六年级数学空间与图形(文档)
- 格式:docx
- 大小:36.15 KB
- 文档页数:10
空间与图形一、填空。
1、直线上两点间的一段叫( ),线段有( )个端点,把线段的一端无限延长就得到一条( )。
2、1平角=( )直角 1周角=( )平角=( )直角3、观察一个长方体,一次最多能看到 ( )面。
4、等腰三角形有( )条对称轴;长方形有( )条对称轴;正方形有( )条对称轴;圆有( )条对称轴,扇形有( )条对称轴。
5、在平面上画圆,圆心决定圆的( ),半径决定圆的( )。
6、画圆时,圆规两脚张开的距离是所画圆的( )。
7、下列图形,能画几条对称轴?8、从正面、右面和上面看到的都是的物体,它一定是由()个小正方体摆成的。
9、观察下面用4个正方体搭成的图形,并填一填。
(1)从正面看到的图形是的有 。
(2)从侧面看到的图形是的有 。
10、工人叔叔把电线杆上的线架和自行车架子做成三角形,这是应用了三角形具有( )的特征,而推拉防盗门则是由许多小平行四边形组成的,这是应用平行四边形( )的特性。
11、等边三角形的每个内角都是( )度,等腰直角三角形的两个底角都是( )度。
12、把一根圆柱形木料截成3段,表面积增加了45.12cm 2,这根木料的底面积是( )cm 2。
13、一个圆锥体的底面半径是6cm ,高是1dm ,体积是( )cm 3。
14、把一个圆柱体钢坯削成一个最大的圆锥体,要削去 1.8 cm 3,未削前圆柱的体积是( )cm 3。
15、一个圆柱体的侧面展开后,正好得到一个边长25.12 cm 的正方形,圆柱体的高是( )cm ,底面半径是( )cm 。
16、等底等高的圆柱和圆锥,体积的和是72 dm 3,圆柱的体积是( ),圆锥的体积是( )。
17、三角形三个角度数的比是2:4:3,最大的角是( )。
18、一个三角形底是3dm ,高是4dm ,它的面积是( )。
19、一个平行四边形的底长18cm ,高是底的12,它的面积是( )。
20、一个直径4cm 的半圆形,它的周长是( ),它的面积是( )。
第2课时空间与图形◆教学内容冀教版小学数学六年级上册第96~104页。
◆教学目标1.认识圆和扇形,会画圆;掌握圆的周长和面积公式,会求圆的周长和面积。
2.能利用方格纸按一定的比例将简单图形放大或缩小。
3.了解比例尺,在具体情境中按给定的比例进行图上距离与实际距离的计算。
在学习的过程中感受数学的价值,提高学习的兴趣。
重点、难点重点理解圆的面积公式的推导过程,掌握圆的周长和面积的计算公式。
理解比例尺的含义。
难点培养学生动手操作、抽象概括的能力,能运用所学知识解决简单的实际问题。
◆教学准备教师准备:多媒体课件一套。
学生准备:圆规,直尺,铅笔。
◆教学过程(一)复习:一、复习圆的知识1.圆的认识、特征和画法。
师:我们在学习圆时,学了与圆有关的哪些概念?学生回答出圆心、半径、直径的概念及用字母的表示。
师:圆有哪些特征?圆有( )条直径,有( )条半径。
在同圆或等圆中所有半径都( ),所有盲径都( )。
在同一个圆里,直径等于半径的( )。
圆是( )图形,它有( )条对称轴。
师:画圆的工具是什么?生:圆规。
课件出示复习题。
(1)画圆时( )决定圆的位置,( )决定圆的大小。
(2)分别画一个半径是2 cm和直径是6 cm的圆。
设计意图:注意基础知识和基本技能的考查。
肯定学生的回答并及时鼓励,调动学生学习热情。
2.圆的周长和面积。
师:什么是圆周率?生:圆的周长与直径的比值是圆周率。
师:圆的周长公式是什么?生:C=πd或C=2πr。
课件出示复习题。
求下面圆的周长。
(1)d=12cm (2)r=8cm师:如何求圆的面积?生:S=πr2。
课件出示复习题。
只列式不计算。
(1)一个圆形铁板半径是5分米,它的面积是多少平方分米?(2)一个圆形铁板的直径是6分米,它的面积是多少平方分米?(3)一个圆形铁板的周长是28.26分米,它的面积是多少平方分米?设计意图:教师的提问唤起学生对所学知识的回忆,并用练习的方式巩固所学。
3.基本练习。
六年级上册数学教案第3课时空间与图形(人教版)作为一名经验丰富的教师,我对于六年级上册数学教案第3课时空间与图形(人教版)有着深入的理解和独到的见解。
下面,我将按照教学内容、教学目标、教学难点与重点、教具与学具准备、教学过程、板书设计、作业设计以及课后反思及拓展延伸的顺序,为您详细阐述我的教学思路和方法。
一、教学内容本节课的教学内容主要包括人教版六年级上册数学教材的第3课时空间与图形。
在这一章节中,学生将学习长方体和正方体的特征,包括它们的面的数量、形状和大小,以及它们的对角线长度等。
学生还将学习如何计算长方体和正方体的体积,以及如何利用这些知识解决实际问题。
二、教学目标1. 知识与技能:使学生能够掌握长方体和正方体的特征,包括它们的面的数量、形状和大小,以及它们的对角线长度等。
2. 过程与方法:通过观察、操作、想象和推理等数学活动,培养学生的空间观念和逻辑思维能力。
3. 情感态度价值观:激发学生对数学的兴趣和好奇心,培养学生积极主动探索问题的习惯。
三、教学难点与重点本节课的教学难点主要是长方体和正方体的体积计算方法,以及如何利用这些知识解决实际问题。
教学重点则是长方体和正方体的特征,包括它们的面的数量、形状和大小,以及它们的对角线长度等。
四、教具与学具准备1. 教具:长方体和正方体的模型、卡片、直尺、圆规等。
2. 学具:学生每人一份长方体和正方体的模型、卡片、直尺、圆规等。
五、教学过程1. 实践情景引入:我拿出一个长方体和正方体的模型,让学生观察并描述它们的特点。
2. 知识讲解:我通过卡片、直尺、圆规等教具,向学生讲解长方体和正方体的特征,包括它们的面的数量、形状和大小,以及它们的对角线长度等。
3. 例题讲解:我通过一个具体的例题,向学生讲解如何计算长方体和正方体的体积。
4. 随堂练习:我给出几个计算长方体和正方体体积的题目,让学生独立完成。
5. 解决问题:我给学生出一个实际问题,让他们利用所学的知识解决。
小学数学新课程标准教材数学教案( 2019 — 2020学年度第二学期 )学校:年级:任课教师:数学教案 / 小学数学 / 小学六年级数学教案编订:XX文讯教育机构总复习空间与图形平面图形的认识(2)教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于小学六年级数学科目, 学习后学生能得到全面的发展和提高。
本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。
教学内容:义务教育课程标准实验教科书97-98页“整理与反思”和“练习与实践”7-10题。
教学目标:1、通过复习,使学生加深对长方形.正方形.平行四边形.梯形.三角形和圆等平面图形基本特征的认识。
2、能用所学的知识解决一些简单的实际问题。
教学重点、难点:用所学的知识解决一些简单的实际问题。
教学设计:一、整理与复习1.提出要求:请大家回忆,我们学过哪些围成的平面图形?先画出相关的图形,再在小组里交流一下。
2.进一步要求;如果把这些平面图形分成两类,可以怎样分?引导学生认识到:由线段围成的平面图形分为一类,由曲线或由曲线和线段共同围成平面图形分为一类。
3.追问:由线段围成的平面图形都可称为什么图形?如果把多边形进一步分类,可以怎样分?4.让学生在画出的三角形.平行四边形和梯形上作高,在画出的圆中用字母标出圆心.半径和直径。
二、复习三角形的知识1、三角形的概念。
“我们已经学过三角形,请同学们自己画出几种不同的三角形。
”教师巡视。
“大家已经会画三角形了,说一说三角形是什么样的图形。
”(三角形是由三条线段围成的图形。
)“三角形具有什么特性?日常生活中哪些地方用到这一特性?”“在三角形中一个顶点的对边是哪一条边?看一看自己画的三角形,指一下每个顶点的对边。
”“想一想三角形的高指的是什么,怎样画一个三角形的高。
”教师巡视,检查学生的画法是否正确。
2、三角形的分类。
六年级数学空间与图形试题答案及解析1.你有多少种方法将任意一个三角形分成:⑴ 3个面积相等的三角形;⑵ 4个面积相等的三角形;⑶6个面积相等的三角形.【答案】(1)(2)(3)【解析】⑴如下图,D、E是BC的三等分点,F、G分别是对应线段的中点,答案不唯一:⑵如下图,答案不唯一,以下仅供参考:⑶如下图,答案不唯一,以下仅供参考:2.如图,三角形的面积为1,其中,,三角形的面积是多少?【答案】4【解析】连接,∵,∴,又∵,∴.3.如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形的面积;⑵?【答案】6;1:3【解析】⑴根据蝴蝶定理,,那么;⑵根据蝴蝶定理,.4.如图,平行四边形的对角线交于点,、、、的面积依次是2、4、4和6.求:⑴求的面积;⑵求的面积.【答案】2/3【解析】⑴根据题意可知,的面积为,那么和的面积都是,所以的面积为;⑵由于的面积为8,的面积为6,所以的面积为,根据蝴蝶定理,,所以,那么.5.(仙游县)如图中平行四边形ABCD的面积是32平方厘米,AE=5厘米,CE=4厘米,求阴影部分的面积.【答案】阴影部分的面积是6平方厘米.【解析】分析:观察图与题意,知道平行四边形ABCD的面积是AD×CE=32平方厘米,由此用32÷CE求出AD的长度,再减去AE的长度就是ED的长度;再根据三角形的面积公式S=ah,即可求出阴影部分的面积.解答:解:AD的长度:32÷4=8(厘米),ED的长度:8﹣5=3(厘米),阴影部分的面积是:×ED×CE=×3×4=6(平方厘米),答:阴影部分的面积是6平方厘米.点评:此题主要考查了平行四边形的面积公式与三角形的面积公式的灵活应用.6.(2013•东莞市)如图是一个直角三角形.(单位:厘米)①用两个这样的三角形拼成一个平行四边形,要使拼成的平行四边形周长最长,怎样拼?请在方格中画图(每格表示1厘米)表示你的拼法.②拼成的平行四边形的周长是厘米,面积是平方厘米.【答案】18,12【解析】(1)要使拼成的平行四边形周长最长就把最短的边3厘米的对在一起就可以;(2)根据拼成的图形可知:平行四边形边的长度分别是2个4厘米,2个5厘米,由此求出周长;原来的是三角形是一个直角三角形,它的两个直角边相互垂直,所以它的底是4厘米,高是3厘米,由此求出面积.解答:解:(1)拼法如下:(2)周长:(4+5)×2,=9×2,=18(厘米);面积:4×3=12(平方厘米);故答案为:18,12.点评:本题关键是拼出图形,理解把最短的边拼在一起周长最大.7.(西乡县)求出下面三角形中各角的度数.∠1=°;∠2=°.【答案】60,30【解析】(1)因为三角形的内角和是180°,所以∠1=180°﹣90°﹣30°;(2)因为65度角和三角形里面的一个角组成直角,所以这个角=180°﹣65°,又因为三角形的内角和是180°,所以∠2=180°﹣(180﹣65°)﹣35°,计算即可.解答:解:(1)∠1=180°﹣90°﹣30°=60°;(2)∠2=180°﹣35°﹣(180°﹣65°)=30°.故答案为:60;30.点评:解决本题的关键是根据三角形的内角和是180°.8.(南山区)量出需要的数据,计算梯形的周长和面积.【答案】梯形的周长是10厘米,面积是5.1平方厘米【解析】测量出梯形的各个腰和底以及高的长度,使用梯形的周长和面积公式可直接进行计算.解答:解:由测量得知,梯形的上底是2厘米,腰是2厘米,下底是4厘米,高是1.7厘米.周长:2+2+2+4=10(厘米);面积:(2+4)×1.7÷2,=6×1.7÷2,=5.1(平方厘米);答:梯形的周长是10厘米,面积是5.1平方厘米.点评:准确测量梯形的上下底、腰、高的长度,正确使用梯形的周长和面积公式.9.(旅顺口区)在如图中按要求操作.(1)画出梯形的高,测量高cm(精确到0.1cm);(2)画一条线段,把梯形变成一个平行四边形和一个三角形;(3)测量∠A=.【答案】(1)2.1;(2)(3)115°【解析】(1)过梯形上底的一个顶点向下底作垂线,顶点和垂足之间的线段就是梯形形的一条高;用刻度尺即可度量出这条高的长度.(2)过三角形上底的一个顶点,作另一腰的平行线,交梯形下底于一点,即可把梯形变成一个平行四边形和一个三角形.(3)把量角器的0°刻度线与∠A的一边重合,顶点与量角器的中心重合,另一边与量角器的刻度线重合,量角器的读数就是这个角的度数.解答:解:(1)画梯形的高如下图,经测量,高是2.1cm;(2)画线如下图,线段BE把梯形ABCD分成平行四边ADEB和三角形BEC;(3)经测量,∠A=115°;故答案为: 2.1,115°.点评:本题是考查作梯形的高、线段的度量、角的度量等.注意,画图形的高时要有虚线;度量角时,注意“三重合”.10.(葫芦岛)在图中画三个与涂色三角形面积相等、形状不同的图形,其中一条边必须在BC上.【答案】【解析】根据等底同高的三角形的面积相等,所以过A点做BC的平行线,在平行线上任找一点,与B、C两点连接即可.解答:解:由分析作图如下:点评:本题主要是根据等底同高的三角形的面积相等,确定作图的方法.11.(2013•广州)如图所示,求甲比乙的面积少多少平方厘米?【答案】甲比乙的面积少3平方厘米【解析】根据图形可知,甲加上空白梯形的面积是长6厘米,宽4厘米的长方形的面积,乙加上空白梯形的面积是一个底6厘米,高(4+5)厘米的三角形,而甲与乙的面积差即是大三角形与长方形的面积差.据此解答.解答:解:6×(4+5)÷2﹣6×4=6×9÷2﹣24=27﹣24=3(平方厘米);答:甲比乙的面积少3平方厘米.点评:本题考查了几何问题中的等量代换,即根据两个面积同时加上或减去相同的面积,差不变.12.(2012•成都)如图,E是平行四边形ABCD边CD的中点,AC和BE相交于F,如果△EFC的面积是1平方厘米,则平行四边形ABCD的面积是平方厘米.【答案】12【解析】试题分许:要求平行四边形的面积,如图,根据三角形和平行四边形的面积公式可得:只要求出△ABC的面积即可(△ABC=△BFA+△BFC);利用△EFC的面积是1平方厘米,根据相似三角形的性质可以求得△BFA和△BFC的面积,分析如下:根据相似三角形的定义可知,在平行四边形内,△EFC和△BFA相似:(1)因为E是CD的中点,所以相似比是1:2,根据相似三角形的性质可得:面积的比是:1:4,由此即可求得△BFA的面积为:4×1=4平方厘米;(2)因为EF:BF=1:2,(相似三角形的对应边成比例),根据高相等时,三角形的面积与底成正比的关系可得:△EFC与△BFC的面积比是1:2,由此即可得出△BFC的面积:2×1=2平方厘米;综上所述,即可求得△ABC的面积,从而求出平行四边形的面积.解答:解:根据题干分析可得:△EFC和△BFA相似,相似比是1:2,(1)相似三角形的面积比等于相似比的平方,所以它们的面积比是1:4,所以△BFA的面积为:4×1=4(平方厘米),(2)又因为EF:BF=1:2,所以△BFC的面积为:2×1=2(平方厘米),(3)故△ABC的面积为:4+2=6(平方厘米),6×2=12(平方厘米),答:平行四边形ABCD的面积是12平方厘米.故答案为:12.点评:此题考查了利用相似三角形的面积比等于相似比的平方以及高一定时,三角形的面积与底成正比的关系这两条性质,进行图形的面积计算的方法.13.如图,长方形内有两个三角形①和②,那么①的面积()②的面积.A.< B.> C. =【答案】C【解析】如图所示,三角形ABC和三角形DBC等底等高,则二者的面积相等,二者分别减去公共部分三角形BOC,则剩余的部分仍然相等,即三角形①和三角形②的面积相等,据此即可判断.解答:解:三角形ABC和三角形DBC等底等高,则二者的面积相等,二者分别减去公共部分三角形BOC,则剩余的部分仍然相等,即三角形①和三角形②的面积相等,故选:C.点评:解答此题的主要依据是:等底等高的三角形面积相等.14.如图,三角形ABC的面积是56平方米,BD=DC,DE垂直于AC,AC=14米.求图中阴影部分的面积.【答案】阴影部分的面积是28平方米【解析】三角形的面积=底×高÷2,根据等底等高的三角形的面积相等进行计算即可.解答:解:因为BD=DC,所以三角形ABD和三角形ADC的面积相等,因为三角形ABC的面积是56平方米,所以图中阴影部分的面积为:56÷2=28(平方米)答:阴影部分的面积是28平方米.点评:明确等底等高的三角形的面积相等,是解答此题的关键.15.用a表示梯形的上底,b表示下底,h表示高,S表示面积.梯形面积的计算公式是.【答案】S=(a+b)h÷2【解析】梯形的面积=(上底+下底)×高÷2,进而把对应的字母代入等式即可.解答:解:因为梯形的面积=(上底+下底)×高÷2,所以S=(a+b)h÷2.故答案为:S=(a+b)h÷2.点评:此题考查用字母表示计算公式,熟记梯形的面积计算公式,是解决此题的关键.16.要求如图图形的面积,请先画出相关的线段;量取某些数据(保留整厘米数),再计算出面积.【答案】三角形的面积为5平方厘米.【解析】依据过直线外一点作已知直线的垂线的方法,即可作出底上的高;再据量得底和高的值,利用三角形的面积公式即可求其面积.解答:解:如图所示,即为所要求画的三角形的底和高的长度:量得三角形的底约为5厘米,高约为2厘米,则三角形的面积为:5×2÷2=5(平方厘米);答:三角形的面积为5平方厘米.点评:此题主要考查:过直线外一点作已知直线的垂线的方法,以及三角形面积的计算方法.17.要求如图图形的面积,请先画出相关的线段;量取某些数据(保留整厘米数),再计算出面积.【答案】三角形的面积为5平方厘米【解析】依据过直线外一点作已知直线的垂线的方法,即可作出底上的高;再据量得底和高的值,利用三角形的面积公式即可求其面积.解答:解:如图所示,即为所要求画的三角形的底和高的长度:量得三角形的底约为5厘米,高约为2厘米,则三角形的面积为:5×2÷2=5(平方厘米);答:三角形的面积为5平方厘米.点评:此题主要考查:过直线外一点作已知直线的垂线的方法,以及三角形面积的计算方法.18.在右图中,三角形DEF比三角形ABF面积小15平方厘米,求DE的长。
新人教版六年级下册数学总复习专题五——空间与图形的试题及答案(个人整理)专题五——空间与图形(一) 一、填空。
(30分)1、一条10厘米长的线段,这条线段长()分米,是1米的()()。
2、经过两点可以画出()条直线;两条直线相交有()个交点。
3、如果等腰三角形的一个底角是53°,则它的顶角是().直角三角形的一个钝角是48°,另一个锐角是()。
4、上图是由()个棱长为1厘米的正方体搭成的。
将这个立体图形的表面涂上蓝色,其中只有三个面涂上蓝色的正方体有()个,只有四个面涂上蓝色正方体有()个。
5、在一块边长10cm的正方形硬纸板上剪下一个最大的圆,这个圆的面积是()cm2,剩下的边角料是()cm2。
6、一个长方形的周长是42cm,它的长与宽的比是4∶3,它的面积是()cm2。
7、用72cm长的铁丝焊成一个正方体框架(接口处不计),这个正方体框架的棱长是()cm,体积是()cm3,表面积是()cm2。
8、一个圆锥的体积是9.42立方分米,底面直径是6分米,它的高是()分米,和它等底等高的圆柱的体积是()立方分米。
9、从直线外一点到这条直线可以画无数条线段,其中最短的是和这条直线()的线段。
10、用百分数表示以下阴影部分是整个图形面积的百分之几。
11、把一个底面直径2分米的圆柱体截去一个高1分米的圆柱体,原来的圆柱体表面积减少()平方分米。
12、右图是由棱长1厘米的小正方体木块搭成的,这个几何体的表面积是()平方厘米。
至少还需要()块这样的小正方体才能搭成一个大正方体。
13、在一块边长是20厘米的正方形木板上锯下一个最大的圆,这个圆的面积是()平方厘米,剩下的边料是()平方厘米。
14、将一个大正方体切成大小相同的8个小正方体,每个小正方体的表面积是18平方厘米,原正方体的表面积是()平方厘米。
15、把一个棱长8cm的正方体切成棱长2cm的小正方体,可以得到()个小正方体,它们的表面积之和比原来增加了()c㎡。
六年级数学空间与图形试题1.下列图形中,()是正方体的展开图。
【答案】B【解析】略2.画出下面图形按3:1放大后的图形。
【答案】【解析】本题考查图形按比例进行放大或缩小的相关知识点。
先确定出底边放大三倍后的长度,再根据高也扩大到原来的3倍,确定出三角形的顶点,连接底边两个端点与顶点,画出三角形,解决问题。
3.一个圆柱形铁皮油桶,底面直径为40厘米,高为50厘米,这个油桶的容积是( )升。
【答案】62.8【解析】本题考查圆柱的体积计算公式应用。
利用直径求出半径,进一步计算出底面积,用底面积乘高求出体积,并注意单位的换算。
底面半径40÷2=20(厘米),油桶体积:3.14×20×20×50=62800(立方厘米)=62.8(立方分米)=62.8升4.一个长方体,如果高增加2厘米,就成了正方体,而且表面积增加56平方厘米,原来这个长方体的体积是()立方厘米。
【答案】245【解析】本题考查正方体的形状特点及对表面积和体积的认识及计算。
根据高增加2厘米成为正方体,得出原长方体的长、宽、高的关系,进一步根据表面积的增加情况,计算出长、宽、高,进一步计算出体积,解决问题。
表面积增加的部分是高增加2厘米后周围四个面的面积和,可表示为长×2×4,计算长:56÷4÷2=7(厘米),计算高:7-2=5(厘米),计算体积:7×7×5=245(立方厘米)。
5.—个圆柱体,如果把它的高截短6厘米,表面积就减少75.36平方厘米,则体积减少()立方厘米。
【答案】75.36【解析】本题考查圆柱体积和表面积的实际应用。
要求圆柱体积就要知道底面积;圆柱高减少,表面积减少的就是减少的圆柱的侧面积,侧面积除以高得到底面周长,再依据已知周长求面积计算出面积,最后利用体积计算公式计算即可。
减少的表面积是高为6cm的圆柱的侧面积,圆柱底面圆的周长=、75.36÷6=12.56(厘米),那么圆的直径=12.56÷3.14=4(厘米),则半径=4÷2=2(厘米),因此底面积=3.14×2×2=12.56(平方厘米),减少的体积=12.56×6=75.36(立方厘米)。
【教育资料】苏教版六年级数学下:空间与图形8教学目标:1.通过观察、操作等活动认识正方体和正方体的展开图,能在展开图中找到长方体和正方体相对的面,能判断一些平面图形折叠后能否围成长方体、正方体。
2.通过选择几张合适的长方形和正方形纸片围成一个长方体或正方体,进一步培养学生的空间想象力。
3.通过包装箱的设计,引导学生在具体的操作中,选择出合理的包装样式,体现了解决问题策略的多样化,同时也进一步培养了学生的空间观念。
教学重、难点:引导学生观察相对的面在不同展开图上的分布情况,发现其中的规律。
教学对策:课前学具、教具的准备工作要充分,课中要引导学生操作、观察、想象。
教学准备:教师准备长方体和正方体教具(可展开);学生准备若干个大小相同的长方体、正方体纸盒;一个香皂盒教学过程:一、长、正方体的展开图1.复习长方体和正方体面的特征。
2.提问:沿着长方体或正方体的棱剪开,可以得到长方体或正方体的展开图。
(投影展示长方体、正方体展开图各一幅)如果沿着其他的棱剪开又可以得到怎样的展开图呢?请同学们四人一组动手剪一剪,看一看,寻找其中的规律。
学生四人一组动手操作,教师巡视。
展示学生的不同的展开图,发现规律。
小结:同一正方体,按不同方式展开得到的平面图是不一样的。
在正方体的展开图中,相对的面如果在同一行或同一排,中间一定只隔一个面,不在同一行或同一排,中间可以隔着一些面。
3.判断下列哪些展开图能围成长方体或正方体?(投影出示第十一册教材第13、14页上的图形)学生独立思考后作出判断,然后交流。
二、围长方体或正方体1.出示:下面五种形状的硬纸各有若干张。
选择哪几种,每种选几张,正好可以围成一个长方体或正方体。
① 长1.8厘米,宽1厘米;② 边长1.8厘米;③长1厘米,宽0.4厘米;④ 边长1厘米;⑤ 长1.8厘米,宽0.4厘米。
⑴ 学生独立解答。
⑵ 交流不同的围法。
⑶ 小结围法:如果是围成正方体,只需同一种规格的正方形硬纸6张;如果是围成有一组相对面是正方形的长方体,则需两种规格的硬纸;如果是围一般长方体,则需选择三种规格的硬纸,每两种规格要有一组对边相等。
空间与图形一、《平面图形》(一)平面图形复习要点:1、(1)直线、射线、线段的认识和画法;(2)角、锐角、直角、钝角、平角、周角的概念及它们之间的大小关系与测量;(3)相交与平行的概念及按要求作图;(4)长方形、正方形、三角形、平行四边形、梯形、圆的特征及它们之间的关系。
2、周长与面积:(1)周长与面积的意义;(2)长方形、正方形与圆的周长;(3)长方形、正方形、三角形、平行四边形、梯形、圆的面积[环形面积]、组合图形的面积(周长)计算。
(4)利用平面图形周长面积相关知识解决生活中的问题问题。
3、轴对称:画出图形的对称轴,补出轴对称图形的另一半等4、测量和操作:主要复习角的度量、平面图形长度、面积的测算,按要求作图。
(二)知识归类整理:1、直线、线段和射线。
2、垂线和平行线:A、垂线:两条直线相交成直角时,这两条直线叫做互相垂直,其中一条叫做另一条直线的垂线。
B、平行线:在同一平面内永不相交的两条直线。
3、角:A、从一点引出的两条射线所组成的图形叫做角。
角的大小与两边叉开的大小有关,而与角的两边长短无关。
B、角的分类:4、三角形(1)三角形:三角形是由三条线段围成的图形。
从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高。
4、四边形。
四边形是由四条线段围成的图形。
任意四边形的内角和均是360o。
已学过的4种四边形的特征:注意:长方形、正方形是特殊的平行四边形;正方形是特殊的长方形。
5、圆圆是平面上的一种曲线图形。
同圆(或等圆)的直径相等,直径等于半径的2倍。
圆有无数条对称轴。
圆心确定圆的位置,半径确定圆的大小。
6、平面图形的周长和面积A、周长与面积的意义,区别。
B、常见平面图形的周长和面积计算公式如下表:二、注意的问题:1、重视作图,作图要准确地反应出题目中的要求。
作图题主要有量线段的长度、作己知直线的垂线(图形的高)、作已知直线的平行线、按要求在指定范围内作平面图形[圆、长方形、正方形等]、作面积相等的几何图形等题型。
空间与图形学生姓名年级学科授课教师日期时段核心内容平面图形和立体图形的拓展应用课型一对一/一对N教学目标1、能灵活运用计算公式求较复杂的平面图的周长或面积;2、能灵活运用计算公式求较复杂的立体图形的表面积或体积。
重、难点1、平面图形的特征、周长和面积公式的应用;2、立体图形的特征、表面积和体积公式的应用。
课首沟通1.回顾小学所学平面图形的特征、周长和面积公式。
2.回顾小学所学立体图形的特征、表面积和体积公式。
知识导图课首小测1.如右图,正方形的面积是5平方厘米,圆的面积是()平方厘米。
2.(黄埔区单元试题)用多种方法计算下面图形的面积。
3.下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。
4.(广州市第二外国语学校面试真题)一个由27块小正方体组合而成的大正方体,表面被涂为黑色。
测量后发现,这个大正方体的棱长为2,那么所有小正方体未被涂黑部分的表面之和是多少?5.(省实天河面谈题)一个半圆里有一个小圆,求谁的面积大。
导学一:平面图形知识点讲解 1:求组合图形周长的方法。
组合图形的周长:围成组合图形的所有线段的长度和。
例 1. 如图所示,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等,图中阴影部分的周长是多少厘米?【学有所获】当发现无法用求半径或直径的方法去求阴影部分的周长时,要转换思考方向,考虑用其它方法来解答。
我爱展示1.计算下列图形的周长2.如右图为某楼梯的形状及长度(单位:米),要在楼梯表面铺地毯,地毯的长度至少需要()米.3.如图,用一根铁丝将四根直径2dm的管子紧紧捆住(接头处不计),至少需要铁丝多少分米?知识点讲解 2:求组合图形面积的常用方法。
1.平移法:将一个组合图形中的一部分平移,与另一部分组合成一个新的图形,再求出它的面积。
2.分割法:把一个组合图形分割成几个学过的规则图形,分别求出它们的面积后,再求它们的面积和。
3.割补法:把一个不规则图形的空缺部分补上一块或从其它地方割下一块补上,组成一个学过的规则图形,再求出其面积。
六年级数学总复习空间与图形线与角1、直线没有端点,可以向两端无限延伸,不能测量它的长度。
2、射线有一个端点,可以向一端无限延伸,不能测量它的长度。
3、线段有两个端点,可以量出它的长度。
4、把线段的一端无限延长,就得到一条射线。
把线段的两端都无限延长,就得到一条直线。
线段和射线都是直线的一部分。
5、过一点可以画无数条直线和射线。
过两点只能画一条直线。
6、从一点引出两条射线所组成的图形叫做角。
这一点是角的(顶点),这两条射线是角的( 边)。
角通常用符号(“∠”)来表示。
7、角的大小与角的两边画出的长短没有关系,角的大小要看角两边叉开的大小,角的两边叉开得越大,角就越大。
8、角的计量单位是“度”,用符号“°”表示。
9、量角器是把半圆平均分成180等份,每一份所对的角的大小就是1度,记作“1°”。
10、对顶角相等。
11、三角形三个角的和是180度。
四边形的四个角的和是360度。
12、直角等于90度,平角等于180度,周角等于360度。
13、1平角=2直角。
1周角= 2平角= 4直角。
14、锐角小于90度。
钝角大于90度而小于180度;15、锐角<直角<钝角<平角<周角1小时,16、时针转一大格,所对的角是30°;分针转一圈,所对的角是360°三角形1、由三条线段围成的图形(每相邻两条线段的端点相连)叫三角形。
一个角的顶点向对边作的垂线段就是高。
高对应的这条边叫底。
2、根据一个三角形拥有锐角、钝角、直角的情况,可以把三角形分成三类:有一个钝角的三角形叫钝角三角形。
有一个直角的三角形叫直角三角形。
(都有两个锐角)没有钝角也没有直角的三角形叫锐角三角形。
就是三个角都是锐角的三角形叫锐角三角形。
3、根据一个三角形的边是不是相等,可以把三角形分成三类:有两条边相等的三角形叫等腰三角形。
三条边都相等的三角形叫等边三角形,也叫正三角形。
三条边都相等的,那么肯定有两条边相等。
所以等边三角形一定是等腰三角形。
4、三角形的特点:三角形具有稳定性。
三角形的三个内角之和肯定是180度。
三角形的任意两边之和一定大于第三边。
根据这个特点,判断三条线段能不能组成三角形,只要看最短的两条,加起来是不是大于第三条。
5、会画出任意一种三角形的高和底。
每个三角形都有三条高,三条底。
画的时候要看清楚,题目中有没有指定底,一定要画出那一条底上的高。
多边形1、平行四边形面积公式推导:剪拼、平移平行四边形可以转化成一个长方形;长方形的长相当于平行四边形的底; 长方形的宽相当于平行四边形的高; 长方形的面积等于平行四边形的面积,因为长方形面积=长×宽,所以平行四边形面积=底×高。
2、三角形面积公式推导:旋转两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底;平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍,因为平行四边形面积=底×高,所以三角形面积=底×高÷23、梯形面积公式推导:旋转4、两个完全一样的梯形可以拼成一个平行四边形。
平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷25、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。
6、长方形框架拉成平行四边形,周长不变,面积变小。
7、组合图形面积计算:必须转化成已学的简单图形。
当组合图形是凸出的,用虚线分割成几种简单图形,把简单图形面积相加计算。
当组合图形是凹陷的,用虚线补齐成一种最大的简单图形,用最大简单图形面积减几个较小的简单图形面积进行计算。
圆一、认识圆1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O表示。
它到圆上任意一点的距离都相等。
3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的。
用字母表示为:d=2r或r=d/28、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是:长方形只有3条对称轴的图形是:等边三角形只有4条对称轴的图形是:正方形有无数条对称轴的图形是:圆、圆环。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母C表示。
2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai) 表示。
(1)一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。
在计算时,一般取π ≈ 3.14。
(2)在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
(3)世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
4、圆的周长公式5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
6、区分周长的一半和半圆的周长:(1)周长的一半:等于圆的周长÷2计算方法:2πr÷2 即πr(2)半圆的周长:等于圆的周长的一半加直径。
计算方法:πr+2r三、圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积。
用字母S表示。
2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。
顶点在圆心的角叫做圆心角。
3、圆面积公式的推导:(1)、用逐渐逼近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。
(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。
(3)、拼出的图形与圆的周长和半径的关系。
4、环形的面积:一个环形,外圆的半径是R,内圆的半径是r。
(R=r+环的宽度.)S环= πR²-πr²或环形的面积公式:S环=π(R²-r²)。
5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
而面积扩大或缩小的倍数是这倍数的平方倍。
例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。
6、两个圆:半径比= 直径比= 周长比;而面积比等于这比的平方。
例如:两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶97、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。
反之,面积相同时,长方形的周长最长,正方形居中,圆周长最短。
9、确定起跑线:(1)、每条跑道的长度= 两个半圆形跑道合成的圆的周长+ 两个直道的长度。
(2)、每条跑道直道的长度都相等,而各圆周长决定每条跑道的总长度。
(因此起跑线不同)(3)、每相邻两个跑道相隔的距离是:2×π×跑道的宽度(4)、当一个圆的半径增加a厘米时,它的周长就增加2πa厘米;当一个圆的直径增加a厘米时,它的周长就增加πa厘米。
11、常用各π值结果:2π = 6.28 3π = 9.424π = 12.56 5π = 15.76π = 18.84 7π = 21.988π = 25.12 9π = 28.2610π = 31.4 16π = 50.2425π = 78.5 36π = 113.0464π = 200.96 96π = 301.44扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。
也就是各部分数量占总数的百分比(因此也叫百分比图)。
二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。
3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。
(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。
)长方体和正方体1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。
两个面相交的边叫做棱。
三条棱相交的点叫做顶点。
相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体特点:(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体特点:(1)正方体有12条棱,它们的长度都相等。
(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。
(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
相同点不同点面棱长方体都有6个面,12条棱,8个顶点。
6个面都是长方形。
(有可能有两个相对的面是正方形)。
相对的棱的长度都相等正方体6个面都是正方形。
12条棱都相等。
3、长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4L=(a+b+h)×4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长×12L=a×12正方体的棱长=棱长总和÷12a=L÷124、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2S=2(ab+ah+bh)无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-abS=2(ah+bh)+ab无底又无盖长方体表面积=(长×高+宽×高)×2S=2(ah+bh)贴墙纸正方体的表面积=棱长×棱长×6 S=a×a×6 用字母表示:S= 6a2生活实际:油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。