2012年四川省南充市中考数学试题及答案
- 格式:pdf
- 大小:505.80 KB
- 文档页数:22
四川省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)(2012•南充)计算:2﹣(﹣3)的结果是()A. 5 B. 1 C.﹣1 D.﹣52.(3分)(2012•南充)下列计算正确的是()A.x3+x3=x6B.m2•m3=m6C. 3﹣=3 D.×=73.(3分)(2012•南充)下列几何体中,俯视图相同的是()A.①②B.①③C.②③D.②④4.(3分)(2012•南充)下列函数中,是正比例函数的是()A. y=﹣8x B.y=C.y=5x2+6 D. y=﹣0.5x﹣15.(3分)(2012•南充)方程x(x﹣2)+x﹣2=0的解是()A. 2 B.﹣2,1 C.﹣1 D. 2,﹣1A.B.C.D.成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数 1 2 4 3 3 2A.1.65,1.70 B.1.70,1.70 C.1.70,1.65 D.3,48.(3分)(2012•南充)在函数y=中,自变量x的取值范围是()A.x≠B.x≤C.x<D.x≥A. 120°B. 180°C. 240°D. 300°10.(3分)(2012•南充)如图,平面直角坐标系中,⊙O的半径长为1,点P(a,0),⊙P的半径长为2,把⊙P 向左平移,当⊙P与⊙O相切时,a的值为()A. 3 B. 1 C. 1,3 D.±1,±3二、填空题(本大题共4个小题,每小题3分,共12分)请将答案直接填在题中横线上11.(3分)(2012•南充)不等式x+2>6的解集为_________.12.(3分)(2012•南充)分解因式:x2﹣4x﹣12=_________.13.(3分)(2012•南充)如图,把一个圆形转盘按1:2:3:4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为_________.14.(3分)(2012•南充)如图,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积为24cm2,则AC长是_________cm.三、(本大题共3个小题,每小题6分,共18分)15.(6分)(2012•南充)计算:.16.(6分)(2012•南充)在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球然后放回,再随机地摸出一个小球,求下列事件的概率:(1)两次取的小球的标号相同;(2)两次取的小球的标号的和等于4.17.(6分)(2012•南充)如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上的一点,且CE=CD.求证:∠B=∠E.四、(本大题共2个小题,每小题8分,共16分))18.(8分)(2012•南充)关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.19.(8分)(2012•南充)矩形ABCD中,AB=2AD,E为AD的中点,EF⊥EC交AB于点F,连接FC.(1)求证:△AEF∽△DCE;(2)求tan∠ECF的值.20.(8分)(2012•南充)学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车一辆小车共需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案.21.(8分)(2012•南充)在Rt△POQ中,OP=OQ=4,M是PQ的中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.(1)求证:MA=MB;(2)连接AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值?若存在,求出最小值;若不存在,请说明理由.22.(8分)(2012•南充)如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=,抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6).(1)求抛物线的函数解析式;(2)直线m与⊙C相切于点A,交y轴于点D.动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒一个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD 时,求运动时间t的值;(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.2012年四川省南充市中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)(2012•南充)计算:2﹣(﹣3)的结果是()A. 5 B. 1 C.﹣1 D.﹣5解答:解:2﹣(﹣3)=2+3=5.故选A.2.(3分)(2012•南充)下列计算正确的是()A.x3+x3=x6B.m2•m3=m6C. 3﹣=3 D.×=7解答:解:A、x3+x3=2x3,故此选项错误;B、m2•m3=m5,故此选项错误;C、3﹣=2,故此选项错误;D、×==7,故此选项正确.故选:D.3.(3分)(2012•南充)下列几何体中,俯视图相同的是()A.①②B.①③C.②③D.②④解答:解:①的三视图中俯视图是圆,但无圆心;②③的俯视图都是圆,有圆心,故②③的俯视图是相同的;④的俯视图都是圆环.故选:C.C.y=5x2+6 D. y=﹣0.5x﹣1 A. y=﹣8x B.y=解答:解:A、y=﹣8x是正比例函数,故本选项正确;B、y=,自变量x在分母上,不是正比例函数,故本选项错误;C、y=5x2+6,自变量x的指数是2,不是1,不是正比例函数,故本选项错误;D、y=﹣0.5x﹣1,是一次函数,不是正比例函数,故本选项错误.故选A.A. 2 B.﹣2,1 C.﹣1 D. 2,﹣1解答:解:x(x﹣2)+x﹣2=0,(x ﹣2)(x+1)=0,所以,x﹣2=0,x+1=0,解得x1=2,x2=﹣1.故选D.6.(3分)(2012•南充)矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式用图象表示大致为() A.B.C.D.解答:解:矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式是:y=(x>0).是反比例函数,且图象只在第一象限.故选C.7.(3分)(2012•南充)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数 1 2 4 3 3 2A.1.65,1.70 B.1.70,1.70 C.1.70,1.65 D.3,4解答:解:15名运动员,按照成绩从低到高排列,第8名运动员的成绩是1.70,所以中位数是1.70,同一成绩运动员最多的是1.65,共有4人,所以,众数是1.65.因此,中位数与众数分别是1.70,1.65.故选C.8.(3分)(2012•南充)在函数y=中,自变量x的取值范围是()A.x≠B.x≤C.x<D.x≥解答:解:根据题意得,1﹣2x≥0且x﹣≠0,解得x≤且x≠,所以x<.故选C.A. 120°B. 180°C. 240°D. 300°解答:解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,有=2πr=πR,∴n=180°.故选:B.10.(3分)(2012•南充)如图,平面直角坐标系中,⊙O的半径长为1,点P(a,0),⊙P的半径长为2,把⊙P 向左平移,当⊙P与⊙O相切时,a的值为()A. 3 B. 1 C. 1,3 D.±1,±3解答:解:当两个圆外切时,圆心距d=1+2=3,即P到O的距离是3,则a=±3.当两圆相内切时,圆心距d=2﹣1=1,即P到O的距离是1,则a=±1.故a=±1或±3.故选D.二、填空题(本大题共4个小题,每小题3分,共12分)请将答案直接填在题中横线上11.(3分)(2012•南充)不等式x+2>6的解集为x>4.解答:解:移项得,x>6﹣2,合并同类项得,x>4.故答案为:x>4.12.(3分)(2012•南充)分解因式:x2﹣4x﹣12=(x﹣6)(x+2).解答:解:x2﹣4x﹣12=(x﹣6)(x+2).故答案为(x﹣6)(x+2).13.(3分)(2012•南充)如图,把一个圆形转盘按1:2:3:4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为.解答:解:∵一个圆形转盘按1:2:3:4的比例分成A、B、C、D四个扇形区域,∴圆被等分成10份,其中B区域占2份,∴落在B区域的概率==.故答案为:.14.(3分)(2012•南充)如图,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若四边形ABCD的面积为24cm2,则AC长是cm.解答:解:∵∠BAD=∠BCD=90°,∴∠2+∠B=180°,延长至点E,使DE=BC,连接AE,∵∠1+∠2=180°,∠2+∠B=180°,∴∠1=∠B,在△ABC与△ADE中,∵,∴△ABC≌△ADE,∴∠EAD=∠BAC,∵∠BAD=90°,∴∠EAC=90°,∴△ACE是等腰直角三角形,∵四边形ABCD的面积为24cm2,∴AC2=24,解得AC=4cm.故答案为:4.三、(本大题共3个小题,每小题6分,共18分)15.(6分)(2012•南充)计算:.解答:解:原式=+=+==1.16.(6分)(2012•南充)在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸取一个小球然后放回,再随机地摸出一个小球,求下列事件的概率:(1)两次取的小球的标号相同;(2)两次取的小球的标号的和等于4.解答:解:(1)如图:两次取的小球的标号相同的情况有4种,概率为=,(2)如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,所有两次摸出的小球标号的和等于4的概率=.故答案为.17.(6分)(2012•南充)如图,等腰梯形ABCD中,AD∥BC,点E是AD延长线上的一点,且CE=CD.求证:∠B=∠E.解答:证明:∵四边形ABCD是等腰梯形,∴∠B+∠ADC=180°,∵∠ADC+∠CDE=180°,∴∠B=∠CDE,∵CE=CD,∴△CDE是等腰三角形,∴∠CDE=∠E,∴∠B=∠D.四、(本大题共2个小题,每小题8分,共16分))18.(8分)(2012•南充)关于x的一元二次方程x2+3x+m﹣1=0的两个实数根分别为x1,x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.解答:解:(1)∵方程有两个实数根,∴△≥0,∴9﹣4×1×(m﹣1)≥0,解得m≤;(2)∵x1+x2=﹣3,x1x2=m﹣1,又∵2(x1+x2)+x1x2+10=0,∴2×(﹣3)+m﹣1+10=0,∴m=﹣3.19.(8分)(2012•南充)矩形ABCD中,AB=2AD,E为AD的中点,EF⊥EC交AB于点F,连接FC.(1)求证:△AEF∽△DCE;(2)求tan∠ECF的值.解答:(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠AEF+∠AFE=90°,∵EF⊥EC,∴∠AEF+∠DEC=90°,∴∠AFE=∠DEC,∴△AEF∽△DCE;(2)解:∵△AEF∽△DCE,∴,∵矩形ABCD中,AB=2AD,E为AD的中点,∴DC=AB=2AD=4AE,∴tan∠ECF==.20.(8分)(2012•南充)学校6名教师和234名学生集体外出活动,准备租用45座大车或30座小车.若租用1辆大车2辆小车共需租车费1000元;若租用2辆大车一辆小车共需租车费1100元.(1)求大、小车每辆的租车费各是多少元?(2)若每辆车上至少要有一名教师,且总租车费用不超过2300元,求最省钱的租车方案.解答:解:(1)设大车每辆的租车费是x元、小车每辆的租车费是y元.可得方程组,解得.答:大车每辆的租车费是400元、小车每辆的租车费是300元.(2)由每辆汽车上至少要有1名老师,汽车总数不能大于6辆;由要保证240名师生有车坐,汽车总数不能小于(取整为6)辆,综合起来可知汽车总数为6辆.设租用m辆甲种客车,则租车费用Q(单位:元)是m的函数,即Q=400m+300(6﹣m);化简为:Q=100m+1800,依题意有:100m+1800≤2300,∴m≤5,又要保证240名师生有车坐,m不小于4,所以有两种租车方案,方案一:4辆大车,2辆小车;方案二:5辆大车,1辆小车.∵Q随m增加而增加,∴当m=4时,Q最少为2200元.故最省钱的租车方案是:4辆大车,2辆小车.21.(8分)(2012•南充)在Rt△POQ中,OP=OQ=4,M是PQ的中点,把一三角尺的直角顶点放在点M处,以M为旋转中心,旋转三角尺,三角尺的两直角边与△POQ的两直角边分别交于点A、B.(1)求证:MA=MB;(2)连接AB,探究:在旋转三角尺的过程中,△AOB的周长是否存在最小值?若存在,求出最小值;若不存在,请说明理由.解答:(1)证明:如图,过点M作ME⊥OP于点E,作MF⊥OQ于点F,∵∠O=90°,∴四边形OEMF是矩形,∵M是PQ的中点,OP=OQ=4,∠O=90°,∴ME=OQ=2,MF=OB=2,∴ME=MF,∴四边形OEMF是正方形,∵∠AME+∠AMF=90°,∠BMF+∠AMF=90°,∴∠AME=∠BMF,在△AME和△BMF中,,∴△AME≌△BMF(ASA),∴MA=MB;(2)解:有最小值,最小值为4+2.理由如下:根据(1)△AME≌△BMF,∴AE=BF,设OA=x,则AE=2﹣x,∴OB=OF+BF=2+(2﹣x)=4﹣x,在Rt△AME中,AM==,∵∠AMB=90°,MA=MB,∴AB=AM=•=,△AOB的周长=OA+OB+AB=x+4﹣x+=4+,所以,当x=2,即点A为OP的中点时,△AOB的周长有最小值,最小值为4+,即4+2.22.(8分)(2012•南充)如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB=,抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6).(1)求抛物线的函数解析式;(2)直线m与⊙C相切于点A,交y轴于点D.动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒一个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD 时,求运动时间t的值;(3)点R在抛物线位于x轴下方部分的图象上,当△ROB面积最大时,求点R的坐标.解答:解:(1)∵抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6),∴,解得∴抛物线的解析式为:y=x2﹣2x.(2)如答图1,连接AC交OB于点E,由垂径定理得AC⊥OB.∵AD为切线,∴AC⊥AD,∴AD∥OB.∵tan∠AOB=,∴sin∠AOB=,∴AE=OA•sin∠AOB=4×=2.4,OD=OA•tan∠OAD=OA•tan∠AOB=4×=3.当PQ⊥AD时,OP=t,DQ=2t.过O点作OF⊥AD于F,则在Rt△ODF中,OD=3,OF=AE=2.4,DF=DQ﹣FQ=DQ﹣OP=2t﹣t=t,由勾股定理得:DF===1.8,∴t=1.8秒;(3)如答图3,设直线l平行于OB,且与抛物线有唯一交点R(相切),此时△ROB中OB边上的高最大,所以此时△ROB面积最大.∵tan∠AOB=,∴直线OB的解析式为y=x,由直线l平行于OB,可设直线l解析式为y=x+b.∵点R既在直线l上,又在抛物线上,∴x2﹣2x=x+b,化简得:2x2﹣11x﹣4b=0.∵直线l与抛物线有唯一交点R(相切),∴判别式△=0,即112+32b=0,解得b=,此时原方程的解为x=,即x R=,而y R=x R2﹣2x R=∴点R的坐标为R(,).。
2012年南充市中考数学一、选择题(每小题3分,共30分)﹣=3×=73.(3分)(2012•南充)下列几何体中,俯视图相同的是( )8.(3分)(2012•南充)在函数y=中,自变量x 的取值范围是( )<≥10.(3分)(2012•南充)如图,平面直角坐标系中,⊙O 的半径长为1,点P (a ,0),⊙P 的半径长为2,把⊙P 向左平移,当⊙P 与⊙O 相切时,a 的值为( )13题二、填空题(每小题3分,共12分)请将答案直接填在题中横线上 11.(3分)(2012•南充)不等式x+2>6的解集为 _________ .12.(3分)(2012•南充)分解因式:x 2﹣4x ﹣12= _________ . 13.(3分)(2012•南充)如图,把一个圆形转盘按1:2:3:4的比例分成A 、B、C 、D 四个扇形区域,自由转动转盘,停止后指针落在B 区域的概率为 _________ . 14.(3分)(2012•南充)如图,四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD ,若四边形ABCD 的面积为24cm 2,则AC 长是 _________ cm .2011年南充市中考数学一、选择题:(本大题共10个小题,每小题3分,共30分) 1、计算a+(﹣a )的结果是( ) A 、2a B 、0C 、﹣a 2D 、﹣2a建议学校商店进货数量最多的品牌是( )A 、甲品牌B 、乙品牌C 、丙品牌D 、丁品牌 3、如图,直线DE 经过点A ,DE ∥BC ,∠B=60°,下列结论成立的是( ) A 、∠C=60° B 、∠DAB=60° C 、∠EAC=60° D 、∠BAC=60° 4、某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为( ) A 、0.1 B 、0.17 C 、0.33 D 、0.4 5、下列计算不正确的是( )A 、﹣+=﹣2B 、(﹣)2=C 、︳﹣3︳=3D 、=26、方程(x+1)(x ﹣2)=x+1的解是( )A 、2B 、3C 、﹣1,2D 、﹣1,37、小明乘车从南充到成都,行车的平均速度v (km/h )和行车时间t (h )之间的函数图象是( )A B C D8、若分式的值为零,则x的值是()A、0B、1C、﹣1D、﹣29、在圆柱形油槽内装有一些油.截面如图,油面宽AB为6分米,如果再注入一些油后,油面AB上升1分米,油面宽变为8分米,圆柱形油槽直径MN为()13题14题A、6分米B、8分米C、10分米D、12分米10、如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正确结论的个数是()A、1个B、2个C、3个D、4个二、填空题:(本大题共4个小题,每小题3分,共12分)11、计算(π﹣3)0=.12、某灯具厂从1万件同批次产品中随机抽取了100件进行质检,发现其中有5件不合格,估计该厂这一万件产品中不合格品约为件.13、(2011•南充)如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠BAC=25°,则∠P=度.14、过反比例函数y=(k≠0)图象上一点A,分别作x轴,y轴的垂线,垂足分别为B,C,如果△ABC的面积为3.则k的值为.2010年南充市数学一、选择题1.计算-(-5)的结果是().(A)5(B)-5(C)15(D)-152.如图,立体图形的主视图是().3.下列等式成立的是().(A)26a a=3()(B)223a a a-=-(C)632a a a÷=(D)2(4)(4)4a a a+-=-4.三根木条的长度如图,能组成三角形的是().5.计算111xx x---结果是().(A)0(B)1(C)-1(D)x6.如图,小球从点A运动到点B,速度v(米/秒)和时间t(秒)的函数关系式是v=2t.如果小球运动到点B时的速度为6米/秒,小球从点A到点B的时间是().(A)1秒(B)2秒(C)3秒(D)4秒7.A各班选手用时波动性最小的是().(A)A班(B)B班(C)C班(D)D班8.甲箱装有40个红球和10个黑球,乙箱装有60个红球、40个黑球和50个白球.这些球除了颜色外没有其他区别.搅匀两箱中的球,从箱中分别任意摸出一个球.正确说法是().(A)从甲箱摸到黑球的概率较大(B)从乙箱摸到黑球的概率较大(C)从甲、乙两箱摸到黑球的概率相等(D)无法比较从甲、乙两箱摸到黑球的概率(第2题)(A)(B)(C)(D)cm2cm5cm(A)cm2cm4cm(B)cm3cm5cm(C)cm3cm4cm(D)A(第6题)9.如图,直线2y x =+与双曲线ky x=相交于点A ,点A 的纵坐标为3,k 的值为( ). (A )1 (B )2 (C )3 (D )410.如图,直线l 1∥l 2,⊙O 与l 1和l 2分别相切于点A 和点B .点M 和点N 分别是l 1和l 2上的动点,MN 沿l 1和l 2平移.⊙O 的半径为1,∠1=60°.下列结论错误..的是( ). (A)3MN =(B )若MN 与⊙O相切,则AM =(C )若∠MON =90°,则MN 与⊙O 相切 (D )l 1和l 2的距离为211.x 取值范围是______.12.如图,□ABCD 中,点A 关于点O 的对称点是点____.13.在“抛掷正六面体”的试验中,如果正六面体的六个面分别标有数字“1”、“2”、“3”、“4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是_________. 14.如果方程2430x x -+=的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tan A 的值为__2009年南充市数学一、细心选一选(本大题共8个小题,每小题3分,共24分) 1.计算2009(1)-的结果是( )A .1-B .1C .2009-D .20092.在平面直角坐标系中,点(25)A ,与点B 关于y 轴对称,则点B 的坐标是( ) A .(52)--, B .(25)--, C .(25)-,D .(25)-,3.某物体的展开图如图1,它的左视图为( )4.方程(3)(1)3x x x -+=-的解是( )A .0x = B .3x = C .3x =或1x =- D .3x =或0x =5.已知一组数据2,1,x ,7,3,5,3,2的众数是2,则这组数据的中位数是( ) A .2 B .2.5 C .3 D .5 6.化简123()x x - 的结果是( ) A .5xB .4xC .xD .1x7.抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线( )A .1x =B .1x =-C .3x =-D .3x =8.如图2,AB 是O ⊙的直径,点C 、D 在 O ⊙上,110BOC ∠=°,AD OC ∥,则AOD ∠=( ) A .70° B .60° C .50° D .40°二、认真填一填(本大题共4个小题,每小题3分,共12分) 9.不等式5(1)31x x -<+的解集是 .10.某校为了举办“庆祝建国60周年”的活动,调查了本校所有学生,调查的结果如图3所示,根据图中给出的信息,这所学校赞成举办演讲比赛的学生有 人.11.如图4,等腰梯形ABCD 中,AD BC ∥,6047B AD BC ∠===°,,,则梯形ABCD的周长是 .12.ABC △中,10cm 8cm 6cm AB AC BC ===,,,以点B 为圆心、6cm 为半径作B ⊙,则边AC 所在的直线 与B ⊙的位置关系是 . .2008年南充市数学一、细心选一选(本大题共8个小题,每小题3分,共24分)1.计算2(2)2--的结果是( )A .6-B .2C .2-D .6 2.如图,下列选项中不是正六棱柱三视图的是( )3.某地区七、八月份天气较为炎热,小华对其中连续十天每天的最高气温进行统计,依次得到以下一组数据:34,35,36,34,36,37,37,36,37,37(单位:℃),则这组数据的中位数和众数分别是( ) A .36,37 B .37,36 C .36.5,37 D .37,36.5 4.若1O 13x =-的半径为3cm ,2O 的半径为4cm ,且圆心距121cm OO =,则1O 与2O 的位置关系是( ) A .B .C .D .(第2题图)2(第10题)(第12题)A .B .C .D .图1 OBD A活动形式(图3) A :文化演出 B :运动会 C :演讲比赛 CA B40% 35% D CA B(图4)A .外离B .内切C .相交D .内含5.已知数据13,7-,2.5,π) A .20%B .40%C .60%D .80%6.“5·12”汶川大地震后,世界各国人民为抗震救灾,积极捐款捐物,截止2008年5月27日12时,共捐款人民币327.22亿元,用科学计数法(保留两位有效数字)表示为( ) A .103.2710⨯B .103.210⨯C .103.310⨯D .113.310⨯7.如图,AB 是O 直径,130AOC ∠=,则D ∠=( ) A .65B .25C .15D .358.二次函数2y ax bx c =++的图像如图所示,则点c Q a b ⎛⎫ ⎪⎝⎭,在( )A .第一象限B .第二象限C .第三象限D .第四象限 二、认真填一填(本大题共4个小题,每小题3分,共12分)9.如图,四边形ABCD 中,E F G H ,,,分别是边AB BC CD DA ,,,的中点.请你添加一个条件,使四边形EFGH 为菱形,应添加的条件是 .10.根据下面的运算程序,若输入1x =y = .11.某商场为了解本商场的服务质量,随机调查了本商场的200名顾客,调查的结果如图所示.根据图中给出的信息,这200名顾客中对该商场的服务质量表示不满意的有 人.12.如图,从⊙O 外一点P 引⊙O 的两条切线PA PB ,,切点分别是A B ,,若8cm PA =,C 是弧AB 上的一个动点(点C 与A B ,两点不重合),过点C 作⊙O 的切线,分别交PA PB ,于点D E ,,则PED △的周长是 .(第12题图)(第10题图)(第8题图)x D BOAC(第7题图) A D HGFBE (第9题图) A :满意 B :基本满意 C :说不清 D :不满意 (第11题图)。
(备战中考)四川省2012年中考数学深度复习讲义(教案+中考真题+模拟试题+单元测试)锐角三角函数◆考点聚焦1.了解锐角三角函数的定义,并能通过画图找出直角三角形中边、角关系,•这也是本节的重点和难点.2.准确记忆30°、45°、60°的三角函数值.3.会用计算器求出已知锐角的三角函数值.4.已知三角函数值会求出相应锐角.5.掌握三角函数与直角三角形的相关应用,这是本节的热点.◆备考兵法充分利用数形结合的思想,对本节知识加以理解记忆.◆识记巩固1.锐角三角函数的定义:如图,在Rt△ABC中,∠=90°,斜边为c,a,b分别是∠A的对边和邻边,则sinA=______=_______;cosA=______=_______;tanA=______=_______.2.填表:30°45°60°sinαcosαtanα注意:30°,45°,60°的三角函数值是中考的必考考点,其他数值是利用数形结合的方法推导的,要求在理解的基础上进行识记.3.锐角三角函数间的关系:(1)互为余角的三角函数间的关系:sin(90°-α)=____,cos(90°-α)=_____.(2)同角三角函数的关系:①平方关系:sin2α+cos2α=_______;②商数关系:sincosαα=_______.注意:对于互为余角的锐角三角函数关系,要求学生能利用定义,•结合图形进行理解,并能灵活运用公式;对于同一锐角三角函数的关系,仅让学生了解,不作中考要求.4.锐角三角函数值的变化:(1)当α为锐角时,各三角函数值均为正数,且0<sinα<1,0<cosα<1,当0°≤α≤45°时,sinα,tanα随角度的增大而_______,cosα随角度的增大而_______.(2)当0°<α<45°时,sinα_____cosα;当45°<α<90°时,sinα______cosα.识记巩固参考答案21世纪教育网1.A∠的斜边斜边acA∠的邻边邻边bcAA∠∠的对边的邻边ab2.122232322212321 33.(1)cosα sinα(2)①1 ②tanα 21世纪教育网4.(1)增大减小(2)< >[来源:学科网ZXXK]◆典例解析例1 (2011广东东莞,19,7分)如图,直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°.折叠纸片使BC经过点D.点C落在点E处,BF是折痕,且BF= CF =8.(l)求∠BDF的度数;(2)求AB的长.【解】(1)∵BF=CF ,∠C=030,∴∠FBC=030,∠BFC=0120又由折叠可知∠DBF=030∴∠BDF=090(2)在Rt △BDF 中,∵∠DBF=030,BF=8∴BD=3∵AD ∥BC ,∠A=090∴∠ABC=090又∵∠FBC=∠DBF=030∴∠ABD=030在Rt △BDA 中,∵∠AVD=030,BD=3∴AB=6.6. (2011湖北襄阳,19,6分)先化简再求值:412)121(22-++÷-+x x x x ,其中160tan -︒=x . 【答案】 原式12)1()2)(2(212+--=+-+⋅+--=x x x x x x x ················2分 当13160tan -=-︒=x 时, ··················· 3分原式13333113213-=--=+----=. 6分例2 已知α为锐角,且tan α=2,则代数式cos α=______. 解析 方法一:在Rt △ABC 中,∠C=90°,tan α=2,令,b=2,则此时. ∴sin α=a ccos α∴原式==1)33226⨯==. 方法二:∵tan α=sin cos αα=2. ∴2sin αα. 又∵sin 2α+cos 2α=1.∴cos α==12()22===.方法三:∵tan α=sin cos αα,sin 2α+cos 2α=1. ∴原式=sin cos ||cos cos αααα-===|tan α-1|=|2-1|=22-.答案222 -例3 如图,在Rt△ABC中,∠C=90°,sinB=35,点D在BC边上,且∠ADC=45°,DC=6,求∠BAD的正切值.解析过点B作BE⊥AD,交AD延长线于E.∵∠C=90°,∴sinB=ACBA=35.∵∠ADC=45°,∴AC=DC=6,∴AB=10,BC=8,∴BD=2.∵∠ADC=45°,∴∠BDE=45°,∴DE=BE=22BD=2.又∵在Rt△ACD中,AD=DC=62,∴AE=72,∴tan∠BAD=272BEAE==17.21世纪教育网点评要求∠BAD的正切值,首先得将∠BAD转化到某一直角三角形中去,因此通过作垂线,构造直角三角形是解决这个问题的关键.2011年真题1. (2011甘肃兰州,4,4分)如图,A、B、C三点在正方形网格线的交点处,若将△ACB 绕着点A逆时针旋转得到△AC’B’,则tanB’的值为A.12B.13C.14D.24【答案】B 2. (2011江苏苏州,9,3分)如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=2,BC=5,CD=3,则t anC 等于A.43B.34C.53D. 54【答案】B3. (2011四川内江,11,3分)如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE=60°,BD=4,CE=43,则△ABC 的面积为 A .83B .15C .93D .123【答案】C4. (2011山东临沂,13,3分)如图,△ABC 中,cosB =22,sinC =53,则△ABC 的面积是( )A .221 B .12 C .14 D .21 【答案】AB ACD EA BC C ’B ’5. (2011安徽芜湖,8,4分)如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( ).A .12B . 34C . 32D .45【答案】C6. (2011山东日照,10,4分)在Rt △ABC 中,∠C =90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cot A =ab .则下列关系式中不成立...的是( )(A )tan A ·cot A =1 (B )sin A =tan A ·cos A(C )cos A =cot A ·sin A (D )tan 2A +cot 2A =1【答案】D7. (2011山东烟台,9,4分)如果△ABC 中,sin A =cos B =22,则下列最确切的结论是( ) A. △ABC 是直角三角形 B. △ABC 是等腰三角形C. △ABC 是等腰直角三角形D. △ABC 是锐角三角形【答案】C8. (2011 浙江湖州,4,3)如图,已知在Rt △ABC 中,∠ C =90°,BC =1,AC =2,则tan A 的值为A .2B .12C .55D .255[来源:学科网ZXXK]【答案】B9. (2011浙江温州,5,4分)如图,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( )A .513B .1213C .512D .135【答案】A10.(2011四川乐山2,3分)如图,在4×4的正方形网格中,tanα=A .1B .2C .12D .52【答案】B11. (2011安徽芜湖,8,4分)如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( ).A .12B . 34C . 32D .45【答案】B12. (2011湖北黄冈,9,3分)cos30°=( )A .12B .22C .32D 3【答案】C13. (2011广东茂名,8,3分)如图,已知: 9045<<A ,则下列各式成立的是A .sinA =cosAB .sinA >cosAC .sinA >tanAD .sinA <cosA 【答案】B14. (20011江苏镇江,6,2分)如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB,垂足为 D.若AC=5,BC=2,则sin ∠ACD 的值为( )A.53B.255C. 52D. 23答案【 A 】15. (2011湖北鄂州,9,3分)cos30°=( )A .12B .22C .32D 3【答案】C[来源:Z_xx_]16. (2011湖北荆州,8,3分)在△ABC 中,∠A =120°,AB =4,AC =2,则B sin 的值是A .1475B .53 C .721 D .1421 【答案】D17. (2011湖北宜昌,11,3分)如图是教学用直角三角板,边AC=30cm ,∠C=90°,tan∠BAC=33,则边BC 的长为( ). A. 303cm B. 203cm C.103cm D. 53cm21世纪教育网(第11题图)【答案】C18.二、填空题1. (2011江苏扬州,13,3分)如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB=【答案】105°2. (2011山东滨州,16,4分)在等腰△ABC 中,∠C=90°则tanA=________.【答案】13. (2011江苏连云港,14,3分)如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.【答案】124. ( 2011重庆江津, 15,4分)在Rt △ABC 中,∠C=90º,BC=5,AB=12,sinA=_________.【答案】125· 5. (2011江苏淮安,18,3分)如图,在Rt △ABC 中,∠ABC=90°,∠ACB=30°,将△ABC 绕点A 按逆时针方向旋转15°后得到△AB 1C 1,B 1C 1交AC 于点D ,如果AD=22,则△ABC 的周长等于 .DAB CB1C1【答案】6236. (2011江苏南京,11,2分)如图,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,则cos∠AOB 的值等于_________.【答案】127. (2011江苏南通,17,3分)如图,测量河宽AB (假设河的两岸平行),在C 点测得∠ACB =30°,D 点测得∠ADB =60°,又CD =60m ,则河宽AB 为 ▲ m (结果保留根号).【答案】303.8. (2011湖北武汉市,13,3分)sin 30°的值为_____.【答案】219. (20011江苏镇江,11,2分)∠α的补角是120°,则∠α=______,sin α=______. 答案:60°,3210.(2011贵州安顺,14,4分)如图,点E (0,4),O (0,0),C (5,0)在⊙A 上,BE 是⊙A 上的一条弦,则tan ∠OBE = .(第11题)BA MO【答案】54 11.21世纪教育网 12.三、解答题(1) 1. (2011安徽芜湖,17(1),6分)计算:20113015(1)()(cos68)338sin 602π---+++-.【答案】解:解: 原式31813382=--++-⨯……………………………………………4分 83=-+ …………………………………6分2. (2011四川南充市,19,8分)如图,点E 是矩形ABCD 中CD 边上一点,⊿BCE 沿BE 折叠为⊿BFE,点F 落在AD 上.(1)求证:⊿ABE∽⊿DFE ;(2)若sin∠DFE=31,求tan∠EBC 的值. F ED CBA【答案】(1)证明:∵四边形ABCD 是矩形∴∠A=∠D=∠C=90°∵⊿BCE 沿BE 折叠为⊿BFE ∴∠BFE=∠C=90°∴∠AFB+∠DFE=180°-∠BFE=90° 又∠AFB+∠ABF=90° ∴∠ABF=∠DFE ∴⊿ABE ∽⊿DFE第14题图(2)解:在Rt ⊿DEF 中,sin ∠DFE=EF DE =31∴设DE=a,EF=3a,DF=22DE EF -=22a∵⊿BCE 沿BE 折叠为⊿B FE[来源:21世纪教育网] ∴CE=EF=3a,CD=DE+CE=4a,AB=4a, ∠EBC=∠EBF 又由(1)⊿ABE ∽⊿DFE ,∴BF FE =ABDF =a a422=22∴tan ∠EBF=BF FE=22 tan ∠EBC=tan ∠EBF=22 3. (2011甘肃兰州,21,7分)已知α是锐角,且sin(α+15°)=32。
2012年四川省南充市中考数学试卷(解析)一.选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A .B .C .D 四个答案选项,其中只有一个是正确的,请把正确选项的代号填写在相应的括号内。
填写正确记3分,不填、填错或填出的代号超过一个记0分。
1.(2012南充)计算:2(3)--的结果是( )A .5B .1C .1-D .5-考点:有理数的减法。
解答:解:2﹣(﹣3)=2+3=5.故选A .2.(2012南充)下列计算正确的是( )A .336x x x +=B .236m m m ⋅=C .3=D = 考点:二次根式的加减法;合并同类项;同底数幂的乘法;二次根式的乘除法。
解答:解:A .x 3+x 3=2x 3,故此选项错误;B .m 2m 3=m 5,故此选项错误;C .3﹣=2,故此选项错误;D .×==7,故此选项正确.故选:D .3.(2012南充)下列几何体中,俯视图相同的是( )A .①②B .①③C .②③D .②④考点:简单几何体的三视图。
解答:解:①的三视图中俯视图是圆,但无圆心;②③的俯视图都是圆,有圆心,故②③的俯视图是相同的;④的俯视图都是圆环.故选:C .4.(2012南充)下列函数中,是正比例函数的是( )A .8y x =-B .8y x-= C .256y x =+ D .0.51y x =-- 考点:正比例函数的定义。
解答:解:A .y=﹣8x 是正比例函数,故本选项正确;B .y=,自变量x 在分母上,不是正比例函数,故本选项错误; C .y=5x 2+6,自变量x 的指数是2,不是1,不是正比例函数,故本选项错误;D .y=﹣0.5x ﹣1,是一次函数,不是正比例函数,故本选项错误.故选A .5.(2012南充)方程(2)20x x x -+-=的解是( )A .2B .2- ,1C .1-D .2,1-考点:解一元二次方程-因式分解法。
南充市二O 一二年高中阶段学校招生统一考试数 学 试 卷(满分100分,时间90分钟)一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A 、B 、C 、D 四个答案选项,其中只有一个是正确的,请把正确选项的代号填在相应的括号内.填写正确记3分,不填、分,不填、填错或填出的代号超填错或填出的代号超过一个记0分.1. 计算2-(-3)的结果是( ).(A )5 (B )1 (C )-1 (D )-5 2.下列计算正确的是( )(A )x 3+ x 3=x 6 (B )m 2〃m 3=m 6 (C)32-2=3 (D )14×7=723.下列几何体中,俯视图相同的是( ). (A )①② (B )①③ (C )②③ (D )②④① ② ③ ④ 4.下列函数中是正比例函数的是 ( )( A )y =-8x (B )y =x8-( C )y =5x 2+6 (D )y = -0.5x -1 5.方程x (x -2)+x -2=0的解是( )(A )2 (B )-2,1 (C )-1 (D )2,-1 6.矩形的长为x ,宽为y ,面积为9,则y 与x 之间的函数关系用图像表示大致为( )7.在一次学生田径运动会上。
参加男子跳高的15名运动员的成绩如成绩(m) 1.50 1.60 1.65 1.70 1.75 1.80人数 1 2 4 3 3 221-x倍。
的解集为AEF,3题号 1 2 3 4 5 6 7 8 9 10 答案 A D C A D C C C B D3-=2 (2)则x+2y=1000 x=4002x+y=1100 y=300240 xx 5522216a+4b=0 a= b= -2=4 tan ×43=3×53=2.4t=DF=22OF OD -=1.8R(x, 21x RG= x OG= 21x GIR=43IG=34x IR=35 x, Rt OI=IG-OG=34x-(21x =21x -32 x HI=54(21x -32 x于是RH=IR-IH=35x-54(21x 22-32 x ) =-52 x 2+1533x=-52 x 2+511x=-52( x-411)2+40121当x=411时,RH 最大。
第十六章 频数与频率1. (2011浙江金华,6,3分)学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是( )A .0.1B .0.15C .0.25D .0.3【答案】D2. (2011四川南充市,4,3分)某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为( )(A )0.1 (B )0.17 (C )0.33 (D )0.4【答案】D3. (2011浙江温州,7,4分)为了支援地震灾区同学,某校开展捐书活动,九 (1)班40名同学积极 参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5. 5~6.5组别的频率是( ) A .0.1B .0.2C .0.3D .0.4组别【答案】B4. (2011浙江丽水,6,3分)学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A.0.1 B.0.15 C.0.25 D.0.3【答案】D5.(2011四川内江,13,5分)“Welcome to Senior High School.”(欢迎进入高中),在这段句子的所有英文字母中,字母o出现的频率是.【答案】15组别6. (2011广东东莞,18,7分)李老师为了解班里学生的作息时间,调查班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?【解】(1)此次调查的总体是:班上50名学生上学路上花费的时间的全体.(2)补全图形,如图所示:(3)该班学生上学路上花费时间在30分钟以上的人数有5人,总人数有50,5÷50=0.1=10%答:该班学生上学路上花费时间在30分钟以上的人数占全班人数的百分之10.7. (2011广东广州市,22,12分)某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图(图6),根据图中信息回答下列问题: (1)求a 的值;(2)用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选取2人,其中至少1人的上网时间在8~10小时.图6 【答案】(1)a =50―6―25―3―2=14(2)设上网时间为6~8小时的三个学生为A 1,A 2,A 3,上网时间为8~10个小时的2名学生为B 1,B 2,则共有A 1A 2,A 1A 3,A 1B 1,A 1B 2,A 2A 3,A 2B 1,A 2B 2 A 3B 1,A 3B 2 B 1B 210种可能,其中至少1人上网时间在8~10小时的共有7种可能,故 P (至少1人的上网时间在8~10小时)=0.78. (2011广东汕头,18,7分)李老师为了解班里学生的作息时间,调查班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每 组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么? (2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?频数【解】(1)此次调查的总体是:班上50名学生上学路上花费的时间的全体.(2)补全图形,如图所示:(3)该班学生上学路上花费时间在30分钟以上的人数有5人,总人数有50,5÷50=0.1=10%答:该班学生上学路上花费时间在30分钟以上的人数占全班人数的百分之10.9. (2011 浙江湖州,21,8) 班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(图1) .(1) 请根据图1,回答下列问题:①这个班共有名学生,发言次数是5次的男生有人、女生有人;②男、女生发言次数的中位数分别是次和次.(2) 通过张老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数..的扇形统计图如图2所示.求第二天发言次数增加3次的学生人数和全班增加的发言总次数.【答案】解:(1)①40;2;5 ②4;5.(2)发言次数增加3次的学生人数为:40(120%30%40%)4()⨯---=人.全班增加的发言总次数为40%40130%4024316241252⨯⨯+⨯⨯+⨯=++=(次).10. (2011浙江义乌,20,8分)为了解某市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:50分;B:49-45分;C:44-40分;D:39-30分;E:29-0分)统计如下:学业考试体育成绩(分数段)统计表分数段人数(人)频率A 48 0.2B a0.25C 84 0.35D 36 bE 12 0.05分数段根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为▲,b的值为▲,并将统计图补充完整(温馨提示:作图时别忘了用0.5毫米及以上的黑色签字笔涂黑);(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数. ”请问:甲同学的体育成绩应在什么分数段内?▲(填相应分数段的字母)(3)如果把成绩在40分以上(含40分)定为优秀,那么该市今年10440名九年级学生中体育成绩为优秀的学生人数约有多少名?【答案】解:(1) 60 , 0.15 (图略)(2) C(3)0.8×10440=8352(名)答:该市九年级考生中体育成绩为优秀的学生人数约有8352名.11.(2011山东聊城,19,8分)今年“世界水日”的主题是“城市用水:应对都市化挑战”.为了解城市居民用水量的情况,小亮随机抽查了阳光小区50户居民去年每户每月的用水量,将得到的数据整理并绘制了这50户居民去年每月总用水量的折线图和频数、频率分布表如下:注:x 表示50户居民月总用水量(m 3)(1)表中的a =________;d =___________.(2)这50户居民每月总用水量超过550m3的月份占全年月份的百分率是多少(精确到1%)?(3)请根据折线统计图提供的数据,估计该小区去年每户居民平均月用水量是多少? 【答案】(1)3,61;(2)这50户居民月总用水量超过550m 3的月份有5个,占全年月份的百分率为(5÷12)×100%=42%(3)(378+641+456+543+550+667+693+600+574+526+423)÷50÷12=109m 3 12. (2011广东省,18,7分)李老师为了解班里学生的作息时间,调查班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每 组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么? (2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?【解】(1)此次调查的总体是:班上50名学生上学路上花费的时间的全体. (2)补全图形,如图所示:(3)该班学生上学路上花费时间在30分钟以上的人数有5人,总人数有50,5÷50=0.1=10%答:该班学生上学路上花费时间在30分钟以上的人数占全班人数的百分之10.13.(2011山东临沂,20,6分)某中学为了解学生的课外阅读情况.就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一项),并根据调查结果制作了尚不完整的频数分布表:类别频数(人数)频率文学m 0.42艺术22 0.11科普 66 n其他28合计 1下面是自首届以来各届动漫产品成交金额统计图表(部分未完成):(1)表中m=_________,n=__________;(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最多? 最喜爱阅读哪类读物的学生最少?(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普读物的学生有多少人?【解】(1)84,0.33;…………………………………………………………………(2分)(2)喜爱阅读文学类的学生最多(84人),喜爱阅读艺术类的学生最少(22人);…………………………………………………………………(4分)(3)1200×0.33=396(人).………………………………………………………(6分)14. (2011浙江省,20,8分)据媒体报道:某市四月份空气质量优良,高举全国榜首,青春中学九年级课外兴趣小组据此提出了“今年究竟能有多少天空气质量达到优良”的问题,他们高举国家环保总局所公布的空气质量级别表(见表1)以及市环保监测站提供的资料,从中随机抽取了今年1-4月份中30天空气综合污染指数,统计数据如下:表I:空气质量级别表空气污染指数0~50 51~100 101~150 151~200 201~250 251~300 大于300空气质量级别Ⅰ级(优)Ⅱ级(良)Ⅲ1(轻微污染)Ⅲ2(轻度污染)Ⅳ1(中度污染)Ⅳ2(中度重污染)Ⅴ(重度污染)空气综合污染指数30,32,40,42,45,45,77,83,85,87,90,113,127,153,16738,45,48,53,57,64,66,77,92,98,130,184,201,235,243请根据空气质量级别表和抽查的空气综合污染指数,解答以下问题:(1) 填写频率分布表中未完成的空格;分组频数统计频数频率0~50 0.3051~100 12 0.40101~150151~200 3 0.10201~250 3 0.10合计30 30 1.00(2) 写出统计数据中的中位数、众数;(3)请根据抽样数据,估计该市今年(按360天计算)空气质量是优良(包括Ⅰ、Ⅱ级)的天数.【答案】(1)分组频数统计频数频率0~50 9 0.3051~100 12 0.40101~150 3 0.10151~200 3 0.10201~250 3 0.10合计30 30 1.00(2) 中位数是 80 、众数是 45 。
南充市初中学业水平考试数学试题一、选择题(本大题共10个小题,每小题3分,共30分) 1.下列实数中,最小的数是( )A .B .0C .1D 2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .扇形B .正五边形C .菱形D .平行四边形 3.下列说法正确的是( )A .调查某班学生的身高情况,适宜采用全面调查B .篮球队员在罚球线上投篮两次都未投中,这是不可能事件C .天气预报说明天的降水概率为95%,意味着明天一定下雨D .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1 4.下列计算正确的是( )A .422a b a b a b -÷=-B .222()a b a b -=-C .236a a a ⋅=D .22232a a a -+=-5.如图,BC 是O 的直径,A 是O 上的一点,32OAC ∠=,则B ∠的度数是( )A .58B .60C .64D .68 6.不等式121x x +≥-的解集在数轴上表示为( )A .B .C .D . 7.直线2y x =向下平移2个单位长度得到的直线是( )A .2(2)y x =+B .2(2)y x =-C .22y x =-D .22y x =+8.如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为( )A .12B .1C .32 D 9.已知113x y -=,则代数式232x xy y x xy y+---的值是( )A .72-B .112-C .92D .3410.如图,正方形ABCD 的边长为2,P 为CD 的中点,连结AP ,过点B 作BE AP ⊥于点E ,延长CE 交AD 于点F ,过点C 作CH BE ⊥于点G ,交AB 于点H ,连接HF .下列结论正确的是( )A .CE =.2EF =C .cos CEP ∠=D .2HF EF CF =⋅ 二、填空题(本大题共6个小题,每小题3分,共18分)11.某地某天的最高气温是6C ,最低气温是4C -,则该地当天的温差为C .12.甲、乙两名同学的5次射击训练成绩(单位:环)如下表.比较甲、乙这5次射击成绩的方差2s 甲,2s 乙,结果为:2s 甲 2s 乙(选填“>”、“=”或“<”).13.如图,在ABC ∆中,AF 平分BAC ∠,AC 的垂直平分线交BC 于点E ,70B ∠=,19FAE ∠=,则C ∠= 度.14.若2(0)n n ≠是关于x 的方程2220x mx n -+=的根,则m n -的值为 . 15.如图,在ABC ∆中,//DE BC ,BF 平分ABC ∠,交DE 的延长线于点F ,若1AD =,2BD =,4BC =,则EF = .16.如图,抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠)与x 轴交于A ,B 两点,顶点(,)P m n .给出下列结论:①20a c +<;②若13,2y ⎛⎫- ⎪⎝⎭,21,2y ⎛⎫- ⎪⎝⎭,31,2y ⎛⎫⎪⎝⎭在抛物线上,则123y y y >>;③关于x 的方程20ax bx k ++=有实数解,则k c n >-;④当1n a =-时,ABP ∆为等腰直角三角形,其中正确结论是 (填写序号).三、解答题(本大题共9个小题,共72分)17.0111sin 4522-⎛⎫⎛⎫-++ ⎪ ⎪ ⎪⎝⎭⎝⎭. 18.如图,已知AB AD =,AC AE =,BAE DAC ∠=∠. 求证:C E ∠=∠.19.“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:(1)这组数据的众数是 ,中位数是 .(2)已知获得10分的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率.20.已知关于x 的一元二次方程22(22)(2)0x m x m m --+-=. (1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为1x ,2x ,且221210x x +=,求m 的值. 21.如图,直线(0)y kx b k =+≠与双曲线(0)m y m x =≠交于点1(,2)2A -,(,1)B n -.(1)求直线与双曲线的解析式;(2)点P 在x 轴上,如果3ABP S ∆=,求点P 的坐标.22.如图,C 是O 上一点,点P 在直径AB 的延长线上,O 的半径为3,2PB =,4PC =.(1)求证:PC 是O 的切线. (2)求tan CAB ∠的值.23.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元.(1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50150n ≤≤,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价-进价-销售成本).24.如图,矩形ABCD 中,2AC AB =,将矩形ABCD 绕点A 旋转得到矩形'''AB C D ,使点B 的对应点'B 落在AC 上,''B C 交AD 于点E ,在''B C 上取点F ,使'B F AB =.(1)求证:'AE C E=.(2)求'FBB∠的度数.(3)已知2AB=,求BF的长.25.如图,抛物线顶点(1,4)P,与y轴交于点(0,3)C,与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是物线上除点P外一点,BCQ∆与BCP∆的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.南充市二〇一八年初中学业水平考试数学参考答案一、选择题1-5: ACADA 6-10: BCBDD二、填空题11. 10 12. < 13. 24 14. 1215.2316. ②④三、解答题17.解:原式1122=-++=.18.证明:∵BAE DAC ∠=∠,∴BAE CAE DAC CAE ∠-∠=∠-∠. ∴BAC DAE ∠=∠. 在ABC ∆与ADE ∆中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC ADE SAS ∆≅∆. ∴C E ∠=∠. 19.解:(1)8;9.(2)设获得10分的四名选手分别为七、八1、八2、九,列举抽取两名领操员所能产生的全部结果,它们是:七八1,七八2,七九,八1八2,八1九,八2九.所有可能出现的结果有6种,它们出现的可能性相等,其中恰好抽到八年级两名领操员的结果有1种.所以,恰好抽到八年级两名领操员的概率为16P =.20.解:(1)根据题意,得22[(22)]4(2)40m m m ∆=----=>, ∴方程有两个不相等的实数根.(2)由一元二次方程根与系数的关系,得1222x x m +=-,2122x x m m ⋅=-.∵221210x x +=,∴21212()210x x x x +-=. ∴22(22)2(2)10m m m ---=.化简,得2230m m --=,解得13m =,21m =-. ∴m 的值为3或-1.21.解:(1)∵1(,2)2A -在m y x=上,∴212m=-,∴1m =-.∴1y x =-.∴(1,1)B -.又∵y kx b =+过两点A ,B ,∴1221k b k b ⎧-+=⎪⎨⎪+=-⎩, 解得21k b =-⎧⎨=⎩.∴21y x =-+.(2)21y x =-+与x 轴交点1(,0)2C ,ABP ACP BCP S S S ∆∆∆=+1121322CP CP =⋅⋅+⋅⋅=,解得2CP =.∴5(,0)2P 或3(,0)2-.22.解:(1)证明:连接OC . ∵O 的半径为3,∴3OC OB ==. 又∵2BP =,∴5OP =.在OCP ∆中,222222345OC PC OP +=+==, ∴OCP ∆为直角三角形,90OCP ∠=. ∴OC PC ⊥,故PC 为O 的切线.(2)过C 作CD OP ⊥于点D ,90ODC OCP ∠=∠=. ∵COD POC ∠=∠,∴OCD OPC ∆=∆.∴OC OP PC OD OC CD ==,∴2OC OD OP =⋅,∴295OC OD OP ==,453DC =,∴125CD =. 又∵245AD OA OD =+=, ∴在Rt CAD ∆中,1tan 2CD CAB AD ∠==.23.解:(1)设A 型进价为x 元,则B 型进价为(100)x -元,根据题意得:100008000100x x =-. 解得500x =.经检验,500x =是原方程的解. ∴B 型进价为400元.答:A 、B 两型的进价分别为500元、400元.(2)①∵1650m m m ≥⎧⎨≤-⎩,解得1625m ≤≤.②(8005002)w n m =--(600400)(50)n m +---(100)(1000050)n m n =-+-.当50100n ≤<时,1000n ->,w 随m 的增大而增大. 故25m =时,1250075w n =-最大. 当100n =时,5000w =最大.当100150n <≤时,1000n -<,w 随m 的增大而减小. 故16m =时,1160066w n =-最大.综上所述:1250075,501005000,1001160066,100150n n w n n n -≤<⎧⎪==⎨⎪-<≤⎩最大. 24.解:(1)∵四边形ABCD 为矩形,∴ABC ∆为Rt ∆. 又∵2AC AB =,1cos 2AB BAC AC ∠==, ∴60CAB ∠=.∴30ACB DAC ∠=∠=,∴''60B AC ∠=. ∴'30''C AD AC B ∠==∠. ∴'AE C E =.(2)∵60BAC ∠=,又'AB AB =, ∴'ABB ∆为等边三角形.∴'BB AB =,'60AB B ∠=,又∵'90AB F ∠=,∴'150BB F ∠=. ∵''B F AB BB ==,∴''15B BF BFB ∠=∠=.(3)连接AF ,过A 作AM BF ⊥于M .由(2)可知'AB F ∆是等腰直角三角形,'ABB ∆是等边三角形. ∴'45AFB ∠=,∴30AFM ∠=,45ABF ∠=. 在Rt ABM ∆中,cos AM BM AB ABM ==⋅∠2==在Rt AMF ∆中,tan AMMF AFM===∠∴BF =+.25.解:(1)设抛物线解析式为:2(1)4(0)y a x a =-+≠. ∵过(0,3),∴43a +=,∴1a =-. ∴22(1)423y x x x =--+=-++.(2)(3,0)B ,(0,3)C .直线BC 为3y x =-+. ∵PBC QBC S S ∆∆=,∴//PQ BC . ①过P 作//PQ BC 交抛物线于Q , 又∵(1,4)P ,∴直线PQ 为5y x =-+.2523y x y x x =-+⎧⎨=-++⎩. 解得1114x y =⎧⎨=⎩;2223x y =⎧⎨=⎩.∴1(2,3)Q .②设抛物线的对称轴交BC 于点G ,交x 轴于点H .(1,2)G ,∴2PG GH ==.过点H 作23//Q Q BC 交抛物线于2Q ,3Q . 直线23Q Q 为1y x =-+.∴2123y x y x x =-+⎧⎨=-++⎩.解得113212x y ⎧+=⎪⎪⎨--⎪=⎪⎩;223212x y ⎧-=⎪⎪⎨-+⎪=⎪⎩.∴2Q ⎝⎭,3Q ⎝⎭. 满足条件的点为1(2,3)Q,2Q ⎝⎭,3Q ⎝⎭. (3)存在满足条件的点M ,N . 如图,过M 作//MF y 轴,过N 作//NF x 轴交MF 于F ,过N 作//NH y 轴交BC 于H . 则MNF ∆与NEH ∆都是等腰直角三角形. 设11(,)M x y ,22(,)N x y ,直线MN 为y x b =-+. ∵223y x b y x x =-+⎧⎨=-++⎩,∴23(3)0x x b -+-=. ∴2221212()NF x x x x =-=+124214x x b -=-. MNF ∆等腰Rt ∆,∴222428MN NF b ==-.又∵22(3)NH b =-,∴221(3)2NE b =-. 如果四边形MNED 为正方形,∴22NE MN =,∴21428(69)2b b b -=-+. ∴210750b b +-=,∴115b =-,25b =.正方形边长为MN =MN =.。
(备战中考)四川省2012年中考数学深度复习讲义(教案+中考真题+模拟试题+单元测试)等腰三角形▴考点聚焦1.等腰三角形的判定与性质. 2.等边三角形的判定与性质.3.运用等腰三角形、等边三角形的判定与性质解决有关计算与证明问题. ▴备考后法1.运用三角形不等关系,•结合等腰三角形的判定与性质解决等腰三角形中高、边、角的计算问题,并要注意分类讨论.2.要正确辨析等腰三角形的判定与性质.3.能熟练运用等腰三角形、方程(组)、函数等知识综合解决实际问题. ▴识记巩固1.等腰三角形的性质定理及推论:____________________________.2.等腰三角形的判定定理及推论:____________________________. 识记巩固参考答案:1.等腰三角形的两个底角相等(等边对等角);•等腰三角形的顶角平分线平分底边并且垂直于底边(三线合一);等边三角形的各有都相等,且每个角都等于60°.2.如果一个三角形的两角相等,那么这两个角所对的边也相等(等角对等边).•三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.▴典例解析例1 (2011浙江衢州,23,10分)A B C ∆是一张等腰直角三角形纸板,R t 2C A C B C ∠=∠==,.要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积更大?请说明理由.图1中甲种剪法称为第1次剪取,记所得的正方形面积为1S ;按照甲种剪法,在余下的ADE BDF ∆∆和中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为2S (如图2),则2=S ;再在余下的四个三角形中,用同样的方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形的面积和为3S (如图3);继续操作下去…则第10次剪取时,10S = . 求第10次剪取后,余下的所有小三角形的面积和.【答案】(1)解法1:如图甲,由题意得,1,1CFDE AE D E EC EC S ====正方形即.如图乙,设M N x =,则由题意,得,AM MQ PN NB MN x =====222322,3228()39PN M Q x x S ∴==∴==正方形解得 又819>∴甲种剪法所得的正方形的面积更大说明:图甲可另解为:由题意得点D 、E 、F 分别为A B A C B C 、、的中点,112A B C C F D E S S == 正方形解法2:如图甲,由题意得AE DE EC ==,即EC=1如图乙,设,MN x AM MQ QP PN NB MN x =======则由题意得22322,3221,3x x EC M N∴==>> 解得又即∴甲种剪法所得的正方形的面积更大(第23题)(第23题图1)PNDFEB ACCABQM(2)212S = (3)10912S =(3)解法1:探索规律可知:112n n S -=‘剩余三角形的面积和为:()12109911112212422S S S ⎛⎫-+++=-++++= ⎪⎝⎭ 解法2:由题意可知,第一次剪取后剩余三角形面积和为112=1=S S - 第二次剪取后剩余三角形面积和为12211122S S S -=-== 第三次剪取后剩余三角形面积和为233111244S S S -=-==…21世纪教育网第十次剪取后剩余三角形面积和为9101091=2S S S -= 例2 如图,△ABC 中,E ,F 分别是AB ,AC 上的点.①AD 平分∠BAC ;②DE ⊥AB ,•DF•⊥AC ;③AD ⊥EF .以此三个中的两个为条件,另一个为结论,可构成三个命题,即:①②③;①③②;②③①.(1)试判断上述三个命题是否正确(直接作答);(2)请证明你认为正确的命题.解析 (1)①②⇒③正确;①③⇒②错误;②③⇒①正确. (2)先证①②⇒③,如图1. ∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC , ∴DE=DF ,∠AED=∠AFD=90°.在Rt △AED 和Rt △AFD 中,,,D E D F A D A D =⎧⎨=⎩∴△AED ≌△AFD (HL ). ∴AE=AF .∴△AEF 是等腰三角形,∴AD ⊥EF .再证②③⇒①.图1 图2 图3 方法一:如图2,DE ⊥AB ,EF ⊥AD ,DF ⊥AC .[来源:学科网ZXXK] 易证△DEH ∽△DAE ,△DFH ∽△DAF . ∴,D E D H D H D F A DD ED FA D==,∴DE 2=AD·DH ,DF 2=DH·AD .∴DE 2=DF 2,∴DE=DF ,∴AD 平分∠BAC . 方法二:如图3,取AD 的中点O ,连结EO ,FO . ∵DE ⊥AB ,DF ⊥AC ,∴OE ,OF 分别是Rt △ADE ,Rt △ADF 斜边上的中线. ∴OE=12AD ,OF=12AD .即O 点到A ,E ,D ,F 的距离相等.∴A ,E ,D ,F 四点在以O 为圆心,12AD 为半径的圆上,AD 是直径,EF 是⊙O 的弦,而EF•⊥AD ,∴AD 平分 EDF ,即 ED D F =. ∴∠DAE=∠DAF ,即AD 平分∠BAC .点评 本题是义务教育课程标准实验教科书数学(人教版)八年级上第111•页拓广探索题的变式与拓展,该例在教材中多次以不同形式出现,八年级(上)(人教版)第150页第13题,第158页第11题.因此,•在九年级的学习过程中一定要重视教材中的典型例题,习题,想一想这些题还可以进行怎样的变式,•与前后的知识与方法有什么联系,还可以得到什么结论等.这样可以不断提高自己的综合解题能力.2011年真题一、选择题1. (2011浙江省舟山,7,3分)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( )(A )32(B )33 (C )34 (D )36【答案】B2. (2011四川南充市,10,3分)如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan∠AEC=CDBC ;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM⊥DM;④BM=DM.正确结论的个数是( )(A )1个 (B )2个 (C )3个 (D )4个MEDCBA【答案】D 3. (2011浙江义乌,10,3分)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交CE 于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ;一定正确的结论有ABCDEF G (第7题)AB CDEA .1个B .2个C .3个D .4个【答案】D4. (2011台湾全区,30)如图(十三),ΔABC 中,以B 为圆心,BC 长为半径画弧,分别交AC 、AB于D 、E 两点,并连接BD 、DE .若∠A =30∘,AB =AC ,则∠BDE 的度数为何?A . 45B . 52.5C . 67.5D . 75【答案】C 5. (2011台湾全区,34)如图(十六),有两全等的正三角形ABC 、DEF ,且D 、A 分别为△ABC 、△DEF的重心.固定D 点,将△DEF 逆时针旋转,使得A 落在DE 上,如图(十七)所示.求图(十六)与图(十七)中,两个三角形重迭区域的面积比为何?A .2:1B . 3:2C . 4:3D . 5:4【答案】C6. (2011山东济宁,3,3分)如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形的周长是A .15cmB .16cmC .17cmD .16cm 或17cm 【答案】D7. (2011四川凉山州,8,4分)如图,在A B C △中,13A B A C ==,10B C =,点D 为B C 的中点,D E D E A B ⊥,垂足为点E ,则D E 等于( ) A .1013B .1513C .6013D .751321世纪教育网【答案】C 8.二、填空题1. (2011山东滨州,15,4分)边长为6cm 的等边三角形中,其一边上高的长度为________. 【答案】33cm2. (2011山东烟台,14,4分)等腰三角形的周长为14,其一边长为4,那么,它的底边为 .【答案】4或6[来源:21世纪教育网]3. (2011浙江杭州,16,4)在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 . 【答案】313122+-或4. (2011浙江台州,14,5分)已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F ,G ,若∠ADF=80º ,则∠EGC 的度数为【答案】80º5. (2011浙江省嘉兴,14,5分)如图,在△ABC 中,AB =AC ,︒=∠40A ,则△ABC 的外角∠BCD = °.【答案】1106. (2011湖南邵阳,11,3分)如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。
南充市二○二二年初中学业水平考试数学试卷(满分150分,时间120分钟)注意事项:1.答题前将姓名、座位号、身份证号、准考证号填在答题卡指定位置.2.所有解答内容均需涂、写在答题卡上.3.选择题须用2B 铅笔将答题卡相应题号对应选项涂黑,若需改动,须擦净另涂.4.填空题、解答题在答题卡对应题号位置用0.5毫米黑色字迹笔书写.一、选择题(本大题共10个小题,每小题4分,共40分)每小题都有代号为A 、B 、C 、D 四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置.填涂正确记4分,不涂、错涂或多涂记0分.1. 下列计算结果为5的是( )A. (5)-+B. (5)+-C. (5)--D. |5|--【答案】C【解析】【分析】根据去括号法则及绝对值化简依次计算判断即可.【详解】解:A 、-(+5)=-5,不符合题意;B 、+(-5)=-5,不符合题意;C 、-(-5)=5,符合题意;D 、55--=-,不符合题意;故选:C .【点睛】题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键. 2. 如图,将直角三角板ABC 绕顶点A 顺时针旋转到AB C ''△,点B '恰好落在CA 的延长线上,3090∠=︒∠=︒,B C ,则BAC '∠为( )A. 90︒B. 60︒C. 45︒D. 30°【答案】B【解析】 【分析】根据直角三角形两锐角互余,求出BAC ∠的度数,由旋转可知BAC B AC ''∠=∠,在根据平角的定义求出BAC '∠的度数即可.详解】∵3090∠=︒∠=︒,B C ,∴90903060BAC B ∠=︒-∠=︒-︒=︒,∵由旋转可知60B A BAC C ''∠=︒∠=,∴618060860100C B A BA BA C C '''=︒-∠=︒-︒-︒=︒∠∠-,故答案选:B .【点睛】本题考查直角三角形的性质以及图形的旋转的性质,找出旋转前后的对应角是解答本题的关键.3. 下列计算结果正确的是( )A. 532a a -=B. 623a a a ÷=C. 632a a a ÷=D. ()3236928a b a b =【答案】D【解析】【分析】根据单项式的减法、除法及同底数幂的除法、积的乘方运算依次计算判断即可.【详解】解:A 、5a -3a =2a ,选项错误;B 、6a ÷2a =3,选项错误;C 、633a a a ÷=,选项错误;D 、()3236928a b a b =,选项正确;故选:D .【点睛】题目主要考查单项式的减法、除法及同底数幂的除法、积的乘方运算,熟练掌握各个运算法则是解题关键.4. 《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡有x 只,可列方程为( )A. 42(94)35x x +-=B. 42(35)94x x +-=C. 24(94)35x x +-=D. 24(35)94x x +-=【答案】D【解析】【分析】设鸡有x 只,则兔子有(35-x )只,根据足共有94列出方程即可. 【【详解】解:设鸡有x 只,则兔子有(35-x )只,根据题意可得:2x +4(35-x )=94,故选:D .【点睛】题目主要考查一元一次方程的应用,理解题意列出方程是解题关键. 5. 如图,在正五边形ABCDE 中,以AB 为边向内作正ABF ,则下列结论错误的是( )A. AE AF =B. EAF CBF ∠=∠C. F EAF ∠=∠D. C E ∠=∠【答案】C【解析】【分析】利用正多边形各边长度相等,各角度数相等,即可逐项判断.【详解】解:∵多边形ABCDE 是正五边形,∴该多边形内角和为:5218540(0)-⨯︒=︒,AB AE =,∴108C E EAB ABC ∠=∠=∠=∠==︒,故D 选项正确; ∵ABF 是正三角形,∴60FAB FBA F ∠=∠=∠=︒,AB AF FB ==,∴1086048EAF EAB FAB ∠=∠-∠=︒-︒=︒,1086048CBF ABC FBA ∠=∠-∠=︒-︒=︒,∴EAF CBF ∠=∠,故B 选项正确;∵AB AE =,AB AF FB ==,∴AE AF =,故A 选项正确;∵60F ∠=︒,48EAF ∠=︒,∴F EAF ∠≠∠,故C 选项错误,故选:C .【点睛】本题考查正多边形的性质以及多边形内角和公式,熟练掌握正多边形“各边长度相等,各角度数相等”是解题的关键.6. 为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖关于睡眠时间的统计量中,与被遮盖的数据无关的是( )A. 平均数B. 中位数C. 众数D. 方差【答案】B【解析】【分析】根据题意可得,计算平均数、众数及方差需要全部数据,从统计图可得:前三组的数据共有5+11+16=32,共有50名学生,中位数为第25与26位的平均数,据此即可得出结果.【详解】解:根据题意可得,计算平均数、方差需要全部数据,故A 、D 不符合题意; ∵50-5-11-16=18>16,C 不符合题意;从统计图可得:前三组的数据共有5+11+16=32,共有50名学生,中位数为第25与26位的平均数,∴已知的数据中中位数确定,且不受后面数据的影响,故选:B .【点睛】题目主要考查条形统计图与中位数、平均数、众数及方差的关系,理解题意,掌握中位数、平均数、众数及方差的计算方法是解题关键.7. 如图,在Rt ABC 中,90,C BAC ∠=︒∠的平分线交BC 于点D ,DE //AB ,交AC 于点E ,DF AB ⊥于点F ,5,3DE DF ==,则下列结论错误的是( )A. 1BF =B. 3DC =C. 5AE =D.9AC =【答案】A【解析】【分析】根据角平分线的性质得到CD =DF =3,故B 正确;根据平行线的性质及角平分线得到AE =DE =5,故C 正确;由此判断D 正确;再证明△BDF ≌△DEC ,求出BF =CD =3,故A 错误.【详解】解:在Rt ABC 中,90,C BAC ∠=︒∠的平分线交BC 于点D ,DF AB ⊥, ∴CD =DF =3,故B 正确;∵DE =5,∴CE =4,∵DE //AB ,∴∠ADE =∠DAF ,∵∠CAD =∠BAD ,∴∠CAD =∠ADE ,∴AE =DE =5,故C 正确;∴AC =AE +CE =9,故D 正确;∵∠B =∠CDE ,∠BFD =∠C =90°,CD =DF ,∴△BDF ≌△DEC ,∴BF =CD =3,故A 错误;故选:A .三角形的判定及性质,熟记各知识点并综合应用是解题的关键.8. 如图,AB 为O 的直径,弦CD AB ⊥于点E ,OF BC ⊥于点F ,65BOF ∠=︒,则AOD ∠为( )A. 70︒B. 65︒C. 50︒D. 45︒【答案】C【解析】【分析】根据邻补角得出∠AOF =180°-65°=115°,利用四边形内角和得出∠DCB =65°,结合圆周角定理及邻补角进行求解即可.【详解】解:∵∠BOF =65°,∴∠AOF =180°-65°=115°,∵CD ⊥AB ,OF ⊥BC ,∴∠DCB =360°-90°-90°-115°=65°,∴∠DOB =2×65°=130°,∴∠AOD =180°-130°=50°,故选:C .【点睛】题目主要考查邻补角的计算及圆周角定理,四边形内角和等,理解题意,综合运用这些知识点是解题关键.9. 已知0a b >>,且223a b ab +=,则2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭的值是( )B. D. 【答案】B【解析】【分析】先将分式进件化简为a b b a+-,然后利用完全平方公式得出a b -=,a b +=,代入计算即可得出结果. 【详解】解:2221111a b a b ⎛⎫⎛⎫+÷- ⎪ ⎪⎝⎭⎝⎭ 22222a b b a ab a b +-⎛⎫=÷ ⎪⎝⎭ ()()()22222a b a b a b b a b a +=⨯+- a b b a+=-, ∵223a b ab +=,∴222a ab b ab -+=,∴()2a b ab -=,∵a>b>0,∴a b -=,∵223a b ab +=,∴2225a ab b ab ++=,∴()25a b ab +=,∵a>b>0,∴a b +=, ∴原式=,故选:B .【点睛】题目主要考查完全公式计算,分式化简等,熟练掌握运算法则是解题关键. 10. 已知点()()1122,,,M x y N x y 在抛物线222(0)y mx m x n m =-+≠上,当124x x +>且12x x <时,都有12y y <,则m 的取值范围为( )A. 02m <≤B. 20m -≤<C. 2m >D. 2m <-【答案】A【解析】 【分析】根据题意可得,抛物线的对称轴为222m x m m-=-=,然后分四种情况进行讨论分析,最后进行综合即可得出结果. 【详解】解:根据题意可得,抛物线的对称轴为222m x m m-=-=, ①当0<m <12x x <时,12y y <恒成立;②当120x x m <<<时,12y y <恒不成立;③当120x m x <<<时,使12124x x y y +><,恒成立,∴m 122x x +<, ∴m 2≤,02m <≤,④当120x m x <<<时,12y y <恒不成立;综上可得:02m <≤,故选:A .【点睛】题目主要考查二次函数的基本性质,理解题意,熟练掌握二次函数的基本性质是的解题的关键.二、填空题(本大题共6个小题,每小题4分,共24分)请将答案填在答题卡对应的横线上.11. 比较大小:22-_______________03.(选填>,=,<)【答案】<【解析】 【分析】先计算2124-=,031=,然后比较大小即可. 【详解】解:2124-=,031=, ∵114<, ∴2023-<,故答案为:<.【点睛】本题主要考查有理数的大小比较,负整数指数幂的运算,零次幂的运算,熟练掌握运算法则是解题关键.12. 老师为帮助学生正确理解物理变化与化学变化,将6种生活现象制成看上去无差别卡片(如图).从中随机抽取一张卡片,抽中生活现象是物理变化的概率是_______________.【答案】13【解析】【分析】根据简单的概率公式求解即可.【详解】解:卡片中有2张是物理变化,一共有6张卡片,∴是物理变化的概率为:2163=, 故答案为:13. 【点睛】题目主要考查简单的概率公式计算,理解题意是解题关键.13. 数学实践活动中,为了测量校园内被花坛隔开的A ,B 两点的距离,同学们在AB 外选择一点C ,测得,AC BC 两边中点的距离DE 为10m (如图),则A ,B 两点的距离是_______________m .【答案】20【解析】【分析】根据题意得出DE 为∆ABC 的中位线,然后利用其性质求解即可.【详解】解:∵点D 、E 为AC ,BC 的中点,∴DE 为∆ABC 的中位线,∵DE =10,∴AB =2DE =20,故答案为:20.【点睛】题目主要考查三角形中位线的判定和性质,熟练掌握三角形中位线的性质是解题关键.14. 为整数,x 为正整数,则x 的值是_______________.【答案】4或8##8或4【解析】【分析】根据根号下的数大于等于0和x 为正整数,可得x 可以取1、2、3、4、5、6、7、8为整数即可得的值.【详解】解:∵80x -≥∴8x ≤∵x 为正整数∴x 可以为1、2、3、4、5、6、7、8为整数∴x 为4或8故答案为:4或8.【点睛】本题考查了利用二次根式的性质化简、解一元一次不等式等知识点,掌握二次根式的性质是解答本题的关键.15. 如图,水池中心点O 处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O 在同一水平面.安装师傅调试发现,喷头高2.5m 时,水柱落点距O 点2.5m ;喷头高4m 时,水柱落点距O 点3m .那么喷头高_______________m 时,水柱落点距O 点4m .【答案】5.5【解析】【分析】设原抛物线的解析式为()2y a x h b =-+, 当向上移动1.5米到4米高度时,抛物线解析式为:()2 1.5y a x h b =-++,将两个交点分别代入求解确定原解析式,设向上平移k 个单位后, 21749416y a x k ⎛⎫=--+ ⎪⎝⎭,将点(4,0)代入求解,然后结合题意即可得出结果.【详解】解:设原抛物线的解析式为()2y a x h b =-+,根据题意可得,与x 轴交于点(2.5,0)代入得: ()20 2.5a h b =-+①,当向上移动1.5米到4米高度时, 抛物线解析式为:()2 1.5y a x h b =-++,与x 轴交于点(4,0),代入得 ()204 1.5a h b =-++②, 联立①②求解可得: 23112413(42h a b a a ⎧=+⎪⎪⎨⎪=-+⎪⎩, ∴将其代入②解得1a =, ∴原抛物线的解析式为2231113(2442y x a a a ⎛⎫=---+ ⎪⎝⎭, 设向上平移k 个单位后, ∴2231113()2442y x a k a a ⎛⎫=---++ ⎪⎝⎭与x 轴交点为(4,0),代入得:223111304()2442a k a a ⎛⎫=---++ ⎪⎝⎭解得:k =3,∴原抛物线向上移动3个单位, 即喷头高3+2.5=5.5米, 故答案为:5.5.【点睛】题目主要考查二次函数的应用,理解题意,设出二次函数的解析式,然后利用待定系数法求解是解题关键.16. 如图,正方形ABCD 边长为1,点E 在边AB 上(不与A ,B 重合),将ADE 沿直线DE 折叠,点A 落在点1A 处,连接1A B ,将1A B 绕点B 顺时针旋转90︒得到2A B ,连接112,,A A AC A C .给出下列四个结论:①12ABA CBA ≌△△;②145ADE ACB ∠+∠=︒;③点P 是直线DE 上动点,则1CP A P +;④当30ADE ∠=︒时,1A BE.其中正确的结论是_______________.(填写序号)【答案】①②③ 【解析】【分析】根据全等三角形判定即可判断①;过D 作DM ⊥CA 1于M ,利用等腰三角形性质及折叠性质得∠ADE +∠CDM ,再等量代换即可判断②;连接AP 、PC 、AC ,由对称性知,PA 1=PA ,知P 、A 、C 共线时取最小值,最小值为AC 长度,勾股定理求解即可判断③;过点A 1作A 1H ⊥AB 于H ,借助特殊角的三角函数值求出BE ,A 1H 的长度,代入三角形面积公式求解即可判断④.【详解】解:∵四边形ABCD 为正方形, ∴AB =BC ,∠ABC =90°,由旋转知,∠A 1BA 2=90°,A 1B =A 2B , ∴∠ABA 1=∠CBA 2, ∴△ABA 1≌△CBA 2, 故①正确;过D作DM⊥CA1于M,如图所示,由折叠知AD=A1D=CD,∠ADE=∠A1DE,∴DM平分∠CDA1,∴∠ADE+∠CDM=45°,又∠BCA1+∠DCM=∠CDM+∠DCM=90°,∴∠BCA1=∠CDM,∴∠ADE+∠BCA1=45°,故②正确;连接AP、PC、AC,由对称性知,PA1=PA,即PA1+PC=PA+PC,当P、A、C共线时取最小值,最小值为AC,故③正确;过点A1作A1H⊥AB于H,如图所示,∵∠ADE=30°,∴AE=tan30°·AD DE∴BE=AB-AE由折叠知∠DEA =∠DEA 1=60°,AE =A 1E , ∴∠A 1EH =60°,∴A 1H =A 1E ·sin60°=12=,∴△A 1BE 的面积=11122⎛⨯-⨯= ⎝, 故④错误,故答案为:①②③.【点睛】本题考查了正方形性质、等腰三角形性质、全等三角形的判定、折叠性质及解直角三角形等知识点,综合性较强.三、解答题(本大题共9个小题,共86分)解答应写出必要的文字说明,证明过程或演算步骤.17. 先化简,再求值:(2)(32)2(2)x x x x +--+,其中1x =.【答案】24x -;- 【解析】【分析】利用多项式乘以多项式及单项式乘以多项式运算法则进行化简,然后代入求值即可.【详解】解:原式=22326424x x x x x -+--- =24x -;当x 1时,原式=)214--=3+1-4=-【点睛】题目主要考查整式的乘法及加减化简求值及二次根式混合运算,熟练掌握运算法则是解题关键.18. 如图,在菱形ABCD 中,点E ,F 分别在边,AB BC 上,BE BF =,,DE DF 分别与AC 交于点M ,N .求证:(1)ADE CDF V V ≌. (2)ME NF =. 【答案】(1)见解析 (2)见解析【解析】【分析】(1)先利用菱形的性质和已知条件证明AE CF =,即可利用SAS 证明ADE CDF V V ≌;(2)连接BD 交AC 于点O ,先利用ASA 证明MDO NDO ≌V V ,推出DM DN =,再由(1)中结论推出DE DF =,即可证明ME NF =. 【小问1详解】证明:由菱形的性质可知,DAE DCF ∠=∠,AB BC CD DA ===, ∵ BE BF =,∴AB BE BC BF -=-,即AE CF =, 在ADE 和CDF 中,AD DC DAE DCF AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴(SAS)ADE CDF ≌V V . 【小问2详解】证明:如图,连接BD 交AC 于点O ,由菱形的性质可知AC BD ⊥,ADO CDO ∠=∠, ∴90DOM DON ∠=∠=︒, 由(1)知ADE CDF V V ≌,∴ADE CDF ∠=∠,DE DF =, ∴ADO ADE CDO CDF ∠-∠=∠-∠, ∴MDO NDO ∠=∠, 在MDO 和NDO V 中,MDO NDO DO DODOM DON ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴(ASA)MDO NDO ≌V V . ∴DM DN =,∴DE DM DF DN -=-, ∴ME NF =.【点睛】本题考查菱形的性质、全等三角形的判定与性质,熟练掌握菱形的性质是解题的关键.19. 为传播数学文化,激发学生学习兴趣,学校开展数学学科月活动,七年级开展了四个项目:A .阅读数学名著;B .讲述数学故事;C .制作数学模型;D .挑战数学游戏要求七年级学生每人只能参加一项.为了解学生参加各项目情况,随机调查了部分学生,将调查结果制作成统计表和扇形统计图(如图),请根据图表信息解答下列问题: 项目A BC D人数/人 5 15 ab(1)=a _______________,b =_______________.(2)扇形统计图中“B ”项目所对应的扇形圆心角为_______________度.(3)在月末的展示活动中,“C ”项目中七(1)班有3人获得一等奖,七(2)班有2人获得一等奖,现从这5名学生中随机抽取2人代表七年级参加学校制作数学模型比赛,请用列表或画树状图法求抽中的2名学生来自不同班级的概率. 【答案】(1)20;10 (2)108(3)35【解析】【分析】(1)根据A项目人数为5,占比为10%,得出总人数,然后根据D项目占比得出D项目人数,利用总人数减去各项目人数即可得出C项目人数;(2)利用B项目占比然后乘以360度即可得出结果;(3)设七(1)班有3人获得一等奖分别为F、G、H;七(2)班有2人获得一等奖分别为M、N;利用列表法得出所有可能的结果,然后找出满足条件的结果即可得出概率.【小问1详解】解:A项目人数为5,占比为10%,∴总人数为:5÷10%=50;D项目人数为:b=50×20%=10人,C项目人数为:a=50-10-5-15=20人,故答案为:20;10;【小问2详解】解:15360108 50⨯︒=︒,故答案为:108;【小问3详解】解:设七(1)班有3人获得一等奖分别为F、G、H;七(2)班有2人获得一等奖分别为M、N;列表如下:F G H M NF FG FH FM FNG GF GH GM GNH HF HG HM HNM MF MG MH MNN NF NG NH NM共有20中等可能的结果,其中满足条件的有12中结果,123205P==,2名同学来自不同班级的概率为3 5.【点睛】题目主要考查统计表及扇形统计图,利用树状图或列表法求概率等,理解题意,综合运用这些知识点是解题关键.20. 已知关于x 的一元二次方程2320x x k ++-=有实数根. (1)求实数k 的取值范围.(2)设方程的两个实数根分别为12,x x ,若()()12111x x ++=-,求k 的值. 【答案】(1)k 174≤; (2)k =3 【解析】【分析】根据一元二次方程有实数根得到32-4(k -2)≥0,解不等式即可;(2)根据根与系数的关系得到12123,2x x x x k -+==-,将等式左侧展开代入计算即可得到k 值. 【小问1详解】解:∵一元二次方程2320x x k ++-=有实数根. ∴∆≥0,即32-4(k -2)≥0, 解得k 174≤【小问2详解】∵方程的两个实数根分别为12,x x , ∴12123,2x x x x k -+==-, ∵()()12111x x ++=-, ∴121211x x x x +++=-, ∴2311k --+=-, 解得k =3.【点睛】此题考查了一元二次方程根的判别式,一元二次方程根与系数的关系式,熟练掌握一元二次方程有关知识是解题的关键.21. 如图,直线AB 与双曲线交于(1,6),(,2)A B m -两点,直线BO 与双曲线在第一象限交于点C ,连接AC .(1)求直线AB 与双曲线的解析式. (2)求ABC 的面积.【答案】(1)直线AB 的解析式为y =2x +4;双曲线解析式为6y x=; (2)16 【解析】【分析】(1)根据点A 的坐标求出双曲线的解析式,求出点B 的坐标,再利用待定系数法求出直线AB 的解析式; (2)求出直线OB 的解析式为y =23x ,得到点C 的坐标,过点B 作BE ∥x 轴,交AC 的延长线于E ,求出直线AC 的解析式,进而得到点E 的坐标,根据ABC 的面积=S △ABE -S △BCE 求出答案. 【小问1详解】解:设双曲线解析式为ky x=,将点A (1,6)代入, 得166k =⨯=, ∴双曲线解析式为6y x=, ∵双曲线过点B (m ,-2), ∴-2m =6, 解得m =-3, ∴B (-3,-2),设直线AB 的解析式为y =nx +b , 得632n b n b +=⎧⎨-+=-⎩,解得24n b =⎧⎨=⎩,∴直线AB 的解析式为y =2x +4; 【小问2详解】的设直线OB 的解析式为y =ax , 得-3a =-2,解得a =23, ∴直线OB 的解析式为y =23x , 当263x x=时,解得x =3或x =-3(舍去), ∴y =2, ∴C (3,2),过点B 作BE ∥x 轴,交AC 的延长线于E , ∵直线AC 的解析式为y =-2x +8, ∴当y =-2时,得-2x +8=-2,解得x =5, ∴E (5,-2),BE =8, ∴ABC 的面积=S △ABE -S △BCE =11888422⨯⨯-⨯⨯ =16.【点睛】此题考查了一次函数与反比例函数的综合知识,正确掌握待定系数法求函数的解析式,求图象交点坐标,求图形的面积,正确掌握一次函数与反比例函数的知识是解题的关键.22. 如图,AB 为O 的直径,点C 是O 上一点,点D 是O 外一点,BCD BAC ∠=∠,连接OD 交BC 于点E .(1)求证:CD 是O 的切线.(2)若4,sin 5CE OA BAC =∠=,求tan CEO ∠的值. 【答案】(1)见解析;(2)3 【解析】【分析】(1)连接OC ,根据圆周角定理得到∠ACB =90°,根据OA =OC 推出∠BCD =∠ACO ,即可得到∠BCD +∠OCB =90°,由此得到结论;(2)过点O 作OF ⊥BC 于F ,设BC =4x ,则AB =5x ,OA =CE =2.5x ,BE =1.5x ,勾股定理求出AC ,根据OF ∥AC ,得到1BF OBCF OA==,证得OF 为△ABC 的中位线,求出OF 及EF ,即可求出tan CEO ∠的值. 【小问1详解】 证明:连接OC ,∵AB 为O 的直径, ∴∠ACB =90°, ∴∠ACO +∠OCB =90°, ∵OA =OC , ∴∠A =∠ACO ,∵BCD BAC ∠=∠, ∴∠BCD =∠ACO , ∴∠BCD +∠OCB =90°, ∴OC ⊥CD ,∴CD 是O 切线. 【小问2详解】解:过点O 作OF ⊥BC 于F , ∵4,sin 5CE OA BAC =∠=, ∴设BC =4x ,则AB =5x ,OA =CE =2.5x , ∴BE =BC -CE =1.5x , ∵∠C =90°,的∴AC 3x =,∵OA =OB ,OF ∥AC , ∴1BF OB CF OA==, ∴CF =BF =2x ,EF =CE -CF =0.5x ,∴OF 为△ABC 的中位线,∴OF =1 1.52AC x =, ∴tan CEO ∠=1.530.5OF x EF x ==.【点睛】此题考查了圆周角定理,证明直线是圆的切线,锐角三角函数,三角形中位线的判定与性质,平行线分线段成比例,正确引出辅助线是解题的关键.23. 南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价-进价)(1)求真丝衬衣进价a 的值.(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?【答案】(1)a =260;(2)真丝衬衣件数进货100件,真丝围巾进货200件,最大利润为8000元;(3)每件最多降价28元.【解析】【分析】(1)根据题意列出一元一次方程求解即可;(2)设真丝衬衣件数进货x件,则真丝围巾进货(300-x)件,根据题意列出不等式得出x≤100;设总利润为y,由题意得出函数关系式,然后利用一次函数的性质求解即可得出;(3)设降价z元,根据题意列出不等式求解即可.小问1详解】解:根据表格数据可得:50a+25×80=15000,解得:a=260;【小问2详解】解:设真丝衬衣件数进货x件,则真丝围巾进货(300-x)件,根据题意可得:300-x≥2x,解得:x≤100;设总利润为y,根据题意可得y=(300-260)x+(100-80)(300-x)=20x+6000,∵20>0,∴y随x的增大而增大,当x=100时,y最大为:20×100+6000=8000元,此时方案为:真丝衬衣件数进货100件,真丝围巾进货200件,最大利润为8000元;【小问3详解】设降价z元,根据题意可得100×(100-80)+100×(300-260)+100×(300-260-z)≥8000×90%,解得:z≤28,∴每件最多降价28元.【点睛】题目主要考查一元一次方程及不等式的应用,一次函数的应用,理解题意,列出相应方程不等式是解题关键.24. 如图,在矩形ABCD中,点O是AB的中点,点M是射线DC上动点,点P在线段AM上(不与点A重合),12OP AB.【(1)判断ABP △的形状,并说明理由.(2)当点M 为边DC 中点时,连接CP 并延长交AD 于点N .求证:PN AN =.(3)点Q 在边AD 上,85,4,5AB AD DQ ===,当90CPQ ∠=︒时,求DM 的长. 【答案】(1)ABP △为直角三角形,理由见解析(2)见解析(3)43或12 【解析】【分析】(1)由点O 是AB 的中点,12OP AB =可知OP OA OB ==,由等边对等角可以推出90APB APO BPO ∠=∠+∠=︒; (2)延长AM ,BC 交于点E ,先证EC BC =,结合(1)的结论得出PC 是直角BPE 斜边的中线,推出12PC BE CE ==,进而得到34∠=∠,再通过等量代换推出21∠=∠,即可证明PN AN =;(3)过点P 作AB 的平行线,交AD 于点F ,交BC 于点G ,得到两个K 型,证明BPG FAP ∆∆ ,CPG PQF ∆∆ ,利用相似三角形对应边成比例列等式求出QF ,FP ,再通过AFP ADM ∆∆ 即可求出DM .【小问1详解】解:ABP △为直角三角形,理由如下:∵点O 是AB 的中点,12OP AB =∴OP OA OB ==,∴APO PAO ∠=∠,BPO PBO ∠=∠,∵ 180APO PAO BPO PBO ∠+∠+∠+∠=︒, ∴1180=902APO BPO ∠+∠=⨯︒︒, ∴90APB ∠=︒,∴ABP △为直角三角形;【小问2详解】证明:如图,延长AM ,BC 交于点E ,由矩形的性质知://AD BE ,90ADM ECM ∠=∠=︒,∴14∠=∠,∵ 点M 为边DC 中点,∴DM CM =,在ADM △和ECM 中,14ADM ECM DM CM ∠=∠⎧⎪∠=∠⎨⎪=⎩∴(AAS)ADM ECM ≅△△,∴EC AD =,∵BC AD =,∴EC BC =,即C 点为BE 的中点,由(1)知90APB ∠=︒,∴90BPE ∠=︒,即BPE 为直角三角形, ∴12PC BE CE ==, ∴34∠=∠,又∵23∠∠=,14∠=∠,∴21∠=∠,∴PN AN =;【小问3详解】解:如图,过点P 作AB 的平行线,交AD 于点F ,交BC 于点G ,由已知条件85,4,5AB AD DQ ===,设QF a =,FP x =, 则8124455GB AF DQ QF a a ==--=--=-,5PG x =-,85CG a =+. ∵AB AD ⊥,AB BC ⊥,//FG AB ,∴FG AD ⊥,FG BC ⊥,∴90AFP PGB ∠=∠=︒,∴90FAP FPA ∠+∠=︒,∵90APB ∠=︒,∴90BPG FPA ∠+∠=︒,∴BPG FAP ∠=∠,∴BPG FAP ∆∆ , ∴GB PG FP AF =,即1255125a x x a --=-, ∴212(5)()5x x a -=-. 同理,∵ 90QFP ∠=︒,∴90FQP FPQ ∠+∠=︒,∵90CPQ ∠=︒,∴90CPG FPQ ∠+∠=︒,∴CPG FQP ∠=∠,∴CPG PQF ∆∆ , ∴CG PG FP QF =,即855a x x a+-=,∴8(5)()5x x a a -=+. ∴2128()()55a a a -=+, 解得910a =, ∴12352AF a =-=, 将910a =代入8(5)()5x x a a -=+得989(5)(10510x x -=⨯+, 整理得242090x x -+=, 解得12x =或92x =. ∵FAP DAM ∠=∠,AFP ADM ∠=∠,∴AFP ADM ∆∆ , ∴FP AF DM AD =,即324x DM =, ∴83DM x =, ∴当12x =时,814323DM =⨯=, 当92x =时,891232DM =⨯=,此时点M 在DC 的延长线上, 综上,DM 的长为43或12. 【点睛】本题考查矩形的性质,直角三角形斜边中线的性质,相似三角形的判定与性质等,第3问有一定难度,解题关键是作辅助线构造K 字模型.25. 抛物线213y x bx c =++与x 轴分别交于点,(4,0)A B ,与y 轴交于点(0,4)C -.(1)求抛物线的解析式.(2)如图1,BCPQ Y 顶点P 在抛物线上,如果BCPQ Y 面积为某值时,符合条件的点P 有且只有三个,求点P 的坐标.(3)如图2,点M 在第二象限的抛物线上,点N 在MO 延长线上,2OM ON =,连接BN 并延长到点D ,使ND NB =.MD 交x 轴于点E ,DEB ∠与DBE ∠均为锐角,tan 2tan DEB DBE ∠=∠,求点M 的坐标.【答案】(1)211433=--y x x(2)(2,103-),(2+,23-)或(2-23--) (3)(-4,83) 【解析】【分析】(1)根据待定系数法求解析式即可;(2)先根据题意判断出三角形BCP 面积为平行四边形BCPQ 面积的一半,得出当P 在直线BC 下方的抛物线上时,面积取最大值时满足题意,求出最大面积后得到直线BC 下方的P 点坐标,再根据△BCP 的面积求出BC 上方P 点坐标即可;(3)过点N 作NH ⊥x 轴,过D 作DP ⊥x 轴,过M 作MQ ⊥x 轴,根据平行线性质求出MQ =PD ,证明△MEQ ≌△DEP ,得PQ =2PE ,设OP =x ,用x 表示出PB ,PE 的长度,再根据tan 2tan DEB DBE ∠=∠得出PB =2PE ,代入求出x 值,进而求得Q 点坐标及M 点坐标.【小问1详解】 解:∵抛物线213y x bx c =++与x 轴分别交于点(4,0)B ,与y 轴交于点(0,4)C -,∴1164034b c c ⎧⨯++=⎪⎨⎪=-⎩, 解得:134b c ⎧=-⎪⎨⎪=-⎩, 即抛物线解析式为211433=--y x x . 【小问2详解】解:由题意知,三角形BCP 面积为平行四边形BCPQ 面积的一半,设直线BC 下方抛物线上有一点P ,过P 作平行于BC 的直线l ,作直线l 关于BC 对称的直线MN ,由图知,直线MN 与抛物线必有两个交点,根据平行线间距离处处相等知,当三角形BCP 面积取最大值时即直线l 与抛物线只有一个交点时,符合题意的P 点只有三个,由B (4,0),C (0,-4)知直线BC 解析式为:y =x -4,过P 作PH ⊥x 轴于H ,交BC 于E ,则S △BCP =S △PCE +S △PBE =12OB PE ⨯⨯ =2PE , 设P (m ,211433m m --),则E (m ,m -4), ∴S △BCP =21124433m m m ⎡⎤⎛⎫---- ⎪⎢⎥⎝⎭⎣⎦=()222383m --+, ∴当m =2时,△BCP 面积取最大值,最大值为83, 此时,直线BC 下方抛物线上的P 点坐标为(2,103-), 同理,设直线BC 上方抛物线上P 点横坐标为n ,则:()2118244333n n n ⎡⎤----=⎢⎥⎣⎦,解得:n =2+或n =2-即P (2+,23-)或(2-23-),综上所述,满足题意的P 点坐标为(2,103-),(2+,23-)或(2-23--). 【小问3详解】解:过点N 作NH ⊥x 轴,过D 作DP ⊥x 轴,过M 作MQ ⊥x 轴,垂足分别为H 、P 、Q ,如图所示,则NH ∥PD ∥MQ , ∴12OH OM HN OQ ON QM ===,12BH HN BN BP PD BD ===, ∴PD =2HN ,QM =2HN ,即PD =QM ,∵∠MEQ =∠PED ,∴△MEQ ≌△DEP ,∴QE =PE ,设OP =x ,则BP =4-x ,PH =BH =42x -, ∴OH =OP +PH =x +42x -=42x +,OQ =2OH =4+x ,PQ =4+2x ,PE =2+x , ∵tan 2tan DEB DBE ∠=∠, ∴2PD PD PE PB=⨯, 即PB =2PE ,∴4-x =2(2+x ),解得:x =0,即P 点为坐标原点,D 在y 轴上,∴OQ =4,即Q (-4,0),∴M (-4, 83). 【点睛】本题考查了待定系数法求二次函数解析式、二次函数与三角形面积最值问题、平行线分线段成比例性质、全等三角形证明等知识点,解题关键是利用平行线分线段成比例定理找出各线段间的关系。