高中物理 匀速圆周运动实例总结解剖
- 格式:ppt
- 大小:6.96 MB
- 文档页数:8
匀速圆周运动专题从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动的综合问题打下良好的基础。
(一)基础知识1. 匀速圆周运动的基本概念和公式(1)线速度大小,方向沿圆周的切线方向,时刻变化;(2)角速度,恒定不变量;(3)周期与频率;(4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同;(5)线速度与角速度的关系为,、、、的关系为。
所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。
2. 质点做匀速圆周运动的条件(1)具有一定的速度;(2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。
合力(向心力)与速度始终在一个确定不变的平面内且一定指向圆心。
3. 向心力有关说明向心力是一种效果力。
任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。
做匀速圆周运动的物体,向心力就是物体所受的合力,总是指向圆心;做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变,所以向心力不一定是物体所受的合外力。
(二)解决圆周运动问题的步骤1. 确定研究对象;2. 确定圆心、半径、向心加速度方向;3. 进行受力分析,将各力分解到沿半径方向和垂直于半径方向;4. 根据向心力公式,列牛顿第二定律方程求解。
基本规律:径向合外力提供向心力,,则,由,,所以,故,2. 水平面内的圆周运动转盘:物体在转盘上随转盘一起做匀速圆周运动,物体与转盘间分无绳和有绳两种情况。
无绳时由静摩擦力提供向心力;有绳要考虑临界条件。
例1:如图2所示,水平转盘上放有质量为m的物体,当物块到转轴的距离为r时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。
物体和转盘间的最大静摩擦力是其正压力的倍。
匀速圆周运动的实例分析匀速圆周运动的实例分析一. 教学内容:匀速圆周运动的实例分析二. 具体知识:知识点1 火车、汽车、飞机等的转弯1. 火车转弯(1)火车车轮的结构特点火车的车轮有凸出的轮缘,且火车在轨道上运行时,有凸出轮缘的一边在两轨道内侧,这种结构特点,主要是有助于固定火车运动的轨迹(如图所示)。
(2)如果转弯处内外轨一样高,外侧车轮的轮缘挤压外轨,使外轨发生弹性形变,外轨对轮缘的弹力就是火车转弯的向心力,如图所示,但火车质量太大,单靠这种办法得到向心力,轮缘与外轨间的相互作用力太大,铁轨和车轮极易受损。
(3)如果在转弯处使外轨略高于内轨,火车转弯时铁轨对火车的支持力的方向不再是竖直的,而是斜向弯道的内侧,它与重力G的合力指向圆心,为火车转弯提供了一部分向心力,这就减轻了轮缘与外轨的挤压,在修筑铁路时,要根据弯道的半径和规定的行驶速度,适当选择内外轨的高度差,使转弯时所需的向心力几乎完全由重力G和支持力的合力来提供(如图所示)。
设内外轨间的距离为L,内外轨的高度差为h,火车转弯的半径为R,火车转弯的规定速度为,由图得向心力为,由牛顿第二定律得,所以。
即火车转弯的规定速度。
(4)对火车转弯时速度与向心力的讨论a. 当火车以规定速度转弯时,等于向心力,这时轮缘与内、外轨均无侧压力。
b. 当火车转弯速度时,小于向心力,外轨向内挤压轮缘,提供侧压力,与共同充当向心力。
c. 当火车转弯速度时,大于向心力,内轨向外挤压轮缘,产生的侧压力与共同充当向心力。
2. 汽车转弯在水平公路上行驶的汽车,转弯时所需的向心力,是由车轮与路面间的静摩擦力提供的,即,因为静摩擦力最大不能超过最大静摩擦力,故要求车子转弯时,车速不能太大和转弯半径不能太小。
思考:在高速公路的转弯处,路面造得外高内低是什么原因?3. 飞机转弯飞机在空中转弯时,其机翼是倾斜的,飞机受到竖直向下的重力和垂直于机翼的升力作用,其合力提供转弯所需要的向心力。
第4课时 匀速圆周运动实例分析基础知识1.圆周运动的动力学问题做匀速圆周运动的物体所受合外力提供向心力,即F 合=F 向,或F 合=2v m r =2m r ω=224m r Tπ。
注意:匀速圆周运动解题步骤:⑴明确研究对象,确定它在哪个平面内做圆周运动,找出圆心和半径⑵确定研究对象在某位置(某时刻)所处状态,进行受力分析,作出受力分析图,找出向心力的来源⑶根据向心力公式F 向= m ω2r=m v 2/r=m ωv=m (2π/T )2r 列方程,取“向心”方向为正⑷检查结果的合理性,并进行必要的分析讨论。
2、匀速圆周运动的实例分析 (1)汽车过拱桥:汽车通过拱形桥时的运动可以看做圆周运动,质量为m 的汽车以速度v 通过拱形桥最高点时,若桥面的圆弧半径为R ,则此时汽车对拱桥的压力为多大?,压力为零,汽车开始做平抛运动(2)旋转秋千---圆锥摆小球做圆锥摆运动时细绳长L ,与竖直方向成θ角,求小球做匀速圆周运动的角速度ω。
(3)火车拐弯问题: 由于火车的质量比较大,火车拐弯时所需的向心力就很大。
如果铁轨内外侧一样高,则外侧轮缘所受的压力很大,容易损坏;实用中使外轨略高于内轨,从而重力,铁轨支持力和侧向压力的合力提供火车拐弯时所需的向心力。
如图,内外轨间的距离为d ,内外轨的高度差为h注意:若火车实际速度大于v 0,则 轨将受到侧向压力,若火车实际速度小于v 0,则 轨将受到侧向压力。
2.竖直平面内的圆周运动中的临界问题(1)轻绳模型: 一轻绳系一小球在竖直平面内做圆周运动。
小球能到达最高点(刚好做圆周运动)的条件是小球的重力恰好提供向心力,即2v mg m R=,这时的速度是做圆周运动的最小速度min v 。
(2)轻杆模型: 一轻杆系一小球在竖直平面内做圆周运动,小球能到达最高点(刚好做圆周运动)的条件是在最高点的速度v ≥0. (1)当0v =时,杆对小球的支持力等于小球的重力; (2)当0v <<时,杆对小球的支持力小于小球的重力;(3)当v = (4)当v >针对训练:如图所示,杆长为L ,杆的一端固定一质量为m 的小球,杆的质量忽略不计,整个系统绕杆的另一端在竖直平面内的作圆周运动,求:(1)小球在最高点时速率v A为多大时,才能使杆对小球m 的作用力为零?(2)如m=0.5kg ,L=0.5m ,v A =0.4m/s ,则在最高点A 时,杆对小球m 的作用力是多大?是推力还是拉力?(3)当小球在最高点时的速度为4m/s 时,杆对球的作用力是多大?是推力还是拉力?重点难点例析一、圆周运动的动力学问题解决有关圆周运动的动力学问题,首先要正确对做圆周运动的物体进行受力分析,必要时建立坐标系,求出物体沿半径方向的合外力,即物体做圆周运动时所能提供的向心力,再根据牛顿第二定律等规律列方程求解。