰好被拉断,小球平抛后落在水平地面上的C 点,地面上的D 点与OB 在同一竖直线上,已知绳长L =1.0 m,B 点离地高度H =1.0 m ,A 、B 两点的高度差h =0.5 m,重力加速度g 取10 m/s 2,不计空气影响,求:(1)地面上DC 两点间的距离s ;(2)轻绳所受的最大拉力大小.【解析】 分段研究小球的运动过程,A到B 过程中小球在竖直面内做圆周运动,机械能守恒;B 到C 过程中小球做平抛运动,根据平抛运动的分解求解.注意隐含条件:恰好被拉断时,轻绳达到最大张力.(1)小球从A 到B 过程机械能守恒,有m gh =12mv 错误!①小球从B到C做平抛运动,在竖直方向上有H=\f(1,2)gt2②在水平方向上有s=v B t③由①②③式解得s≈1.41 m④(2)小球下摆到达B点时,绳的拉力和重力的合力提供向心力,有F-mg=m错误!⑤由①⑤式解得F=20 N根据牛顿第三定律F′=-F轻绳所受的最大拉力为20 N.【答案】 (1)1.41 m (2)20N。
[A组·基础题]1. 如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g取10 m/s2.则ω的最大值是( )A. 5 rad/s B. 3 rad/sC.1.0 rad/s D.5 rad/s2. 一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R,甲、乙两物体的质量分别为M与m(M>m),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为l(l<R)的轻绳连在一起,如图所示,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过( )A.μ(M-m)gml B.μ(M-m)gMlC.μ(M+m)gMl D.μ(M+m)gml3. (2019·河南中原名校考评)如图所示,半径分别为R、2R的两个水平圆盘,小圆盘转动时会带动大圆盘不打滑的一起转动.质量为m的小物块甲放置在大圆盘上距离转轴R处,质量为2m的小物块放置在小圆盘的边缘处.它们与盘面间的动摩擦因数相同,当小圆盘以角速度转动时,两物块均相对圆盘静止,设最大静摩擦力等于滑动摩擦力,下列说法正确的是( )A .二者线速度大小相等B .甲受到的摩擦力大小为14mω2RC .在ω逐渐增大的过程中,甲先滑动D .在ω逐渐增大但未相对滑动的过程中,物块所受摩擦力仍沿半径指向圆心4. (2018·广东七校联考)如图所示,半径为R 的圆轮在竖直面内绕O 轴匀速转动,轮上A 、B 两点各粘有一小物体,当B 点转至最低位置时,此时O 、A 、B 、P 四点在同一竖直线上,已知:OA =AB ,P 是地面上的一点.此时A 、B 两点处的小物体同时脱落,最终落到水平地面上同一点.不计空气阻力,则OP 的距离是( )A.76RB .52RC .5RD .7R5.(多选) 水平面上有倾角为θ、质量为M 的斜面体,质量为m 的小物块放在斜面上,现用一平行于斜面、大小恒定的拉力F 作用于小物块上,绕小物块旋转一周,这个过程中斜面体和小物块始终保持静止状态.下列说法中正确的是( )A .小物块受到斜面的最大摩擦力为F +mg sin θB .小物块受到斜面的最大摩擦力为F -mg sin θC .斜面体受到地面的最大摩擦力为FD .斜面体受到地面的最大摩擦力为F cos θ6.(多选) (2018·山西省吕梁市期中)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是( )A.小球通过最高点时的最小速度v min=g(R+r)B.小球通过最高点时的最小速度v min=0C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力7. 如图所示,水平屋顶高H=5 m,围墙高h=3.2 m,围墙到房子的水平距离L =3 m,围墙外空地宽x=10 m,为使小球从屋顶水平飞出落在围墙外的空地上,g取10 m/s2.求:(1)小球离开屋顶时的速度v0的大小范围;(2)小球落在空地上的最小速度.[B组·能力题]8. (多选)如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到轴的距离为物块A到轴距离的两倍,现让该装置从静止开始转动,使转速逐渐慢慢增大,在从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是( )A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大后保持不变C.A受到的静摩擦力先增大后减小再增大D.B受到的合外力先增大后保持不变9. (多选)(2016·浙江卷)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R=90 m的大圆弧和r=40 m的小圆弧,直道与弯道相切.大、小圆弧圆心O、O′距离L=100 m.赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍,假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动,要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g=10 m/s2,π=3.14),则赛车( )A.在绕过小圆弧弯道后加速B.在大圆弧弯道上的速率为45 m/sC.在直道上的加速度大小为5.63 m/s2D.通过小圆弧弯道的时间为5.58 s10.如图为“快乐大冲关”节目中某个环节的示意图,参与游戏的选手会遇到一个人造山谷AOB,AO是高h=3 m的竖直峭壁,OB是以A点为圆心的弧形坡,∠OAB=60°,B点右侧是一段水平跑道.选手可以自A点借助绳索降到O点后再爬上跑道,但身体素质好的选手会选择自A点直接跃上跑道.选手可视为质点,忽略空气阻力,重力加速度g=10 m/s2.(1)若选手以速度v0水平跳出后,能跳在水平跑道上,求v0的最小值;(2)若选手以速度v1=4 m/s水平跳出,求该选手在空中的运动时间.11. (2017·河南开封模拟)如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN调节其与水平面所成的倾角.板上一根长为l=0.60 m的轻细绳,它的一端系住一质量为m的小球P,另一端固定在板上的O点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN拉直,然后给小球一沿着平板并与轻绳垂直的初速度v0=3.0 m/s.若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g=10 m/s2)。
专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(练)1.一个质量为m 的小铁块沿半径为R 的固定半圆轨道上边缘由静止滑下,到半圆底部时,小铁块所受向心力为铁块重力的1.5倍,则此过程中铁块损失的机械能为: ( )A .18mgRB .14mgR C .12mgR D .34mgR 【答案】B 【名师点睛】当滑到半球底部时,半圆轨道底部所受压力为铁块重力的1.5倍,根据牛顿第二定律可以求出铁块的速度;铁块下滑过程中,只有重力和摩擦力做功,重力做功不影响机械能的减小,损失的机械能等于克服摩擦力做的功,根据动能定理可以求出铁块克服摩擦力做的功。
2.如图所示,在水平桌面上的A 点有一个质量为m 的物体,以初速度v 0被抛出,不计空气阻力,当它到达B 点时,其动能为: ( )A .mgH mv +2021B .12021mgh mv +C .2mgh mgH -D .22021mgh mv +【答案】B【解析】不计空气阻力,只有重力做功,从A 到B 过程,由动能定理可得:E kB -12021mgh mv =,故E kB =12021mgh mv +,选项B 正确。
【名师点睛】以物体为研究对象,由动能定理或机械能守恒定律可以求出在B 点的动能.3.(多选)如图所示,半径为R 的光滑圆环固定在竖直平面内,AB 、CD 是圆环相互垂直的两条直径,C 、D 两点与圆心O 等高.一个质量为m 的光滑小球套在圆环上,一根轻质弹簧一端连在小球上,另一端固定在P 点,P 点在圆心O 的正下方2R 处.小球从最高点A 由静止开始沿逆时针方向下滑,已知弹簧的原长为R ,弹簧始终处于弹性限度内,重力加速度为g .下列说法正确的有: ( )A .弹簧长度等于R 时,小球的动能最大B .小球运动到B 点时的速度大小为gR 2C .小球在A 、B 两点时对圆环的压力差为4mgD .小球从A 到C 的过程中,弹簧对小球做的功等于小球机械能的增加量【答案】CD【名师点睛】此题是对功能关系的考查;解题时要认真分析小球的受力情况及运动情况;尤其要知道在最高点和最低点弹簧的伸长量等于压缩量,故在两位置的弹力相同,弹性势能也相同;同时要知道机械能的变化量等于除重力以外的其它力做功。
1平抛运动与圆周运动的组合问题1、如图所示,有一个可视为质点的质量为m =1 kg 的小物块,从光滑平台上的A 点以点以v 0=3 m/s 的初速度水平抛出,到达C 点时,恰好沿C 点的切线方向进入固定在水平地点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D 点的质量为M =3 kg 的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑接触,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R =0.5 m ,C 点和圆弧的圆心连线与竖直方向的夹角θ=53°,不计空气阻力,取重力加速度g =10 m/s 2.求:求:(1)A 、C 两点的高度差;两点的高度差;(2)小物块刚要到达圆弧轨道末端D 点时对轨道的压力;点时对轨道的压力;(3)要使小物块不滑出长木板,木板的最小长度.(sin 53°=0.8,cos 53°=0.6) 解析 (1)小物块在C 点时的速度大小为v C =v 0cos 53°=5 m/s ,竖直分量为v Cy =4 m/s 下落高度h ==0.8 m (2)小物块由C 到D 的过程中,由动能定理得mgR (1-cos 53°cos 53°))=12m v 2D -12m v 2C解得v D =29 m/s小球在D 点时由牛顿第二定律得F N -mg =m v D 2R 代入数据解得F N =68 N由牛顿第三定律得F N ′=F N =68 N ,方向竖直向下(3)设小物块刚好滑到木板右端时与木板达到共同速度,设小物块刚好滑到木板右端时与木板达到共同速度,大小为大小为v ,小物块在木板上滑行 的过程中,小物块与长木板的加速度大小分别为 a 1=μg =3 m/s 2, a 2=μmg M=1 m/s 2 速度分别为v =v D -a 1t ,v =a 2t 对物块和木板系统,由能量守恒定律得μmgL =12m v 2D -12(m +M )v 2解得L =3.625 m ,即木板的长度至少是3.625 m 答案 (1)0.8 m (2)68 N (3)3.625 m方法点拨程序法在解题中的应用程序法在解题中的应用22cy g v所谓“程序法”是指根据题意按先后顺序分析发生的运动过程,是指根据题意按先后顺序分析发生的运动过程,并明确每一过程的受力并明确每一过程的受力情况、运动性质、满足的规律等等,还要注意前后过程的衔接点是具有相同的速度. 2、在我国南方农村地区有一种简易水轮机,如图所示,从悬崖上流出的水可看做连续做平抛运动的物体,抛运动的物体,水流轨道与下边放置的轮子边缘相切,水流轨道与下边放置的轮子边缘相切,水流轨道与下边放置的轮子边缘相切,水冲击轮子边缘上安装的挡水板,水冲击轮子边缘上安装的挡水板,水冲击轮子边缘上安装的挡水板,可可使轮子连续转动,使轮子连续转动,输出动力.输出动力.当该系统工作稳定时,当该系统工作稳定时,可近似认为水的末速度与轮子边缘的线可近似认为水的末速度与轮子边缘的线速度相同.设水的流出点比轮轴高h =5.6 m ,轮子半径R =1 m .调整轮轴O 的位置,使水流与轮边缘切点对应的半径与水平线成θ=37°角.(已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2)问:问:(1)水流的初速度v 0大小为多少?大小为多少?(2)若不计挡水板的大小,则轮子转动的角速度为多少?若不计挡水板的大小,则轮子转动的角速度为多少? 答案 (1)7.5 m/s (2)12.5 rad/s 解析 (1)水流做平抛运动,有h -R sin 37°=12gt 2解得t =2(h -R sin 37°)g=1 s所以v y =gt =10 m/s ,由图可知: v 0=v y tan 37°=7.5 m/s.(2)由图可知:v =v 0sin 37°=12.5 m/s , 根据ω=v R 可得ω=12.5 rad/s. 3、解析 (1)在C 点:mg =m Rv C 2(2分) 所以v C =5 m/s(1分) (2)由C 点到D 点过程:mg (2R -2r )=12m v 2D -12m v 2C (2分) 在D 点:mg +F N =m v D2r(2分)所以F N =333.3 N (1分) 由牛顿第三定律知小滑车对轨道的压力为333.3 N. (1分) (3)小滑车要能安全通过圆形轨道,在平台上速度至少为v 1,则12m v 2C +mg (2R )=12m v 21 (2分) 小滑车要能落到气垫上,在平台上速度至少为v 2,则 h =12gt 2 (1分) x =v 2t(1分) 解得v 2>v 1,所以只要mgH =12m v 22,即可满足题意.解得H =7.2 m(3分) 答案 (1)5 m/s (2)333.3 N (3)7.2 m技巧点拨1.对于多过程问题首先要搞清各运动过程的特点,然后选用相应规律.2.要特别注意运用有关规律建立两运动之间的联系,把转折点的速度作为分析重点. 4、水上滑梯可简化成如图所示的模型,斜槽AB 和光滑和光滑圆弧槽BC 平滑连接.斜槽AB 的竖直高度差H =6.0 m ,倾角,倾角 θ=37°;圆弧槽BC 的半径R =3.0 m ,末端C 点的切线水平;C 点与水面的距离h =0.80 m .人与AB 间的动摩擦因数μ=0.2,取 重力加速度g =10 m/s 2,cos 37°=0.8,sin 37°=0.6.一个质量m =30 kg 的小朋友从滑梯顶端A 点无初速度地自由滑下,不计空点无初速度地自由滑下,不计空 气阻力.求:气阻力.求:(1)小朋友沿斜槽AB 下滑时加速度a 的大小;的大小;(2)小朋友滑到C 点时速度v 的大小及滑到C 点时受到槽面的支持力F C 的大小;的大小; (3)在从C 点滑出至落到水面的过程中,小朋友在水平方向的位移x 的大小.的大小.答案 (1)4.4 m/s 2(2)10 m/s 1 300 N (3)4 m解析 (1)小朋友沿AB 下滑时,受力情况如图所示,根据牛 顿第二定律得:mg sin θ-F f =ma① 又F f =μF N ② F N =mg cos θ③ 联立①②③式解得:a =4.4 m/s 2④(2)小朋友从A 滑到C 的过程中,根据动能定理得:mgH -F f ·H sin θ+mgR (1-cos θ)=12m v 2-0⑤联立②③⑤式解得:v =10 m/s ⑥根据牛顿第二定律有:F C -mg =m v 2R ⑦联立⑥⑦式解得:F C =1 300 N .⑧(3)在从C 点滑出至落到水面的过程中,小朋友做平抛运动,设此过程经历的时间为t ,则:h =12gt 2 ⑨x =v t ⑩ 联立⑥⑨⑩式解得:x =4 m.5、(2012·福建理综·20)如图所示,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小s =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,取重力加速度g =10 m/s 2.求:求:(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ. 答案 (1)1 m/s (2)0.2解析 (1)物块做平抛运动,在竖直方向上有H =12gt 2① 在水平方向上有s =v 0t ②由①②式解得v 0=sg2H 代入数据得v 0=1 m/s(2)物块离开转台时,由最大静摩擦力提供向心力,有f m =m v 02R③ f m =μN =μmg ④ 由③④式得μ=v 02gR代入数据得μ=0.26、(2010·重庆理综·24)小明站在水平地面上,手握不可伸长的轻绳一小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面的小球,甩动手腕,使球在竖直平面 内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水 平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与,手与球之间的绳长为34d ,重力加速度为g 忽略手的运动半径和空气阻力. (1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?平距离最大,绳长应为多少?最大水平距离为多少?答案 (1)2gd 52gd (2)(2)11113mg(3)d 2 2 33d解析 (1)设绳断后球飞行的时间为t ,由平抛运动规律有竖直方向:14d =12gt 2水平方向:d =v 1t 解得v 1=2gd由机械能守恒定律有12m v 32=12m v 21+mg (d -34d )解得v 2=52gd(2)设绳能承受的最大拉力大小为F max ,这也是球受到绳的最大拉力的大小.球做圆周运动的半径为R =34d由圆周运动向心力公式,有F max -mg =m v 12R 得F max =113mg(3)设绳长为l ,绳断时球的速度大小为v 3.绳承受的最大拉力不变,有F max -mg =m v 32l ,解得v 3=83gl绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1.由平抛运动规律有d -l =12gt 21,x =v 3t 1得x =4 l (d -l )3,当l =d 2时,x 有最大值x max =233d .7、如图所示,一质量为2m 的小球套在一“”滑杆上,小球与滑杆的动摩擦因数为μ=0.5,BC 段为半径为R 的半圆,静止于A 处的小球在大小为F =2mg ,方向与水平面成37°角的拉力F 作用下沿杆运动,到达B 点时立刻撤去F ,小球沿圆弧向上冲并越过C 点后落在D 点(图中未画出),已知D 点到B 点的距离为R ,且AB 的距离为s =10R .试求:试求:(1)小球在C 点对滑杆的压力;点对滑杆的压力;(2)小球在B 点的速度大小;点的速度大小;(3)BC 过程小球克服摩擦力所做的功.过程小球克服摩擦力所做的功.答案 (1)32mg ,方向竖直向下,方向竖直向下 (2)23gR (3)31mgR4解析 (1)小球越过C 点后做平抛运动,有竖直方向:2R =12gt 2①水平方向:R =v C t ② 解①②得v C =gR 2在C 点对小球由牛顿第二定律有:2mg -F N C =2m v C 2R解得F N C =3mg2由牛顿第三定律有,小球在C 点对滑杆的压力F N C ′=F N C =3mg2,方向竖直向下(2)在A 点对小球受力分析有:F N +F sin 37°=2mg③ 小球从A 到B 由动能定理有:F cos 37°cos 37°··s -μF N ·s =12·2m v 2B ④解③④得v B =23gR(3)BC 过程对小球由动能定理有:-2mg ·2R -W f =12×2m v 2C -12×2m v 2B解得W f =31mgR48、如图所示,质量为m =1 kg 的小物块由静止轻轻放在水平匀速运动的传送带上,从A 点随传送带运动到水平部分的最右端B 点,经半圆轨道C 点沿圆弧切线进入竖直光滑的半圆轨道,恰能做圆周运动.C 点在B 点的正上方,D 点为轨道的最低点.小物块离开D 点后,做平抛运动,恰好垂直于倾斜挡板打在挡板跟水平面相交的E 点.已知半圆轨道的半径R =0.9 m ,D 点距水平面的高度h =0.75 m ,取g =10 m/s 2,试求:,试求:(1)摩擦力对小物块做的功;摩擦力对小物块做的功;(2)小物块经过D 点时对轨道压力的大小;点时对轨道压力的大小; (3)倾斜挡板与水平面间的夹角θ.答案 (1)4.5 J (2)60 N ,方向竖直向下,方向竖直向下 (3)60°解析 (1)设小物块经过C 点时的速度大小为v 1,因为经过C 点恰能做圆周运动,所以,由牛顿第二定律得:mg =m v 12R解得:v 1=3 m/s小物块由A 到B 的过程中,设摩擦力对小物块做的功为W ,由动能定理得:W =12m v 21解得:W =4.5 J(2)设小物块经过D 点时的速度大小为v 2,对从C 点运动到D 点的过程,由机械能守恒 定律得: 12m v 21+mg ·2R =12m v 22 小物块经过D 点时,设轨道对它的支持力大小为F N ,由牛顿第二定律得:F N -mg =m v 22R联立解得:F N =60 N由牛顿第三定律可知,小物块经过D 点时对轨道的压力大小为: F N ′=F N =60 N ,方向竖直向下(3)小物块离开D 点后做平抛运动,设经时间t 打在E 点,由h =12gt 2得:t =1510 s设小物块打在E 点时速度的水平、竖直分量分别为v x 、v y ,速度跟竖直方向的夹角为α, 则: v x =v 2 v y =gt tan α=v x v y解得:tan α= 3 所以:α=60°由几何关系得:θ=α=60°60°. .9、水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,相切,一小球以初速度v 0沿直轨道向右运动.沿直轨道向右运动.如图如图3所示,所示,小球进入圆小球进入圆小球进入圆 形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的点,然后小球做平抛运动落在直轨道上的 d 点,则点,则( ) A .小球到达c 点的速度为gRB .小球到达b 点时对轨道的压力为5mgC .小球在直轨道上的落点d 与b 点距离为2RD .小球从c 点落到d 点所需时间为2 Rg答案 ACD解析 小球在c 点时由牛顿第二定律得:mg =m v c 2R ,v c =gR ,A 项正确; 小球由b 到c 过程中,由机械能守恒定律得:12m v 2B =2mgR +12m v 2c 小球在b 点,由牛顿第二定律得:F N -mg =m v b 2R ,联立解得 F N=6mg ,B 项错误;小球由c 点平抛,在平抛运动过程中由运动学公式得:x =v c t,2R =12gt 2.解得t =2R g ,x =2R ,C 、D 项正确.1010、如图所示,、如图所示,P 是水平面上的圆弧凹槽.从高台边B 点以某速度点以某速度v 0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左 端A 点沿圆弧切线方向进入轨道.O 是圆弧的圆心,θ1是OA 与 竖直方向的夹角,θ2是BA 与竖直方向的夹角.则与竖直方向的夹角.则( )A .tan θ2tan θ1=2B .tan θ1·tan θ2=2C .1tan θ1·tan θ2=2 D .tan θ1tan θ2=2 答案 B解析 由题意可知:tan θ1=v y v x =gtv 0,tan θ2=x y =v 0t 12gt 2=2v 0gt,所以tan θ1·tan θ2=2,故B 正确.11、如图所示,在水平匀速运动的传送带的左端(P 点),轻放一质量为m =1 kg 的物块,物块随传送带运动到A 点后水平抛出,物块恰好无碰撞的沿圆弧切线从B 点进入竖直光滑圆弧轨道下滑.B 、D 为圆弧的两端点,其连线水平.已知圆弧半径R =1.0 m ,圆弧对应的圆心角θ=106°,轨道最低点为C ,A 点距水平面的高度h =0.8 m(g 取10 m/s 2,sin 53°=0.8,cos 53°=0.6)求:求:(1)物块离开A 点时水平初速度的大小;点时水平初速度的大小; (2)物块经过C 点时对轨道压力的大小;点时对轨道压力的大小;(3)设物块与传送带间的动摩擦因数为0.3,传送带的速度为5 m/s ,求P A 间的距离.间的距离. 答案 (1)3 m/s (2)43 N (3)1.5 m解析 (1)物块由A 到B 在竖直方向有v 2y =2ghv y =4 m/s在B 点:tan θ2=v yv A ,v A =3 m/s(2)物块从B 到C 由功能关系得mgR (1-cos θ2)=12m v 2C -12m v 2Bv B =v A 2+v y 2=5 m/s 解得v 2C =33 m 2/s 2 在C 点:F N -mg =m v C 2R由牛顿第三定律知,物块经过C 点时对轨道压力的大小为F N ′=F N =43 N(3)因物块到达A 点时的速度为3 m/s ,小于传送带速度,故物块在传送带上一直做匀加速直线运动 μmg =ma , a =3 m/s 2 P A 间的距离x P A =v A 22a=1.5 m. 1212、如图所示,半径、如图所示,半径R =1.0 m 的光滑圆弧轨道固定在竖直平面的光滑圆弧轨道固定在竖直平面内,轨道的一个端点B 和圆心O 的连线与水平方向间的夹角的连线与水平方向间的夹角θ= 37°,另一端点C 为轨道的最低点.C 点右侧的水平路面点右侧的水平路面 上紧挨C 点放置一木板,木板质量M =1 kg ,上表面与C 点 等高.质量m =1 kg 的物块(可视为质点)从空中A 点以点以v 0=1.2 m/s 的速度水平抛出,恰好从轨道的B 端沿切线方向进入轨道.端沿切线方向进入轨道.已知物块与木板间的动摩擦因数μ1=0.2,木板与路面间的动摩擦因数μ2=0.05,sin 37° =0.6,cos 37°=0.8,取g =10 m/s 2.试求:试求: (1)物块经过轨道上的C 点时对轨道的压力;点时对轨道的压力;(2)设木板受到的最大静摩擦力跟滑动摩擦力相等,则木板至少多长才能使物块不从木板上滑下?板上滑下?答案 (1)46 N (2)6 m解析 (1)设物块经过B 点时的速度为v B ,则 v B sin 37°=v 0设物块经过C 点的速度为v C ,由机械能守恒得: 12m v 2B +mg (R +R sin 37°sin 37°))=12m v 2C 物块经过C 点时,设轨道对物块的支持力为F C ,根据牛顿第二定律得:F C -mg =m v C 2R 联立解得:F C =46 N由牛顿第三定律可知,物块经过圆轨道上的C 点时对轨道的压力为46 N(2)物块在木板上滑动时,设物块和木板的加速度大小分别为a 1、a 2,得:μ1mg =ma 1 μ1mg -μ2(M +m )g =Ma 2设物块和木板经过时间t 达到共同速度v ,其位移分别为x 1、x 2,则:对物块有: v C -a 1t =v v 2-v 2C =-2a 1x 1 对木板有:a 2t =v v 2=2a 2x 2设木板长度至少为L ,由题意得:L ≥x 1-x 2 联立解得:L ≥6 m即木板长度至少6 m 才能使物块不从木板上滑下.1313、某校物理兴趣小组决定举行遥控赛车比赛.比赛路径如图、某校物理兴趣小组决定举行遥控赛车比赛.比赛路径如图7所示,示,赛车从起点赛车从起点A 出发,出发,沿水平直线轨道运动沿水平直线轨道运动L 后,由B 点进入点进入 半径为R 的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直离开竖直圆轨道后继续在光滑平直 轨道上运动到C 点,并能越过壕沟.已知赛车质量m =0.1 kg ,通电后以额定功率P =1.5 W 工作,进入竖直轨道前受到的阻力工作,进入竖直轨道前受到的阻力 恒为0.3 N ,随后在运动中受到的阻力均可不计.图中L =10.00 m , R =0.32 m ,h =1.25 m ,x =1.50 m .问:要使赛车完成比赛,电动.问:要使赛车完成比赛,电动 机至少工作多长时间?(取g =10 m/s 2)答案 2.53 s解析 设赛车越过壕沟需要的最小速度为v 1,由平抛运动的规律x =v 1t ,h =12gt 2解得v 1=x g2h=3 m/s设赛车恰好越过圆轨道,对应圆轨道最高点的速度为v 2,最低点速度为v 3,由牛顿运动定律及机械能守恒定律得 mg =m v 22/R 12m v 23=12m v 22+mg (2R ) 解得v 3=5gR =4 m/s通过分析比较,赛车要完成比赛,在进入圆轨道前的速度最小应该是v min =4 m/s 设电动机工作时间至少为t ,根据功能关系,有Pt -F f L =12m v 2min ,由此解得t =2.53 s。
导航卷四平抛运动与圆周运动满分:60分时间:50分钟一、选择题(共7小题,每小题4分,共28分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2015·山东理综,14)距地面高5 m的水平直轨道上A、B两点相距2 m,在B点用细线悬挂一小球,离地高度为h,如图。
小车始终以4 m/s的速度沿轨道匀速运动,经过A点时将随车携带的小球由轨道高度自由卸下,小车运动至B 点时细线被轧断,最后两球同时落地。
不计空气阻力,取重力加速度的大小g=10 m/s2。
可求得h等于()A.1.25 m B.2.25 m C.3.75 m D.4.75 m 2.(2015·浙江理综,17)如图所示为足球球门,球门宽为L。
一个球员在球门中心正前方距离球门s处高高跃起,将足球顶入球门的左下方死角(图中P点)。
球员顶球点的高度为h,足球做平抛运动(足球可看成质点,忽略空气阻力),则()A.足球位移的大小x=L24+s2B.足球初速度的大小v0=g2h(L24+s2)C.足球末速度的大小v=g2h(L24+s2)+4ghD .足球初速度的方向与球门线夹角的正切值tan θ=L 2s 3.(2015·新课标全国卷Ⅰ,18)一带有乒乓球发射机的乒乓球台如图所示。
水平台面的长和宽分别为L 1和L 2,中间球网高度为h 。
发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h 。
不计空气的作用,重力加速度大小为g 。
若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )A.L 12g 6h <v <L 1g 6h B.L 14g h <v <(4L 21+L 22)g 6h C.L 12g 6h <v <12(4L 21+L 22)g 6h D.L 14g h <v <12(4L 21+L 22)g 6h4.(2015·天津理综,4)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示。
热点专题讲座(三)
1.荡秋千一直是小朋友们喜爱的运动项目,秋千上端吊环之间不断磨损,承受拉力逐渐减小.如图所示,一质量为m 的小朋友在吊绳长为l 的秋千上,如果小朋友从与吊环水平位置开始下落,运动到最低点时,吊绳突然断裂,小朋友最后落在地板上.如果吊绳的长度l 可以改变,则( )
A .吊绳越长,小朋友在最低点越容易断裂
B .吊绳越短,小朋友在最低点越容易断裂
C .吊绳越长,小朋友落地点越远
D .吊绳长度是吊绳悬挂点高度的一半时,小朋友落地点最远
2.一位同学做飞镖游戏,已知圆盘的直径为d ,飞镖距圆盘为L ,且对准圆盘上边缘的A 点水平抛出,初速度为v 0,飞镖抛出的同时,圆盘以垂直圆盘过盘心O 的水平轴匀速运动,角速度为ω.若飞镖恰好击中A 点,则下列关系正确的是( )
A .d v 20=L 2
g
B .ωL =π(1+2n )v 0,(n =0,1,2,3,…)
C .v 0=ωd 2
D .dω2
=g π2
(1+2n )2
,(n =0,1,2,3,…)
3.(多选)如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r =0.4 m ,最低点处有一小球(半径比r 小很多)现给小球一水平向右的初速度v 0,则要使小球不脱离圆轨道运动,v
0应当满足(g =10 m/s 2)( )
A .v 0≥0
B .v 0≥4 m/s
C .v 0≥2 5 m/s
D.v 0≤2 2 m/s
4.如图所示,水平地面与一半径为l 的竖直光滑圆弧轨道相接于B 点,轨道上的C 点位置处于圆心O 的正下方.在距地面高度为l 的水平平台边缘上的A 点,质量为m 的小球以v 0=2gl 的速度水平飞出,小球在空中运动至B 点时,恰好沿圆弧轨道在该点的切线方向滑入轨道.小球运动过程中空气阻力不计,重力加速度为g ,试求:
(1)B 点与抛出点A 正下方的水平距离x ;
(2)圆弧BC 段所对的圆心角θ; (3)小球滑到C 点时,对圆轨道的压力.
1.解析:选D 据机械能守恒定律,小朋友下摆过程有mgl =12
m v 2
,在最低点小朋友对
吊绳的拉力有T -mg =m v
2l
,所以T =3mg ,可见吊绳断裂情况与吊绳长短无关,选项A 、B
错误.吊绳断裂后,小朋友做平抛运动,设吊绳的悬挂点为O 点,且O 点距地面距离为H ,
则有H -l =1
2
2,平抛运动的水平位移x =v t ,整理得x =2(H -l )l ,所以当吊绳长度是吊
绳悬挂点高度的一半时,小朋友落地点最远,选项D 正确.
2.解析:选B 依题意飞镖做平抛运动的同时,圆盘上A 点做匀速圆周运动,恰好击中
A 点,说明A 正好在最低点被击中,则A 点转动的时间t =(2n +1)πω,平抛的时间t =L
v 0
,则
有L v 0
=(2n +1)πω,B 正确,C 错误;平抛的竖直位移为d ,则d =122,联立有dω2=12g π2(2n
+1)2,A 、D 错误.
3.解析:选CD 解决本题的关键是全面理解“小球不脱离圆轨道运动”所包含的两种情况:(1)小球通过最高点并完成圆周运动;(2)小球没有通过最高点,但小球没有脱离圆轨道.
对于第(1)种情况,当v 0较大时,小球能够通过最高点,这时小球在最高点处需要满足
的条件是mg ≤m v 2
/r ,又根据机械能守恒定律有12m v 2+2mgr =12
m v 20,可求得v 0≥2 5 m/s ,
故选项C 正确;对于第(2)种情况,当v 0较小时,小球不能通过最高点,这时对应的临界条
件是小球上升到与圆心等高位置处,速度恰好减为零,根据机械能守恒定律有mgr =12
m v 2
0,
可求得v 0≤2 2 m/s ,故选项D 正确.
4.解析:(1)设小球做平抛运动到达B 点的时间为t ,由平抛运动规律,l =12
gt 2
,x =v 0t ,
联立解得x =2l .
(2)由小球到达B 点时竖直分速度v 2
y =2gl ,tan θ=v y /v 0,解得θ=45°.
(3)小球从A 运动到C 点的过程中机械能守恒,设到达C 点时速度大小为v C ,有机械能守恒定律,
mgl (1+1-22)=12m v 2C -12
m v 2
0,
设轨道对小球的支持力为F ,有:F -mg =m v 2C
l
,
解得:F =(7-2)mg ,
由牛顿第三定律可知,小球对圆轨道的压力大小为F ′=(7-2)mg ,方向竖直向下. 答案:(1)2l (2)45° (3)(7-2)mg 竖直向下。