高三数学选择填空训练
- 格式:docx
- 大小:36.38 KB
- 文档页数:4
高三数学题库及答案一、选择题1.在△ABC中,sinA=sinB,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形答案D2.在△ABC中,若acosA=bcosB=ccosC,则△ABC是()A.直角三角形B.等边三角形C.钝角三角形D.等腰直角三角形答案B解析由正弦定理知:sinAcosA=sinBcosB=sinCcosC,∴tanA=tanB=tanC,∴A=B=C.3.在△ABC中,sinA=34,a=10,则边长c的取值范围是()A.152,+∞B.(10,+∞)C.(0,10)D.0,403答案D解析∵csinC=asinA=403,∴c=403sinC.∴04.在△ABC中,a=2bcosC,则这个三角形一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形答案A解析由a=2bcosC得,sinA=2sinBcosC,∴sin(B+C)=2sinBcosC,∴sinBcosC+cosBsinC=2sinBcosC,∴sin(B-C)=0,∴B=C.5.在△ABC中,已知(b+c)∶(c+a)∶(a+b)=4∶5∶6,则sinA∶sinB∶sinC等于()A.6∶5∶4B.7∶5∶3C.3∶5∶7D.4∶5∶6答案B解析∵(b+c)∶(c+a)∶(a+b)=4∶5∶6,∴b+c4=c+a5=a+b6.令b+c4=c+a5=a+b6=k(k>0),则b+c=4kc+a=5ka+b=6k,解得a=72kb=52kc=32k.∴sinA∶sinB∶sinC=a∶b∶c=7∶5∶3.6.已知三角形面积为14,外接圆面积为π,则这个三角形的三边之积为()A.1B.2C.12D.4答案A解析设三角形外接圆半径为R,则由πR2=π,得R=1,由S△=12absinC=abc4R=abc4=14,∴abc=1.二、填空题7.在△ABC中,已知a=32,cosC=13,S△ABC=43,则b=________.答案23解析∵cosC=13,∴sinC=223,∴12absinC=43,∴b=23.8.在△ABC中,角A,B,C的对边分别为a,b,c,已知A=60°,a=3,b=1,则c=________.答案2解析由正弦定理asinA=bsinB,得3sin60°=1sinB,∴sinB=12,故B=30°或150°.由a>b,得A>B,∴B=30°,故C=90°,由勾股定理得c=2.9.在单位圆上有三点A,B,C,设△ABC三边长分别为a,b,c,则asinA+b2sinB+2csinC=________.答案7解析∵△ABC的外接圆直径为2R=2,∴asinA=bsinB=csinC=2R=2,∴asinA+b2sinB+2csinC=2+1+4=7.10.在△ABC中,A=60°,a=63,b=12,S△ABC=183,则a+b+csinA+sinB+sinC=________,c=________.答案126解析a+b+csinA+sinB+sinC=asinA=6332=12.∵S△ABC=12absinC=12×63×12sinC=183,∴sinC=12,∴csinC=asinA=12,∴c=6.三、解答题11.在△ABC中,求证:a-ccosBb-ccosA=sinBsinA.证明因为在△ABC中,asinA=bsinB=csinC=2R,所以左边=2RsinA-2RsinCcosB2RsinB-2RsinCcosA=sin(B+C)-sinCcosBsin(A+C)-sinCcosA=sinBcosCsinAcosC =sinBsinA=右边.所以等式成立,即a-ccosBb-ccosA=sinBsinA.12.在△ABC中,已知a2tanB=b2tanA,试判断△ABC的形状.解设三角形外接圆半径为R,则a2tanB=b2tanA⇔a2sinBcosB=b2sinAcosA⇔4R2sin2AsinBcosB=4R2sin2BsinAcosA⇔sinAcosA=sinBcosB⇔sin2A=sin2B⇔2A=2B或2A+2B=π⇔A=B或A+B=π2.∴△ABC为等腰三角形或直角三角形.能力提升13.在△ABC中,B=60°,边与最小边之比为(3+1)∶2,则角为()A.45°B.60°C.75°D.90°答案C解析设C为角,则A为最小角,则A+C=120°,∴sinCsinA=sin120°-AsinA=sin120°cosA-cos120°sinAsinA=32tanA+12=3+12=32+12,∴tanA=1,A=45°,C=75°.14.在△ABC中,a,b,c分别是三个内角A,B,C的对边,若a=2,C=π4,cosB2=255,求△ABC的面积S.解cosB=2cos2B2-1=35,故B为锐角,sinB=45.所以sinA=sin(π-B-C)=sin3π4-B=7210.由正弦定理得c=asinCsinA=107,所以S△ABC=12acsinB=12×2×107×45=87.1.在△ABC中,有以下结论:(1)A+B+C=π;(2)sin(A+B)=sinC,cos(A+B)=-cosC;(3)A+B2+C2=π2;(4)sinA+B2=cosC2,cosA+B2=sinC2,tanA+B2=1tanC2.2.借助正弦定理可以进行三角形中边角关系的互化,从而进行三角形形状的判断、三角恒等式的证明.。
高三数学考试试题一、选择题(每题4分,共40分)1. 若函数f(x) = ax^2 + bx + c的图像是开口向上的抛物线,那么a 的取值范围是:A. a > 0B. a < 0C. a = 0D. a ≠ 02. 已知集合A={x|-1≤x≤2},B={x|-2≤x≤1},则A∪B的结果是:A. {x|-2≤x≤2}B. {x|-1≤x≤1}C. {x|-1≤x≤2}D. {x|-2≤x≤1}3. 若sin(α+β)sin(α-β) = m,那么cos^2α - sin^2β的值是:A. mB. -mC. 1-mD. 1+m4. 已知数列{an}满足a1=2,an+1 = an + 3n,那么a5的值是:A. 23B. 28C. 33D. 385. 函数y = ln(x)的导数是:A. 1/xB. x/ln(x)C. ln(x)/xD. ln^2(x)6. 已知直线l1: x + y - 3 = 0 与直线l2: 2x - y + 6 = 0,它们的交点坐标是:A. (1, 2)B. (-1, 4)C. (3, 0)D. (0, 3)7. 已知圆心在原点,半径为2的圆的方程是:A. x^2 + y^2 = 4B. x^2 + y^2 = 2C. x^2 + y^2 > 4D. x^2 + y^2 < 48. 若z = x + yi,其中x和y为实数,i为虚数单位,那么|z|的值是:A. √(x^2 + y^2)B. √(x^2 - y^2)C. x - yiD. x + yi9. 已知函数f(x) = x^3 - 3x^2 + 2x - 1,求f'(1)的值:A. -1B. 0C. 1D. 210. 若方程x^2 - 4x + 3 = 0有实数根,则实数根的和是:A. 1B. 2C. 4D. 0二、填空题(每题3分,共15分)11. 若sin(θ) = √3/2,且θ为锐角,则cos(θ) = _______。
高三数学选择填空题训练(1)一.填空题1.已知定义域在[-1,1]上的函数y=f(x)的值域为[-2,0];则函数y=f(cos x )的值域为 A .[-1,1] B .[―3,―1] C .[-2,0] D .不能确定 2.已知函数y=f(x)是一个以4为最小正周期的奇函数;则f(2)=A .0B .-4C .4D .不能确定3.如果采用分层抽样法从个体数为N 的总体中;抽取一个容量为n 的样本;那么每个个体被抽到的概率等于( )A .N1B .N nC .n 1D .nN4.首项系数为1的二次函数y=f(x)在x=1处的切线与x 轴平行;则A .f(arcsin31)>f(arcsin 32) B .f(arcsin 31)=f(arcsin 32) C .f(arcsin 31)>f(arcsin 32) D .f(arcsin 31)与f(arcsin 32)的大小不能确定5.关于x 的不等式ax -b>0的解集为(1,+∞);则关于x 的不等式2-+x bax >0的解集为A .(-1,2)B .(-∞,-1)∪(2,+∞)C .(1,2)D .(―∞,―2)∪(1,+∞)6.若O 为⊿ABC 的内心;且满足(OB -OC )•(OB +OC -2OA )=0A .等腰三角形B .正三角形C .直角三角形D .以上都不对 7.设有如下三个命题甲:m ∩l =A, m 、l ⊂α, m 、l ⊄β;乙:直线m 、l 中至少有一条与平面β相交; 丙:平面α与平面β相交。
当甲成立时;乙是丙的 条件。
A .充分而不必要B .必要而不充分C .充分必要D .既不充分又不必要 8.⊿ABC 中;3sinA+4cosB=6;3cosA+4sinB=1;则∠C 的大小为A .6π B .65π C .6π或65π D .3π或32π9.等体积的球和正方体;它们的表面积的大小关系是A .S 球>S 正方体B .S 球<S 正方体C .S 球=S 正方体D .S 球=2S 正方体10.若连结双曲线22a x -22by =1与其共轭双曲线的四个顶点构成面积为S 1的四边形;连结四个焦点构成面积为S 2的四边形;则21S S 的最大值为 A .4 B .2C .21 D .41 二.填空题11.函数)(cos 3sin R x x x y ∈+=的最小值是 .12.某中学高一年级400人;高二年级320人;高三年级280人;若每人被抽取的概率为;问该中学抽取一个容量为n 的样本;则n= . 13.若指数函数f(x)=a x (x ∈R)的部分对应值如下表:则不等式1-f(|x -1|)<0的解集为 。
2024届高三二轮复习“8+3+3”小题强化训练(1)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1对两个具有线性相关关系的变量x 和y 进行统计时,得到一组数据1,0.3 ,2,4.7 ,3,m ,4,8 ,通过这组数据求得回归直线方程为y=2.4x -2,则m 的值为()A.3B.5C.5.2D.6【答案】A【解析】易知x =1+2+3+44=52,y =13+m4,代入y =2.4x -2得13+m 4=2.4×52-2⇒m =3.故选:A2已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是()A.若m ⎳α,n ⎳α,则m ⎳nB.若m ⊥α,n ⊂α,则m ⊥nC.若m ⊥α,m ⊥n ,则n ⎳αD.若m ⎳α,m ⊥n ,则n ⊥α【答案】B【解析】线面垂直,则有该直线和平面内所有的直线都垂直,故B 正确.故选:B3已知向量a ,b 满足a =3,b =23,且a ⊥a +b,则b 在a 方向上的投影向量为()A.3B.-3C.-3aD.-a【答案】D【解析】a ⊥a +b ,则a ⋅a +b =a 2+a ⋅b =9+a ⋅b =0,故a ⋅b=-9,b 在a 方向上的投影向量a ⋅b a 2⋅a =-99⋅a =-a.故选:D .4若n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,则二项式3x +12xn的展开式的常数项是()A.7B.8C.9D.10【答案】A【解析】因为n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,6×60%=3.6,所以n =8,二项式3x +12x8的通项公式为T r +1=C r 8⋅3x 8-r ⋅12x r =C r 8⋅12 r⋅x8-r 3-r,令8-r 3-r =0⇒r =2,所以常数项为C 28×12 2=8×72×14=7,故选:A5折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧DE ,AC 所在圆的半径分别是3和6,且∠ABC =120°,则该圆台的体积为()A.5023π B.9π C.7π D.1423π【答案】D【解析】设圆台上下底面的半径分别为r 1,r 2,由题意可知13×2π×3=2πr 1,解得r 1=1,13×2π×6=2πr 2,解得:r 2=2,作出圆台的轴截面,如图所示:图中OD =r 1=1,O A =r 2=2,AD =6-3=3,过点D 向AP 作垂线,垂足为T ,则AT =r 2-r 1=1,所以圆台的高h =AD 2-AT 2=32-1=22,则上底面面积S 1=π×12=π,S 2=π×22=4π,由圆台的体积计算公式可得:V =13×(S 1+S 2+S 1⋅S 2)×h =13×7π×22=142π3,故选:D .6已知函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,若x 1,x 2,-1三个数适当调整顺序后可为等差数列,也可为等比数列,则不等式x -bx -c≤0的解集为()A.1,52B.1,52C.-∞,1 ∪52,+∞D.-∞,1 ∪52,+∞ 【答案】A【解析】由函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,即x 1,x 2是x 2-bx +c =0的两个实数根据,则x 1+x 2=b ,x 1x 2=c 因为b >0,c >0,可得x 1>0,x 2>0,又因为x 1,x 2,-1适当调整可以是等差数列和等比数列,不妨设x 1<x 2,可得x 1x 2=-1 2=1-1+x 2=2x 1 ,解得x 1=12,x 2=2,所以x 1+x 2=52,x 1x 2=1,所以b =52,c =1,则不等式x -b x -c ≤0,即为x -52x -1≤0,解得1<x ≤52,所以不等式的解集为1,52.故选:A .7已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,M ,N 为双曲线一条渐近线上的两点,A 为双曲线的右顶点,若四边形MF 1NF 2为矩形,且∠MAN =2π3,则双曲线C 的离心率为()A.3B.7C.213D.13【答案】C【解析】如图,因为四边形MF 1NF 2为矩形,所以MN =F 1F 2 =2c (矩形的对角线相等),所以以MN 为直径的圆的方程为x 2+y 2=c 2.直线MN 为双曲线的一条渐近线,不妨设其方程为y =bax ,由y =b a x ,x 2+y 2=c 2,解得x =a y =b ,或x =-a ,y =-b , 所以N a ,b ,M -a ,-b 或N -a ,-b ,M a ,b .不妨设N a ,b ,M -a , -b ,又A a ,0 ,所以AM =a +a 2+b 2=4a 2+b 2,AN =a -a 2+b 2=b .在△AMN 中,∠MAN =2π3,由余弦定理得MN 2=AM 2+AN 2-2AM AN ⋅cos 2π3,即4c 2=4a 2+b 2+b 2+4a 2+b 2×b ,则2b =4a 2+b 2,所以4b 2=4a 2+b 2,则b 2=43a 2,所以e =1+b 2a2=213.故选:C .8已知a =ln 1.2e ,b =e 0.2,c =1.2e 0.2,则有()A.a <b <cB.a <c <bC.c <a <bD.c <b <a【答案】C【解析】令f x =e x -ln x +1 -1,x >0,则f x =e x -1x +1.当x >0时,有e x >1,1x +1<1,所以1x +1<1,所以,f (x )>0在0,+∞ 上恒成立,所以,f (x )在0,+∞ 上单调递增,所以,f (x )>f (0)=1-1=0,所以,f (0.2)>0,即e 0.2-ln1.2-1>0,所以a <b令g x =e x -x +1 ,x >0,则g x =e x -1在x >0时恒大于零,故g x 为增函数,所以x +1ex <1,x >0,而a =ln 1.2e =1+ln1.2>1,所以c <a ,所以c <a <b ,故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知函数f x =sin 2x +3π4 +cos 2x +3π4,则()A.函数f x -π4 为偶函数 B.曲线y =f x 对称轴为x =k π,k ∈ZC.f x 在区间π3,π2单调递增D.f x 的最小值为-2【答案】AC【解析】f x =sin 2x +3π4 +cos 2x +3π4=sin2x cos 3π4+sin 3π4cos2x +cos2x cos 3π4-sin2x sin3π4=-22sin2x +22cos2x -22cos2x -22sin2x =-2sin2x ,即f x =-2sin2x ,对于A ,f x -π4 =-2sin 2x -π2=2cos2x ,易知为偶函数,所以A 正确;对于B ,f x =-2sin2x 对称轴为2x =π2+k π,k ∈Z ⇒x =π4+k π2,k ∈Z ,故B 错误;对于C ,x ∈π3,π2 ,2x ∈2π3,π ,y =sin2x 单调递减,则f x =-2sin2x 单调递增,故C 正确;对于D ,f x =-2sin2x ,则sin2x ∈-1,1 ,所以f x ∈-2,2 ,故D 错误;故选:AC10设z 为复数,则下列命题中正确的是()A.z 2=zz B.若z =(1-2i )2,则复平面内z对应的点位于第二象限C.z 2=z 2D.若z =1,则z +i 的最大值为2【答案】ABD【解析】对于A ,设z =a +bi ,故z =a -bi ,则z 2=a 2+b 2,zz =(a +bi )(a -bi )=a 2+b 2,故z 2=zz成立,故A 正确,对于B ,z =(1-2i )2=-4i -3,z =4i -3,显然复平面内z对应的点位于第二象限,故B 正确,对于C ,易知z 2=a 2+b 2,z 2=a 2+b 2+2abi ,当ab ≠0时,z 2≠z 2,故C 错误,对于D ,若z =1,则a 2+b 2=1,而z +i =a 2+(b +1)2=2b +2,易得当b =1时,z +i 最大,此时z +i =2,故D 正确.故选:ABD11已知菱形ABCD 的边长为2,∠ABC =π3.将△DAC 沿着对角线AC 折起至△D AC ,连结BD .设二面角D -AC -B 的大小为θ,则下列说法正确的是()A.若四面体D ABC 为正四面体,则θ=π3B.四面体D ABC 的体积最大值为1C.四面体D ABC 的表面积最大值为23+2D.当θ=2π3时,四面体D ABC 的外接球的半径为213【答案】BCD【解析】如图,取AC 中点O ,连接OB ,OD ,则OB =OD ,OB ⊥AC ,OD ⊥AC ,∠BOC 为二面角D AC -B 的平面角,即∠BOC =θ.若D ABC 是正四面体,则BD =BC ≠BO ,△OBD 不是正三角形,θ≠π3,A 错;四面体D ABC 的体积最大时,BO ⊥平面ACD ,此时B 到平面ACD 的距离最大为BO =3,而S △ACD=34×22=3,所以V =13×3×3=1,B 正确;S △ABC =S △DAC =3,易得△BAD ≅△BCD ,S △BAD=S △BCD=12×22sin ∠BCD =2sin ∠BCD ,未折叠时BD =BD =23,折叠到B ,D 重合时,BD =0,中间存在一个位置,使得BD =22,则BC 2+D C 2=BD 2,∠BCD =π2,此时S △BAD=S △BCD=2sin ∠BCD 取得最大值2,所以四面体D ABC 的表面积最大值为23+2 ,C 正确;当θ=2π3时,如图,设M ,N 分别是△ACD 和△BAC 的外心,在平面AOD 内作PM ⊥OD ,作PN ⊥OB ,PM ∩PN =P ,则P 是三棱锥外接球的球心,由上面证明过程知平面OBD 与平面ABC 、平面D AC 垂直,即P ,N ,O ,M 四点共面,θ=2π3,则∠PON =π3,ON =13×32×2=33,PN =ON tan π3=33×3=1,PB =PN 2+BN 2=12+233 2=213为球半径,D 正确.故选:BCD .三、填空题:本题共3小题,每小题5分,共15分.12设集合M =x log 2x <1 ,N =x 2x -1<0 ,则M ∩N =.【答案】x 0<x <12【解析】因为log 2x <1=log 22,所以0<x <2,即M =x log 2x <1 =x 0<x <2 ,因为2x -1<0,解得x <12,所以N =x 2x -1<0 =x x <12,所以,M ∩N =x 0<x <12 .故答案为:x 0<x <12 13已知正项等比数列a n 的前n 项和为S n ,且S 8-2S 4=6,则a 9+a 10+a 11+a 12的最小值为.【答案】24【解析】设正项等比数列a n 的公比为q ,则q >0,所以,S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=a 1+a 2+a 3+a 4+q 4a 1+a 2+a 3+a 4 =S 41+q 4 ,则S 8-2S 4=S 4q 4-1 =6,则q 4>1,可得q >1,则S 4=6q 4-1,所以,a 9+a 10+a 11+a 12=q 8a 1+a 2+a 3+a 4 =S 4q 8=6q 8q 4-1=6q 4-1+1 2q 4-1=6q 4-1 2+1+2q 4-1 q 4+1=6q 4-1 +1q 4-1+2 ≥62q 4-1 ⋅1q 4-1+2 =24,当且仅当q 4-1=1q 4-1q >1 时,即当q =42时,等号成立,故a 9+a 10+a 11+a 12的最小值为24.故答案为:2414已知F 为拋物线C :y =14x 2的焦点,过点F 的直线l 与拋物线C 交于不同的两点A ,B ,拋物线在点A ,B 处的切线分别为l 1和l 2,若l 1和l 2交于点P ,则|PF |2+25AB的最小值为.【答案】10【解析】C :x 2=4y 的焦点为0,1 ,设直线AB 方程为y =kx +1,A x 1,y 1 ,B x 2,y 2 .联立直线与抛物线方程有x 2-4kx -4=0,则AB =y 1+y 2+2=k x 1+x 2 +4=4k 2+4.又y =14x 2求导可得y =12x ,故直线AP 方程为y -y 1=12x 1x -x 1 .又y 1=14x 21,故AP :y =12x 1x -14x 21,同理BP :y =12x 2x -14x 22.联立y =12x 1x -14x 21y =12x 2x -14x 22可得12x 1-x 2 x =14x 21-x 22 ,解得x =x 1+x 22,代入可得P x 1+x 22,x 1x 24 ,代入韦达定理可得P 2k ,-1 ,故PF =4k 2+4.故|PF |2+25AB=4k 2+4+254k 2+4≥24k 2+4 ×254k 2+4=10,当且仅当4k 2+4=254k 2+4,即k =±12时取等号.故答案为:102024届高三二轮复习“8+3+3”小题强化训练(2)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1抛物线y =12x 2的焦点坐标为()A.18,0B.12,0 C.0,18D.0,12【答案】D 【解析】由y =12x 2可得抛物线标准方程为:x 2=2y ,∴其焦点坐标为0,12 .故选:D .2二项式3x 2-1x 47的展开式中常数项为()A.-7B.-21C.7D.21【答案】A 【解析】二项式3x 2-1x47的通项公式为Tr +1=C r 7⋅3x 27-r⋅-1x4r=Cr 7⋅-1 r⋅x14-14r 3,令14-14r 3=0⇒r =1,所以常数项为C 17⋅-1 =-7,故选:A3已知集合A =x log 2x ≤1 ,B =y y =2x ,x ≤2 ,则()A.A ∪B =BB.A ∪B =AC.A ∩B =BD.A ∪(C R B )=R【答案】A【解析】由log 2x ≤1,则log 2x ≤log 22,所以0<x ≤2,所以A =x log 2x ≤1 =x 0<x ≤2 ,又B =y y =2x ,x ≤2 =y 0<y ≤4 ,所以A ⊆B ,则A ∪B =B ,A ∩B =A .故选:A .4若古典概型的样本空间Ω=1,2,3,4 ,事件A =1,2 ,甲:事件B =Ω,乙:事件A ,B 相互独立,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】若B =Ω,A ∩B =1,2 ,则P A ∩B =24=12,而P A =24=12,P B =1,所以P A P B =P A ∩B ,所以事件A ,B 相互独立,反过来,当B =1,3 ,A ∩B =1 ,此时P A ∩B =14,P A =P B =12,满足P A P B =P A ∩B ,事件A ,B 相互独立,所以不一定B =Ω,所以甲是乙的充分不必要条件.故选:A5若函数f x =ln e x -1 -mx 为偶函数,则实数m =()A.1B.-1C.12D.-12【答案】C【解析】由函数f x =ln e x -1 -mx 为偶函数,可得f -1 =f 1 ,即ln e -1-1 +m =ln e -1 -m ,解之得m =12,则f x =ln e x -1 -12x (x ≠0),f -x =ln e -x -1 +12x =ln e x -1 -x +12x =ln e x -1 -12x =f x故f x =ln e x -1 -12x 为偶函数,符合题意.故选:C6已知函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,若f (s -t ),f (s ),f (s +t )成等比数列,则平面上点(s ,t )的轨迹是()A.线段(不包含端点) B.椭圆一部分C.双曲线一部分D.线段(不包含端点)和双曲线一部分【答案】A【解析】因为函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,所以y =f (x )=b ⋅1-x 2a2(-a <x <a ),因为f (s -t ),f (s ),f (s +t )成等比数列,所以有f 2(s )=f (s -t )⋅f (s +t ),且有-a <s <a ,-a <s -t <a ,-a <s +t <a 成立,即-a <s <a ,-a <t <a 成立,由f 2(s )=f (s -t )⋅f (s +t )⇒b ⋅1-s 2a 22=b ⋅1-(s -t )2a 2⋅b ⋅1-(s +t )2a 2,化简得:t 4=2a 2t 2+2s 2t 2⇒t 2(t 2-2a 2-2s 2)=0⇒t 2=0,或t 2-2a 2-2s 2=0,当t 2=0时,即t =0,因为-a <s <a ,所以平面上点(s ,t )的轨迹是线段(不包含端点);当t 2-2a 2-2s 2=0时,即t 2=2a 2+2s 2,因为-a <t <a ,所以t 2<a 2,而2a 2+2s 2>a 2,所以t 2=2a 2+2s 2不成立,故选:A7若tan α+π4=-2,则sin α1-sin2α cos α-sin α=()A.65B.35C.-35D.-65【答案】C【解析】因为tan α+π4 =tan α+tan π41-tan αtan π4=tan α+11-tan α=-2,解得tan α=3,所以,sin α1-sin2αcos α-sin α=sin αsin 2α+cos 2α-2sin αcos α cos α-sin α=sin αcos α-sin α 2cos α-sin α=sin αcos α-sin 2α=sin αcos α-sin 2αcos 2α+sin 2α=tan α-tan 2α1+tan 2α=3-91+9=-35.故选:C .8函数f x =2ln xx,x >0sin ωx +π6,-π≤x ≤0,若2f 2(x )-3f (x )+1=0恰有6个不同实数解,正实数ω的范围为()A.103,4B.103,4 C.2,103D.2,103【答案】D【解析】由题知,2f 2x -3f x +1=0的实数解可转化为f (x )=12或f (x )=1的实数解,即y =f (x )与y =1或y =12的交点,当x >0时,f x =2ln xx ⇒f (x )=21-ln x x 2所以x ∈0,e 时,f (x )>0,f x 单调递增,x ∈e ,+∞ 时,f (x )<0,f x 单调递减,如图所示:所以x =e 时f x 有最大值:12<f (x )max =2e<1所以x >0时,由图可知y =f (x )与y =1无交点,即方程f (x )=1无解,y =f (x )与y =12有两个不同交点,即方程f (x )=12有2解当x <0时,因为ω>0,-π≤x ≤0,所以-ωπ+π6≤ωx +π6≤π6,令t =ωx +π6,则t ∈-ωπ+π6,π6则有y =sin t 且t ∈-ωπ+π6,π6,如图所示:因为x >0时,已有两个交点,所以只需保证y =sin t 与y =12及与y =1有四个交点即可,所以只需-19π6<-ωπ+π6≤-11π6,解得2≤ω<103.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知复数z 1,z 2是关于x 的方程x 2+bx +1=0(-2<b <2,b ∈R )的两根,则下列说法中正确的是()A.z 1=z 2B.z 1z 2∈R C.z 1 =z 2 =1D.若b =1,则z 31=z 32=1【答案】ACD【解析】Δ=b 2-4<0,∴x =-b ±4-b 2i 2,不妨设z 1=-b 2+4-b 22i ,z 2=-b2-4-b 22i ,z 1=z 2,A 正确;z 1 =z 2 =-b 22+4-b 222=1,C 正确;z 1z 2=1,∴z 1z 2=z 21z 1z 2=z 21=b 2-22-b 4-b 22i ,b ≠0时,z 1z 2∉R ,B 错;b =1时,z 1=-12+32i ,z 2=-12-32i ,计算得z 21=-12-32i =z 2=z 1 ,z 22=z 1=z 2 ,z 31=z 1z 2=1,同理z 32=1,D 正确.故选:ACD .10四棱锥P -ABCD 的底面为正方形,P A 与底面垂直,P A =2,AB =1,动点M 在线段PC 上,则()A.不存在点M ,使得AC ⊥BMB.MB +MD 的最小值为303C.四棱锥P -ABCD 的外接球表面积为5πD.点M 到直线AB 的距离的最小值为255【答案】BD【解析】对于A :连接BD ,且AC ∩BD =O ,如图所示,当M 在PC 中点时,因为点O 为AC 的中点,所以OM ⎳P A ,因为P A ⊥平面ABCD ,所以OM ⊥平面ABCD ,又因为AC ⊂平面ABCD ,所以OM ⊥AC ,因为ABCD 为正方形,所以AC ⊥BD .又因为BD ∩OM =O ,且BD ,OM ⊂平面BDM ,所以AC ⊥平面BDM ,因为BM ⊂平面BDM ,所以AC ⊥BM ,所以A 错误;对于B :将△PBC 和△PCD 所在的平面沿着PC 展开在一个平面上,如图所示,则MB +MD 的最小值为BD ,直角△PBC 斜边PC 上高为1×56,即306,直角△PCD 斜边PC 上高也为1×56,所以MB +MD 的最小值为303,所以B 正确;对于C :易知四棱锥P -ABCD 的外接球直径为PC ,半径R =12PC =1222+12+12=62,表面积S =4πR 2=6π,所以C 错误;对于D :点M 到直线AB 距离的最小值即为异面直线PC 与AB 的距离,因为AB ⎳CD ,且AB ⊄平面PCD ,CD ⊂平面PCD ,所以AB ⎳平面PCD ,所以直线AB 到平面PCD 的距离等于点A 到平面PCD 的距离,过点A 作AF ⊥PD ,因为P A ⊥平面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,且P A ∩AD =A ,故CD ⊥平面P AD ,AF ⊂平面P AD ,所以AF ⊥CD ,因为PD ∩CD =D ,且PD ,CD ⊂平面PCD ,所以AF ⊥平面PCD ,所以点A 到平面PCD 的距离,即为AF 的长,如图所示,在Rt △P AD 中,P A =2,AD =1,可得PD =5,所以由等面积得AF =255,即直线AB 到平面PCD 的距离等于255,所以D 正确,故选:BCD .11今年是共建“一带一路”倡议提出十周年.某校进行“一带一路”知识了解情况的问卷调查,为调动学生参与的积极性,凡参与者均有机会获得奖品.设置3个不同颜色的抽奖箱,每个箱子中的小球大小相同质地均匀,其中红色箱子中放有红球3个,黄球2个,绿球2个;黄色箱子中放有红球4个,绿球2个;绿色箱子中放有红球3个,黄球2个,要求参与者先从红色箱子中随机抽取一个小球,将其放入与小球颜色相同的箱子中,再从放入小球的箱子中随机抽取一个小球,抽奖结束.若第二次抽取的是红色小球,则获得奖品,否则不能获得奖品,已知甲同学参与了问卷调查,则()A.在甲先抽取的是黄球的条件下,甲获得奖品的概率为47B.在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为1314C.甲获得奖品的概率为2449D.若甲获得奖品,则甲先抽取绿球的机会最小【答案】ACD【解析】设A 红,A 黄,A 绿,分别表示先抽到的小球的颜色分别是红、黄、绿的事件,设B 红表示再抽到的小球的颜色是红的事件,在甲先抽取的是黄球的条件下,甲获得奖品的概率为:P B 红∣A 黄 =P B 红A 黄 P A 黄=27×4727=47,故A 正确;在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为:P B 红 ∣A 红 =P A 红 B 红 P A 红 =P A 黄B 红 +P A 绿B 红 P A 红 =27×37+27×1247=1328,故B 错误;由题意可知,P A 红 =37,P A 黄 =27,P A 绿 =27,P B 红∣A 红 =37,P B 红∣A 黄 =47,P B 红∣A 绿 =12,由全概率公式可知,甲获得奖品的概率为:P =P A 红 P B 红∣A 红 +P A 黄 ⋅P B 红∣A 黄 +P A 绿 ⋅P B 红∣A 绿 =37×37+27×47+27×12=2449,故C 正确;因为甲获奖时红球取自哪个箱子的颜色与先抽取小球的颜色相同,则P A 红∣B 红 =P A 红 ⋅P B 红∣A 红 P B 红=37×37×4924=38,P A 黄∣B 红 =P A 黄 ⋅P B 红∣A 黄P B 红=27×47×4924=13,P A 绿∣B 红 =P A 绿 ⋅P B 红∣A 绿 P B 红 =27×12×4924=724,所以甲获得奖品时,甲先抽取绿球机会最小,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12已知△ABC 的边BC 的中点为D ,点E 在△ABC 所在平面内,且CD =3CE -2CA ,若AC =xAB +yBE,则x +y =.【答案】11【解析】因为CD =3CE -2CA ,边BC 的中点为D ,所以12CB=3BE -BC +2AC ,因为12CB =3BE -3BC +2AC ,所以52BC =3BE +2AC ,所以52BC =52AC -AB =3BE +2AC ,所以5AC -5AB =6BE +4AC ,即5AB +6BE =AC ,因为AC =xAB +yBE ,所以x =5,y =6,故x +y =11.故答案为:1113已知圆锥母线长为2,则当圆锥的母线与底面所成的角的余弦值为时,圆锥的体积最大,最大值为.【答案】①.63②.16327π【解析】设圆锥的底面半径为r ,圆锥的母线与底面所成的角为θ,θ∈0,π2 ,易知cos θ=r 2.圆锥的体积为V =13πr 2⋅4-r 2=43πcos 2θ⋅2sin θ=8π3cos 2θ⋅sin θ=8π31-sin 2θ sin θ令x =sin θ,x ∈0,1 ,则y =1-sin 2θ sin θ=-x 3+x ,y =-3x 2+1当y >0时,x ∈0,33,当y<0时,x ∈33,1 ,即函数y =-x 3+x 在0,33 上单调递增,在33,1上单调递减,即V max =8π333-33 3 =163π27,此时cos θ=1-323 =62.故答案为:62;163π2714已知双曲线C :x 2-y 23=1的左、右焦点分别为F 1,F 2,右顶点为E ,过F 2的直线交双曲线C 的右支于A ,B 两点(其中点A 在第一象限内),设M ,N 分别为△AF 1F 2,△BF 1F 2的内心,则当F 1A ⊥AB 时,AF 1=;△ABF 1内切圆的半径为.【答案】①.7+1##1+7②.7-1##-1+7【解析】由双曲线方程知a =1,b =3,c =2,如下图所示:由F 1A ⊥AB ,则AF 1 2+AF 2 2=F 1F 2 2=16,故AF 1 -AF 2 2+2AF 1 AF 2 =16,而AF 1 -AF 2 =2a =2,所以AF 1 AF 2 =6,故AF 2 2+2AF 2 -6=0,解得AF 2 =7-1,所以AF 1 =7+1,若G 为△ABF 1内切圆圆心且F 1A ⊥AB 可知,以直角边切点和G ,A 为顶点的四边形为正方形,结合双曲线定义内切圆半径r =12AF 1 +AB -BF 1 =12AF 1 +AF 2 +BF 2 -BF 1所以r =1227+BF 2 -BF 1 =1227-2 =7-1;故答案为:7+1,7-1;2024届高三二轮复习“8+3+3”小题强化训练(3)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1有一组按从小到大顺序排列数据:3,5,x ,8,9,10,若其极差与平均数相等,则这组数据的中位数为()A.7B.7.5C.8D.6.5【答案】B【解析】依题意可得极差为10-3=7,平均数为163+5+x +8+9+10 =1635+x ,所以1635+x =7,解得x =7,所以中位线为7+82=7.5.故选:B .2已知集合A =x x -1 >2 ,B =x log 4x <1 ,则A ∩B =()A.3,4B.-∞,-1 ∪3,4C.1,4D.-∞,4【答案】A【解析】由x -1 >2,得x <-1或x >3,所以A =x x <-1或x >3 ,由log 4x <1,得0<x <4,所以B =x 0<x <4 ,所以A ∩B =x 3<x <4 .故选:A .3已知向量a =(2,0),b =sin α,32,若向量b 在向量a 上的投影向量c =12,0 ,则|a +b |=()A.3B.7C.3D.7【答案】B【解析】由已知可得,b 在a 上的投影向量为a ⋅b |a |⋅a |a |=2sin α2×2(2,0)=(sin α,0),又b 在a 上的投影向量c =12,0 ,所以sin α=12,所以b =12,32,所以a +b =52,32 ,所以|a +b |=52 2+322=7.故选:B .4如图是两个底面半径都为1的圆锥底面重合在一起构成的几何体,上面圆锥的侧面积是下面圆锥侧面积的2倍,AP ⊥AQ ,则PQ =()A.74B.262C.52D.3【答案】C【解析】设两圆锥的高OP =x ,OQ =y ,则AP =x 2+1,AQ =y 2+1,由AP ⊥AQ ,有AP 2+AQ 2=PQ 2,可得x 2+1+y 2+1=x +y 2,可得xy =1,又由上下圆锥侧面积之比为2:1,即π×1×P A =2×π×1×QA ,可得P A =2QA ,则有x 2+1=2y 2+1,即x 2=4y 2+3,代入y =1x整理为x 4-3x 2-4=0,解得x =2(负值舍),可得y =12,OP =x +y =2+12=52.故选:C .5已知Q 为直线l :x +2y +1=0上的动点,点P 满足QP=1,-3 ,记P 的轨迹为E ,则()A.E 是一个半径为5的圆B.E 是一条与l 相交的直线C.E 上的点到l 的距离均为5D.E 是两条平行直线【答案】C【解析】设P x ,y ,由QP=1,-3 ,则Q x -1,y +3 ,由Q 在直线l :x +2y +1=0上,故x -1+2y +3 +1=0,化简得x +2y +6=0,即P 轨迹为E 为直线且与直线l 平行,E 上的点到l 的距离d =6-112+22=5,故A 、B 、D 错误,C 正确.故选:C .6已知x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则a 1+a 3的值为()A.-1B.1C.4D.-2【答案】C【解析】在x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6中,而x +1 x -1 5=x x -1 5+x -1 5,由二项式定理知x -1 5展开式的通项为T r +1=C r 5x 5-r (-1)r ,令5-r =2,解得r =3,令5-r =3,r =2,故a 3=C 35(-1)3+C 25(-1)2=0,同理令5-r =1,解得r =4,令5-r =0,解得r =5,故a 1=C 45(-1)4+C 55(-1)5=4,故a 1+a 3=4.故选:C7已知P 为抛物线x 2=4y 上一点,过P 作圆x 2+(y -3)2=1的两条切线,切点分别为A ,B ,则cos ∠APB 的最小值为()A.12B.23C.34D.78【答案】C【解析】如图所示:因为∠APB =2∠APC ,sin ∠APC =AC PC=1PC,设P t ,t 24,则PC 2=t 2+t 24-3 2=t 416-t 22+9=116t 2-4 2+8,当t 2=4时,PC 取得最小值22,此时∠APB 最大,cos ∠APB 最小,且cos ∠APB min =1-2sin 2∠APC =1-21222=34,故C 正确.故选:C8已知函数f x ,g x 的定义域为R ,g x 为g x 的导函数且f x +g x =3,f x -g 4-x =3,若g x 为偶函数,则下列结论一定成立的是()A.f -1 =f -3B.f 1 +f 3 =65C.g 2 =3D.f 4 =3【答案】D【解析】对于D ,∵g x 为偶函数,则g x =g -x ,两边求导可得g x =-g -x ,则g x 为奇函数,则g 0 =0,令x =4,则f 4 -g 0 =3,f 4 =3,D 对;对于C ,令x =2,可得f 2 +g 2 =3f 2 -g 2 =3 ,则f 2 =3g 2 =0 ,C 错;对于B ,∵f x +g x =3,可得f 2+x +g 2+x =3,f x -g 4-x =3可得f 2-x -g 2+x =3,两式相加可得f 2+x +f 2-x =6,令x =1,即可得f 1 +f 3 =6,B 错;又∵f x +g x =3,则f x -4 +g x -4 =f x -4 -g 4-x =3,f x -g 4-x =3,可得f x =f x -4 ,所以f x 是以4为周期的函数,所以根据以上性质不能推出f -1 =f -3 ,A 不一定成立.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9下列结论正确的是()A.若a <b <0,则a 2>ab >b 2B.若x ∈R ,则x 2+2+1x 2+2的最小值为2C.若a +b =2,则a 2+b 2的最大值为2D.若x ∈(0,2),则1x +12-x ≥2【答案】AD【解析】因为a 2-ab =a (a -b )>0,所以a 2>ab ,因为ab -b 2=b (a -b )>0,所以ab >b 2,所以a 2>ab >b 2,故A 正确;因为x 2+2+1x 2+2≥2的等号成立条件x 2+2=1x 2+2不成立,所以B 错误;因为a 2+b 22≥a +b 2 2=1,所以a 2+b 2≥2,故C 错误;因为1x +12-x =12(x +2-x )1x +12-x =122+2-x x +x 2-x ≥12(2+2)=2,当且仅当1x =12-x,即x =1时,等号成立,所以D 正确.故选:AD10若函数f x =2sin 2x ⋅log 2sin x +2cos 2x ⋅log 2cos x ,则()A.f x 的最小正周期为πB.f x 的图像关于直线x =π4对称C.f x 的最小值为-1D.f x 的单调递减区间为2k π,π4+2k π ,k ∈Z【答案】BCD【解析】由sin x >0,cos x >0得f x 的定义域为2k π,π2+2k π ,k ∈Z .对于A :当x ∈0,π2时,x +π∈π,32π 不在定义域内,故f x +π =f x 不成立,易知f x 的最小正周期为2π,故选项A 错误;对于B :又f π2-x =2cos 2x ⋅log 2cos x +2sin 2x ⋅log 2sin x =f x ,所以f x 的图像关于直线x =π4对称,所以选项B 正确;对于C :因为f x =sin 2x ⋅log 2sin 2x +cos 2x ⋅log 2cos 2x ,设t =sin 2x ,所以函数转化为g t =t ⋅log 2t +1-t ⋅log 21-t ,t ∈0,1 ,g t =log 2t -log 21-t ,由g t >0得,12<t <1.g t <0得0<t <12.所以g t 在0,12 上单调递减,在12,1 上单调递增,故g (t )min =g 12=-1,即f (x )min =-1,故选项C 正确;对于D :因为g t 在0,12 上单调递减,在12,1 上单调递增,由t =sin 2x ,令0<sin 2x <12得0<sin x <22,又f x 的定义域为2k π,π2+2k π ,k ∈Z ,解得2k π<x <π4+2k π,k ∈Z ,因为t =sin 2x 在2k π,π4+2k π 上单调递增,所以f x 的单调递减区间为2k π,π4+2k π ,k ∈Z ,同理函数的递增区间为π4+2k π,π2+2k π ,k ∈Z ,所以选项D 正确.故选:BCD .11已知数列a n 的前n 项和为S n ,且2S n S n +1+S n +1=3,a 1=α0<α<1 ,则()A.当0<α<13-14时,a 2>a 1B.a 3>a 2C.数列S 2n -1 单调递增,S 2n 单调递减D.当α=34时,恒有nk =1S k -1 <54【答案】ACD【解析】由题意可得:S n +1=32S n +1,a 1=α,由S n +1=32S n +1可知:S n +1=1⇔S n =1,但S 1=α∈0,1 ,可知对任意的n ∈N *,都有S n ≠1,对于选项A :若0<α<13-14,则a 2-a 1=S 2-2a 1=32α+1-2α=3-2α-4α22α+1=4α+1+13 13-14-α2α+1>0,即a 2>a 1,故A 正确;对于选项B :a 3-a 2=S 3-2S 2+S 1=6α+32α+7-62α+1+α=α-1 4α2+32α+39 2α+1 2α+7<0,即a 3<a 2,故B 错误.对于选项C :因为S n +1-1=-2S n -1 2S n +1,S n +1+32=3S n +32 2S n +1,则S n +1-1S n +1+32=-23⋅S n -1S n +32,且S 1-1S 1+32=α-1α+32<0,可知S n -1S n+32是等比数列,则S n -1S n +32=α-1α+32⋅-23n -1,设A =α-1α+32<0,t =232n -2,可得S 2n =3-3At 3+2At =3253+2At -1 ,S 2n -1=1+32At 1-At =521-At-32,因为At =A 232n -2,可知A 23 2n -2 为递增数列,所以数列S 2n -1 单调递增,S 2n 单调递减,故C 正确;对于选项D :因为S n +1=32S n +1,S n +1-34=32S n +1-34=33-2S n 42S n +1,由S 1=α=34,可得S 2-34>0,即S 2>34,则S 2≤65,即34<S 2≤65;由34<S 2≤65,可得S 3-34>0,即S 3>34,则S 3<65,即34<S 3<65;以此类推,可得对任意的n ∈N *,都有S n ≥S 1=α=34,又因为S n +1-1S n -1=22S n +1,则S n +1-1 ≤22α+1S n -1 =45S n -1 ,所以∑nk =1S k -1 ≤541-45 n <54,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12在(1+ax )n (其中n ∈N *,a ≠0)的展开式中,x 的系数为-10,各项系数之和为-1,则n =.【答案】5【解析】由题意得(1+ax )n 的展开式中x 的系数为aC 1n =-10,即an =-10,令x =1,得各项系数之和为(1+a )n =-1,则n 为奇数,且1+a =-1,即得a =-2,n =5,故答案为:513已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别F 1,F 2,椭圆的长轴长为22,短轴长为2,P 为直线x =2b 上的任意一点,则∠F 1PF 2的最大值为.【答案】π6【解析】由题意有a =2,b =1,c =1,设直线x =2与x 轴的交点为Q ,设PQ =t ,有tan ∠PF 1Q =PQ F 1Q=t3,tan ∠PF 2Q =PQ F 2Q=t ,可得tan ∠F 1PF 2=tan ∠PF 2Q -∠PF 1Q =t -t31+t23=2t t 2+3=2t +3t ≤2t 23t =33,当且仅当t =3时取等号,可得∠F 1PF 2的最大值为π6.故答案为:π614已知四棱锥P -ABCD 的底面为矩形,AB =23,BC =4,侧面P AB 为正三角形且垂直于底面ABCD ,M 为四棱锥P -ABCD 内切球表面上一点,则点M 到直线CD 距离的最小值为.【答案】10-1【解析】如图,设四棱锥的内切球的半径为r ,取AB 的中点为H ,CD 的中点为N ,连接PH ,PN ,HN ,球O为四棱锥P-ABCD的内切球,底面ABCD为矩形,侧面P AB为正三角形且垂直于底面ABCD,则平面PHN截四棱锥P-ABCD的内切球O所得的截面为大圆,此圆为△PHN的内切圆,半径为r,与HN,PH分别相切于点E,F,平面P AB⊥平面ABCD,交线为AB,PH⊂平面P AB,△P AB为正三角形,有PH⊥AB,∴PH⊥平面ABCD,HN⊂平面ABCD,∴PH⊥HN,AB=23,BC=4,则有PH=3,HN=4,PN=5,则△PHN中,S△PHN=12×3×4=12r3+4+5,解得r=1.所以,四棱锥P-ABCD内切球半径为1,连接ON.∵PH⊥平面ABCD,CD⊂平面ABCD,∴CD⊥PH,又CD⊥HN,PH,HN⊂平面PHN,PH∩HN=H,∴CD⊥平面PHN,∵ON⊂平面PHN,可得ON⊥CD,所以内切球表面上一点M到直线CD的距离的最小值即为线段ON的长减去球的半径,又ON=OE2+EN2=10.所以四棱锥P-ABCD内切球表面上的一点M到直线CD的距离的最小值为10-1.故答案为:10-12024届高三二轮复习“8+3+3”小题强化训练(4)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知双曲线的标准方程为x 2k -4+y 2k -5=1,则该双曲线的焦距是()A.1B.3C.2D.4【答案】C【解析】由双曲线方程可知a 2=k -4,b 2=5-k ,所以c 2=k -4+5-k =1,c =1,2c =2.故选:C2在等比数列a n 中,a 1+a x =82,a 3a x -2=81,前x 项和S x =121,则此数列的项数x 等于()A.4B.5C.6D.7【答案】B【解析】由已知条件可得a 1+a x =82a 3a x -2=a 1a x =81,解得a 1=1a x =81 或a 1=81a x =1 .设等比数列a n 的公比为q .①当a 1=1,a x =81时,由S x =a 1-a x q 1-q =1-81q1-q=121,解得q =3,∵a x =a 1q x -1=3x -1=81,解得x =5;②当a 1=81,a x =1时,由S x =a 1-a x q 1-q =81-q 1-q =121,解得q =13,∵a x =a 1q x -1=81×13x -1=35-x =1,解得x =5.综上所述,x =5.故选:B .3对任意实数a ,b ,c ,在下列命题中,真命题是()A.“ac 2>bc 2”是“a >b ”的必要条件B.“ac 2=bc 2”是“a =b ”的必要条件C.“ac 2=bc 2”是“a =b ”的充分条件D.“ac 2≥bc 2”是“a ≥b ”的充分条件【答案】B【解析】对于A ,若c =0,则由a >b ⇏ac 2>bc 2,∴“ac 2>bc 2”不是“a >b ”的必要条件,A 错.对于B ,a =b ⇒ac 2=bc 2,∴“ac 2=bc 2”是“a =b ”的必要条件,B 对,对于C ,若c =0,则由ac 2=bc 2,推不出a =b ,“ac 2=bc 2”不是“a =b ”的充分条件对于D ,当c =0时,ac 2=bc 2,即ac 2≥bc 2成立,此时不一定有a ≥b 成立,故“ac 2≥bc 2”不是“a ≥b ”的充分条件,D 错误,故选:B .4已知m 、n 是两条不同直线,α、β、γ是三个不同平面,则下列命题中正确的是()A.若m ∥α,n ∥α,则m ∥nB.若α⊥β,β⊥γ,则α∥βC.若m ∥α,m ∥β,则α∥βD.若m ⊥α,n ⊥α,则m ∥n【答案】D【解析】A选项:令平面ABCD为平面α,A1B1为直线m,B1C1为直线n,有:m∥α,n∥α,但m∩n=B1,A错误;B选项:令平面ABCD为平面β,令平面B1BCC1为平面α,令平面A1ABB1为平面γ,有:α⊥β,β⊥γ,而α⊥β,B错误;C选项:令平面ABCD为平面α,令平面A1ABB1为平面β,C1D1为直线m,有:m∥α,m∥β,则α∥β,而α⊥β,C错误;D选项:垂直与同一平面的两直线一定平行,D正确.故选:D5将甲、乙等8名同学分配到3个体育场馆进行冬奥会志愿服务,每个场馆不能少于2人,则不同的安排方法有()A.2720B.3160C.3000D.2940【答案】D【解析】共有两种分配方式,一种是4:2:2,一种是3:3:2,故不同的安排方法有C48C24C222!+C38C35C222!A33=2940.故选:D6若抛物线y2=4x与椭圆E:x2a2+y2a2-1=1的交点在x轴上的射影恰好是E的焦点,则E的离心率为()A.2-12 B.3-12 C.2-1 D.3-1【答案】C【解析】不妨设椭圆与抛物线在第一象限的交点为A,椭圆E右焦点为F,则根据题意得AF⊥x轴,c2=a2-a2-1=1,则c=1,则F1,0,当x=1时,y2=4×1,则y A=2,则A1,2,代入椭圆方程得12a2+22a2-1=1,结合a2-1>0,不妨令a>0;解得a=2+1,则其离心率e=ca=12+1=2-1,故选:C.7已知等边△ABC 的边长为3,P 为△ABC 所在平面内的动点,且|P A |=1,则PB ⋅PC 的取值范围是()A.-32,92B.-12,112C.[1,4]D.[1,7]【答案】B【解析】如下图构建平面直角坐标系,且A -32,0 ,B 32,0 ,C 0,32,所以P (x ,y )在以A 为圆心,1为半径的圆上,即轨迹方程为x +322+y 2=1,而PB =32-x ,-y ,PC =-x ,32-y ,故PB ⋅PC =x 2-32x +y 2-32y =x -34 2+y -34 2-34,综上,只需求出定点34,34 与圆x +322+y 2=1上点距离平方范围即可,而圆心A 与34,34 的距离d =34+32 2+34 2=32,故定点34,34与圆上点的距离范围为12,52,所以PB ⋅PC ∈-12,112.故选:B 8设a 、b 、c ∈0,1 满足a =sin b ,b =cos c ,c =tan a ,则()A.a +c <2b ,ac <b 2B.a +c <2b ,ac >b 2C.a +c >2b ,ac <b 2D.a +c >2b ,ac >b 2【答案】A【解析】∵a 、b 、c ∈0,1 且a =sin b ,b =cos c ,c =tan a ,则c =tan a =tan sin b ,先比较a +c =sin b +tan sin b 与2b 的大小关系,构造函数f x =sin x +tan sin x -2x ,其中0<x <1,则0<sin x <1,所以,cos1<cos sin x <1,则f x =cos x +cos xcos 2sin x -2=cos x -2 cos 2sin x +cos x cos 2sin x,令g x =cos x -1-12x 2 ,其中x ∈0,1 ,则g x =x -sin x ,令p x =x -sin x ,其中0<x <1,所以,p x =1-cos x >0,所以,函数g x 在0,1 上单调递增,故g x >g 0 =0,所以,函数g x 在0,1 上单调递增,则g x =cos x -1-12x 2 >0,即cos x >1-12x 2,因为x ∈0,1 ,则0<sin x <sin1,所以,cos sin x >1-12sin 2x =1-121-cos 2x =121+cos 2x ,所以,cos 2sin x >141+cos 2x 2,因为cos x -2<0,所以,cos x -2 cos 2sin x +cos x <14cos x -2 1+cos 2x 2+cos x=14cos 5x -2cos 4x +2cos 3x -4cos 2x +5cos x -2 =14cos x -1 3cos 2x +cos x +2 <0,所以,对任意的x ∈0,1 ,f x =cos x -2 cos 2sin x +cos xcos 2sin x <0,故函数f x 在0,1 上单调递减,因为b ∈0,1 ,则f b =sin b +tan sin b -2b <f 0 =0,故a +c <2b ,由基本不等式可得0<2ac ≤a +c <2b (a ≠c ,故取不了等号),所以,ac <b 2,故选:A .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9某大学生做社会实践调查,随机抽取6名市民对生活满意度进行评分,得到一组样本数据如下:88、89、90、90、91、92,则下列关于该样本数据的说法中正确的是()A.均值为90B.中位数为90C.方差为2D.第80百分位数为91【答案】ABD【解析】由题意可知,该组数据的均值为x =88+89+90+90+91+926=90,故A 正确;中位数为90+902=90,故B 正确;方差为s 2=1688-90 2+89-90 2+90-90 2×2+91-90 2+92-90 2 =53,故C 错误;因为6×80%=4.8,第80百分位数为91,故D 正确.故选:ABD .10设M ,N ,P 为函数f x =A sin ωx +φ 图象上三点,其中A >0,ω>0,ϕ <π2,已知M ,N 是函数f x 的图象与x 轴相邻的两个交点,P 是图象在M ,N 之间的最高点,若MP 2+2MN ⋅NP=0,△MNP 的面积是3,M 点的坐标是-12,0 ,则()A.A =2B.ω=π2C.φ=π4D.函数f x 在M ,N 间的图象上存在点Q ,使得QM ⋅QN <0【答案】BCD【解析】MP 2+2MN ⋅NP =MP 2-2NM ⋅NP =MP 2-2NM ⋅12NM =T 4 2+A 2 -T 22=A 2-3T 216=0,而S △MNP =AT 4=3,故A =3,T =4=2πω,ω=π2,A 错误、B 正确;-12⋅π2+φ=k π,φ=k π+π4(k ∈Z ),而ϕ <π2,故φ=π4,C 正确;显然,函数f x 的图象有一部分位于以MN 为直径的圆内,当Q 位于以MN 为直径的圆内时,QM⋅QN<0,D 正确,故选:BCD .11设a 为常数,f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x ),则().A .f (a )=12B .f (x )=12成立C f (x +y )=2f (x )f (y )D .满足条件的f (x )不止一个【答案】ABC 【解析】f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x )对A :对原式令x =y =0,则12=12f a +12f a =f a ,即f a =12,故A 正确;对B :对原式令y =0,则f x =f x f a +f 0 f a -x =12f x +12f a -x ,故f x =f a -x ,对原式令x =y ,则f 2x =f x f y +f y f x =2f x f y =2f 2x ≥0,故f x 非负;对原式令y =a -x ,则f a =f 2x +f 2a -x =2f 2x =12,解得f x =±12,又f x 非负,故可得f x =12,故B 正确;对C :由B 分析可得:f x +y =2f x f y ,故C 正确;对D :由B 分析可得:满足条件的f x 只有一个,故D 错误.故选:ABC .三、填空题:本题共3小题,每小题5分,共15分.12在复平面内,复数z =-12+32i 对应的向量为OA ,复数z +1对应的向量为OB ,那么向量AB 对应的复数是.。
数学PA高考数学客观题训练【6套】选择、填空题专题练习(一)1.已知全集U=R ,集合)(},021|{},1|{N M C x x x N x x M U则≥-+=≥=( )A .{x |x <2}B .{x |x ≤2}C .{x |-1<x ≤2}D .{x |-1≤x <2}2.设,0,0<>b a 已知),(a b m ∈且0≠m ,则m1的取值范围是: ( )A .)1,1(a b B.)1,1(b a C.)1,0()0,1(a b ⋃ D.),1()1,(+∞⋃-∞ab 3.设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能的是4.直线052)3(057)3()1(2=-+-=-+-++yx m m y m x m 与直线垂直的充要条件是( )A .2-=mB .3=mC .31=-=m m 或D .23-==m m 或5.命题“042,2≤+-∈∀x x R x ”的否定为 ( )(A) 042,2≥+-∈∀x x R x (B) 042,2>+-∈∃x x R x (C)042,2≤+-∉∀x x R x (D) 042,2>+-∉∃x x R x6. 若平面四边形ABCD 满足0AB CD +=,()0AB AD AC -⋅=,则该四边形一定是A .直角梯形B .矩形C .菱形D .正方形7.有一棱长为a 的正方体框架,其内放置一气球,是其充气且尽可能地膨胀(仍保持为球的形状),则气球表面积的最大值为 A .2a πB .22a πC .32a πD .42a π8.若22πβαπ<<<-,则βα-一定不属于的区间是 ( )A .()ππ,- B .⎪⎭⎫⎝⎛-2,2ππ C .()π,0 D . ()0,π-9.等差数列{a n } 中,a 3 =2,则该数列的前5项的和为( ) A .10 B .16C . 20D .3210.不等式10x x->成立的充分不必要条件是 A .10x -<<或1x > B .1x <-或01x << C .1x >-D .1x >二、填空题 (每题5分,满分20分,请将答案填写在题中横线上) 11. 线性回归方程ˆybx a =+必过的定点坐标是________. 12. .在如下程序框图中,已知:x xe x f =)(0,则输出的是__________.13. 如图,一个粒子在第一象限运动,在第一秒末,它从原点运 动到(0,1),接着它按如图所示的x 轴、y 轴的平行方向来 回运动,(即(0,0)→(0,1)→(1,1)→(1,0)→ (2,0)→…),且每秒移动一个单位,那么第2008秒末这 个粒子所处的位置的坐标为______。
高三数学试题及详细答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-4x+m在区间[2,+∞)上单调递增,则实数m的取值范围是:A. m≤-2B. m≥-2C. m≤2D. m≥2答案:B2. 已知数列{an}满足a1=1,an+1=2an+1(n∈N*),则a5的值为:A. 31B. 63C. 127D. 255答案:C3. 若直线l:y=kx+1与椭圆C:x^2/4+y^2/2=1有公共点,则k的取值范围是:A. -√2/2≤k≤√2/2B. -1≤k≤1C. -√3/2≤k≤√3/2D. -√2≤k≤√2答案:A4. 已知函数f(x)=x^3-3x,若f(x1)=f(x2)(x1≠x2),则x1+x2的值为:A. 0B. 1C. -1D. 2答案:D5. 已知向量a=(1,-2),b=(2,1),则|2a+b|的值为:A. √5B. √10C. √17D. √21答案:C6. 若不等式x^2-2ax+4>0的解集为R,则a的取值范围是:A. a<-2或a>2B. a<-1或a>1C. a<-2√2或a>2√2D. a<-√2或a>√2答案:C7. 已知三角形ABC的内角A,B,C满足A+C=2B,且sinA+sinC=sin2B,则三角形ABC的形状是:A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰直角三角形答案:C8. 已知函数f(x)=x^2-4x+m,若f(x)在区间[1,3]上的最大值为5,则m的值为:A. 3B. 5C. 7D. 9答案:C9. 已知双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的一条渐近线方程为y=√2x,则双曲线C的离心率为:A. √3B. √2C. 2D. 3答案:A10. 已知函数f(x)=x^3-3x,若方程f(x)=0有三个不同的实根,则f'(x)=0的根的个数为:A. 1B. 2C. 3D. 4答案:B二、填空题(每题4分,共20分)11. 已知等比数列{an}的前n项和为Sn,若a1=1,S3=7,则公比q的值为______。
高三数学基础选择填空基础训练(上)(1-10)(含答案)高三数学基础选择填空训练(1)时量:60分钟满分:80分班级:姓名:计分:1.已知sinα=45,并且α是第二象限的角,那么tanα的值等于().A.–43B. –34C.34D.432.已知函数f (x)在区间[a,b]上单调,且f (a)•f (b)<0,则方程f (x)=0在区间[a,b]内().A.至少有一实根B.至多有一实根C.没有实根D.必有惟一实根3.已知A={x |52x-< -1},若C A B={x | x+4 < -x},则集合B=().A.{x |-2≤x < 3}B.{x |-2 < x≤3}C.{x |-2 < x < 3}D. {x |-2≤x≤3}4.若一个正三棱柱的三视图如下图所示,则这个正三棱柱的高和底面边长分别为().A. 2,B.,2 C. 4,2 D. 2,5.若右图中的直线l1, l2, l3的斜率为k1, k2, k3 则().A. k1< k2 < k3B. k3< k1 < k2C. k2< k1 < k3D. k3< k2 < k16.函数y=log|x+1|的图象是().A. B. C. D. 7.程序框图如下:如果上述程序运行的结果为S=132,那么判断框中应填入().A.10?k≤B.10?k≥C.11?k≤D.11?k≥8.若平面向量a=(1 , -2)与b的夹角是180º,且| b b等于().主视图俯视图左视图l1A. (-3 , 6)B. (3 , -6)C. (6 , -3)D. (-6 , 3) 9.(文)已知点A (1, -2, 11),B (4, 2, 3),C (6, -1, 4),则△ABC 的形状是( ). A.直角三角形 B.正三角形 C. 等腰三角形 D.等腰直角三角形(理)某机械零件加工由2道工序组成,第1道工序的废品率为a ,第2道工序的废品率为b ,假定这2道工序出废品的工序彼此无关的,那么产品的合格率是( ). A. 1ab a b --+ B. 1a b -- C. 1ab - D. 12ab -10.如果数据x 1、x 2、…、x n 的平均值为x ,方差为S 2 ,则3x 1+5、3x 2+5、…、3x n +5 的平均值和方差分别为( ).A.x 和S 2B. 3x +5和9S 2C. 3x +5和S 2D.3x +5和9S 2+30S+2511.若双曲线的渐近线方程为3y x =±,一个焦点是,则双曲线的方程是_ _. 12.(文)曲线y =x 3在点(1,1)处的切线与x 轴、直线x =2所围成的三角形的面积为_ _. (理)220(42)(43)x x dx --=⎰ .13.如图在杨辉三角中从上往下数共有n 行,在这些数中非1的数字之和为_ _. 1 1 1 1 2 1 1 3 3 1 1 4 6 4 114.在极坐标系中,已知点5(3,)6M π,(4,)3N π,则线段MN 为长度为 . 15. (10分)对于函数f (x )= a -221x +(a ∈R ):(1)探索函数的单调性;(2)是否存在实数a 使函数f (x )为奇函数?高三数学基础选择填空训练(2)时量:60分钟 满分:80分 班级: 姓名: 计分:1.已知集合22{|4},{|230}M x x N x x x =<=--<,则集合MN =( ).A .{|2x x <-}B .{|3x x >}C .{|12x x -<<}D .{|23x x <<}2. 要从其中有50个红球的1000个形状相同的球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( ).A .5个B .10个C .20个D .45个3. “1sin 2A =”是“A =30º”的( ). A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件4. 复数11z i =-的共轭复数是( ).A .1122i +B .1122i - C .1i - D .1i +5. 一条直线若同时平行于两个相交平面,则这条直线与这两个平面交线的位置关系是( ).A .异面 B. 相交 C. 平行 D. 不确定 6. 函数cos2sin cos y x x x =+的最小正周期T =( ).A. πB. 2πC.2π D. 4π 7. 设向量a 和b 的长度分别为4和3,夹角为60°,则|a +b |的值为( ).A. 37B. 13C.D.8. 若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ).A .2-B .2C .4-D .49. (文)面积为S 的△ABC ,D 是BC 的中点,向△ABC 内部投一点,那么点落在△ABD 内的概率为( ).A.13B.12C.14D.16(理)若5(1)ax -的展开式中3x 的系数是80,则实数a 的值是( ).A .-2 B. C. D. 2 10. 给出下面的程序框图,那么,输出的数是( ). A .2450 B. 2550 C. 5050 D. 490011.函数212log (2)y x x =-的定义域是 ,单调递减区间是___________.12.(文)过原点作曲线x y e =的切线,则切点的坐标为 ,切线的斜率为 . (理)过原点作曲线:x C y e =的切线l ,则曲线C 、切线l 及y 轴所围成封闭区域的面积为 .13.已知等差数列有一性质:若{}n a 是等差数列,则通项为12...nn a a a b n++=的数列{}n b 也是等差数列,类似上述命题,相应的等比数列有性质:若{}n a 是等比数列(0)n a >,则通项为n b =____________的数列{}n b 也是等比数列.14.极坐标方程分别是ρ=cos θ和ρ=sin θ的两个圆的圆心距是 . 15. 已知tan2α=2,求:(1)tan()4πα+的值; (2)6sin cos 3sin 2cos αααα+-的值.高三数学基础选择填空训练(3)时量:60分钟 满分:80分 班级: 姓名: 计分:1.设集合{|1A x =-≤x ≤2},B ={x |0≤x ≤4},则A ∩B =( ).A .[0,2]B .[1,2]C .[0,4]D .[1,4]2.计算31ii-=+( ). A .1+2i B . 1–2i C .2+i D .2–i3.如果点P (sin cos ,2cos )θθθ位于第三象限,那么角θ所在的象限是( ).A .第一象限B .第二象限C .第三象限D .第四象限4.原命题:“设a 、b 、c R ∈,若22ac bc >则a b >”的逆命题、否命题、逆否命题真命题共有( ).A .0个B .1个C .2个D .3个 5.已知平面向量(21,3),(2,)a m b m =+=,且a ∥b ,则实数m 的值等于( ).A .2或32-B .32 C .2-或32 D .27-6.等差数列{}n a 中,10120S = ,那么29a a +的值是( ).A . 12B . 24C .16D . 48 7.如图,该程序运行后输出的结果为( ). A .36 B .56 C .55 D .458.如果椭圆221169x y +=上一点P 到它的右焦点是3,那么点P 到左焦点的距离为( ).A.5B.1C.15D.8 9.(文)某次考试,班长算出了全班40人数学成绩的平均分M ,如果把M 当成一个同学的成绩与原来的40个分数加在一起,算出这41个分数的平均值为N ,那么M :N 为( ).A .40:41B .41:40C .2D .1(理)从6人中选出4人分别到巴黎、伦敦、香港、莫斯科四个城市游览,要求每个城市有一人游览,每人只能游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有( ).A .240种 B.300种 C.144种 D.96种10.设奇函数f (x )在[—1,1]上是增函数,且f (—1)= 一1.若函数,f (x )≤t 2一2 a t +l 对所有的x ∈[一1.1]都成立,则当a ∈[1,1]时,t 的取值范围是( ).A .一2≤t ≤2B . 12-≤t ≤12C .t ≤一2或t = 0或t ≥2D .t ≤12-或t=0或t ≥1211. 规定记号“⊗”表示一种运算,即2(,)a b ab a b a b ⊗=++为正实数,若13k ⊗=,则k 的值为 .12. (文)过曲线32y x x =+上一点(1,3)的切线方程是___________(理)关于二项式2006(1)x -,有下列三个命题:①.该二项式展开式中非常数项的系数和是1-; ②.该二项式展开式中第10项是1019962006C x ;③.当2006x =时,2006(1)x -除以2006的余数是1.其中正确命题的序号是 (把你认为正确的序号都填上).13. 设a ,b ,c 是空间的三条直线,下面给出四个命题: ①若a b ⊥,b c ⊥,则//a c ;②若a 、b 是异面直线,b 、c 是异面直线,则a 、c 也是异面直线; ③若a 和b 相交,b 和c 相交,则a 和c 也相交; ④若a 和b 共面,b 和c 共面,则a 和c 也共面. 其中真命题的个数是________个.14. 圆C :1cos sin x y θθ=+⎧⎨=⎩,,(θ为参数)的普通方程为 ,设O 为坐标原点,点00()M x y ,在C 上运动,点()P x y ,是线段OM 的中点,则点P 的轨迹方程为 . 15. 已知(sin ,3cos )a x x =,(cos ,cos )b x x =,()f x a b =⋅. (1)若a b ⊥,求x 的解集;(2)求()f x 的周期及增区间.高三数学基础选择填空训练(4)时量:60分钟 满分:80分 班级: 姓名: 计分:1. 已知复数12z i =+,21z i =-,则在12z z z =⋅复平面上对应的点位于( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限2. 有3张奖券,其中2张可中奖,现3个人按顺序依次从中抽一张,小明最后抽,则他抽到中奖券的概率是( ).A.13B. 16C. 23D. 123. 已知命题tan 1p x R x ∃∈=:,使,命题2320q x x -+<:的解集是{|12}x x <<,下列结论:①命题“p q ∧”是真命题; ②命题“p q ∧⌝”是假命题;③命题“p q ⌝∨”是真命题; ④命题“p q ⌝∨⌝”是假命题 其中正确的是( ). A. ②③ B. ①②④ C. ①③④ D. ①②③④4. 已知tan 2θ=,则sin()cos()2sin()sin()2πθπθπθπθ+--=---( ). A. 2 B. -2 C. 0 D. 235. 1lg 0x x -=有解的区域是( ).A. (0,1]B. (1,10]C. (10,100]D. (100,)+∞6. 已知向量(12)a =,,(4)b x =,,若向量a b ∥,则x =( ). A. 12-B. 12C. 2-D. 2 7. 已知两点(2,0),(0,2)A B -,点C 是圆2220x y x +-=上任意一点,则ABC ∆面积的最小值是( ).A. 3-B. 3+C. 32-D. 32-8. 如图,一个空间几何体的主视图、左视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为( ).A. 1B. 12C. 13 D. 169. (文)甲、乙、丙、丁四位同学各自对A 、B 两变量的线性相关性作试验,并用回归分析方法分别求得相关系数r 与残差平方和m). A. 甲 B. 乙 C. 丙 D. 丁左视图主视图(理)已知公差不为零的等差数列{}n a 与等比数列{}n b 满足:113375,,a b a b a b ===,那么 ( ).A. 11b =13aB. 11b =31aC. 11b =63aD. 6311b a = 10. 已知抛物线28y x =,过点(2,0)A )作倾斜角为3π的直线l ,若l 与抛物线交于B 、C 两点,弦BC 的中点P 到y 轴的距离为( ). A.103B.163C.323D. 11. 在约束条件012210x y x y >⎧⎪≤⎨⎪-+≤⎩下,目标函数2S x y =+的最大值为_________.12.(文)已知集合{}123A =,,,使{}123A B =,,的集合B 的个数是_________.(理)利用柯西不等式判断下面两个数的大小: 已知22221(0)x y a b a b+=>>, 则22a b +与2()x y +的大小关系, 22a b + 2()x y + (用“,,,,≤≥=><”符号填写). 13. 在ABC ∆中,若,,AB AC AC b BC a ⊥==,则ABC ∆的外接圆半径r =,将此结论拓展到空间,可得出的正确结论是:在四面体S ABC -中,若SA SB SC 、、两两垂直,,,SA a SB b SC c ===,则四面体S ABC -的外接球半径R =_______.14. 已知点P 是椭圆2214x y +=上的在第一象限内的点,又(2,0)A 、(0,1)B ,O 是原点,则四边形OAPB 的面积的最大值是_________. 15. 已知32()31f x ax x x =+-+,a R ∈.(1)当3a =-时,求证:()f x 在R 上是减函数;(2)如果对x R ∀∈不等式()4f x x '≤恒成立,求实数a 的取值范围.高三数学基础选择填空训练(5)时量:60分钟 满分:80分 班级: 姓名: 计分:1. 已知21{|log ,1},{|(),1}2x A y y x x B y y x ==<==>,则A B =( ).A .φB .(,0-∞)C .1(0,)2 D .(1,2-∞)2. 3(1)(2)i i i --+=( ).A .3i +B .3i --C .3i -+D .3i -3. 已知等差数列}{n a 中,1,16497==+a a a ,则12a 的值是( ). A .15B .30C .31D .644. 正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为( ).A .75°B .60°C .45°D .30°5. 已知平面上三点A 、B 、C 满足3AB =,4BC =,5CA =,则A BB C B CC A C AA B ⋅+⋅+⋅的值等于( ).A .25B .24C .-25D .-246.点P 在曲线323y x x =-+上移动,在点P 处的切线的倾斜角为α,则α的取值范围是( ).A .[0,)2πB .3[0,)[,)24πππC .3[,)4ππD .3[0,)(,]224πππ7.在ABC ∆中,已知2222()sin()()sin()a b A B a b A B +-=-+,则ABC ∆的形状( ).A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形8.若函数f(x)=x 2+bx +c 的图象的顶点在第四象限,则函数f /(x)的图象是( ).A. B. C. D.9.(文)已知函数y =f (x ),x ∈{1,2,3},y ∈{-1,0,1},满足条件f (3)=f (1)+f (2)的映射的个数是( ).A. 2B. 4C. 6D. 7(理)已知随机变量ξ服从二项分布,且E ξ=2.4,D ξ=1.44,则二项分布的参数n ,p 的值为( ).A .n =4,p =0.6B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.110.椭圆221ax by +=与直线1y x =-交于A 、B 两点,过原点与线段AB 中点的直线的,则 ab值为( ). ABCD11. A 、B 是x 轴上两点,点P 的横坐标为2,且|PA |=|PB |,若直线PA 的方程为x -y +1=0,则直线PB 的方程为 12.(文)调查某单位职工健康状况,其青年人数为300,中年人数为150,老年人数为100,现考虑采用分层抽样,抽取容量为22的样本,则青年、中年、老年各层中应抽取的个体数分别为_____________(理)5人站成一排,甲、乙两人之间恰有1人的不同站法的种数有 .13.在条件02021x y x y ≤≤⎧⎪≤≤⎨⎪-≥⎩下, 22(1)(1)Z x y =-+-的取值范围是 .14.设函数f (x )的图象与直线x =a ,x =b 及x 轴所围成图形的面积称为函数f (x )在[a ,b]上的面积,已知函数y =sinn x 在[0,nπ]上的面积为2n (n ∈N * ),(i )y =sin3x 在[0,23π]上的面积为 ; (ii )(理)y =sin (3x -π)+1在[3π,43π]上的面积为 .15. 已知函数f (x )=2a cos 2x +b sin x cos x ,且f (0)=2,f (3π)=12. (1)求f (x )的最大值与最小值;(2)若α-β≠k π,k ∈Z ,且f (α)=f (β),求tan(α+β)的值.高三数学基础选择填空训练(6)时量:60分钟 满分:80分 班级: 姓名: 计分:1. 化简31ii-=+( ). A. 1+2i B. 12i - C. 2+i D. 2i - 2. 若110a b<<,则下列结论不正确...的是( ). A .22a b < B .2ab b < C .2b aa b+> D .a b a b -=- 3. 已知直线a 、b 和平面M ,则//a b 的一个必要不充分条件是( ). A. ////a M b M , B. a M b M ⊥⊥,C. //a M b M ⊂,D. a b 、与平面M 成等角 4. 下列四个个命题,其中正确的命题是( ). A. 函数y =tan x 在其定义域内是增函数B. 函数y =|sin(2x +3π)|的最小正周期是πC. 函数y =cos x 在每个区间[72,24k k ππππ++](k z ∈)上是增函数D. 函数y =tan(x +4π)是奇函数5. 已知等比数列{}n a 的前n 项和为1136n n S x -=⋅-,则x 的值为( ).A. 13B. 13-C. 12D. 12-6. 已知()f x 定义在(,0)-∞上是减函数,且(1)(3)f m f m -<-,则m 的取值范围是( ).A .m <2B .0<m <1C .0<m <2D .1<m <27. 将直线0x =绕原点按顺时针方向旋转30︒,所得直线与圆22(2)3x y -+=的位置关系是( ).A.直线与圆相切B.直线与圆相交但不过圆心C.直线与圆相离D.直线过圆心8. 与直线41y x =-平行的曲线32y x x =+-的切线方程是( ). A .40x y -= B .440x y --=或420x y --= C .420x y --=D .40x y -=或440x y --=9. (文)一组数据8,12,x ,11,9的平均数是10,则这样数据的方差是( ).A .2BC .D .2(理)由正方体的八个顶点中的两个所确定的所有直线中,取出两条,这两条直线是异面直线的概率为( ).A .29189 B .2963 C . 3463D .4710. 椭圆M :2222x y a b+=1 (a >b >0) 的左、右焦点分别为F 1、F 2,P 为椭圆M 上任一点,且12PF PF ⋅ 的最大值的取值范围是[2c 2,3c 2],其中c =则椭圆M 的离心率e 的取值范围是( ).A. B.[C. D. 11[,)3211. 已知单位向量i 和j 的夹角为60º,那么 (2j -i )•i = .12.(文)圆C :1cos sin x y θθ=+⎧⎨=⎩(θ为参数)的普通方程为__________.(理)由抛物线2y x =和直线1x =所围成图形的面积为_____________. 13. 设(,)P x y 是下图中四边形内的点或四边形边界上的点(即x 、y 满足的约束条件),则2z x y =+的最大值是__________.14. 棱长为1 cm 的小正方体组成如图所示的几何体,那么这个几何体的表面积是 2cm .15. 小明、小华用4张扑克牌(分别是黑桃2、黑桃4,黑桃5、梅花5)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,小明先抽,小华后抽,抽出的牌不放回,各抽一张. (1)若小明恰好抽到黑桃4;①请绘制出这种情况的树状图;②求小华抽出的牌的牌面数字比4大的概率.(2)小明、小华约定:若小明抽到的牌的牌面数字比小华的大,则小明胜,反之,则小明负,你认为这个游戏是否公平,说明你的理由.高三数学基础选择填空训练(7)时量:60分钟 满分:80分 班级: 姓名: 计分:1.设集合A={x | x},a =3,那么( ). A. a A B. a ∉A C. {a }∈A D. {a } A 2.向量a = (1,2),b = (x ,1),c = a + b ,d = a - b ,若c //d ,则实数x 的值等于( ).A.12 B. 12- C. 16 D. 16- 3. 方程lg 30x x +-=的根所在的区间是( ).A.(1,2)B. (2,3)C. (3,4)D.(0,1)4.已知2sin cos αα=,则2cos2sin 21cos ααα++的值是( ).A. 3B. 6C. 12D. 325.在等差数列{a n }中,1233,a a a ++=282930165a a a ++=,则此数列前30项和等于( ).A. 810B. 840C. 870D.900x1)<的图象的大致形状是().7. 设三棱锥的3个侧面两两互相垂直,且侧棱长均为,则其外接球的表面积为( ).A.48πB. 36πC. 32πD.12π8. 实数,x y 满足(6)(6)014x y x y x -++-≥⎧⎨≤≤⎩,则y x 的最大值是( ).A .52B .7C .5D .8 9.(文)一个盒子中装有标号为1,2,3,4,5的5张标签,随机地选取两张标签,标签的选取是无放回的,两张标签上的数字为相邻整数的概率( ).A.25B. 35C. 825 925(理)抛掷两个骰子,至少有一个4点或5点出现时,就说这些试验成功,则在10次试验中,成功次数ξ的期望是( ).A .103B .559C .809D .509⊂ ≠⊂ ≠10. 设动点A , B (不重合)在椭圆22916144x y +=上,椭圆的中心为O ,且0OA OB ⋅=,则O 到弦AB 的距离OH 等于( ).A .203B .154C .125D .41511. 复数21ii-+(i 是虚数单位)的实部为 .12. (文)某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是 分.(理)在10(1)(1)x x -+的展开式中, 5x 的系数是 . 13. 在如下程序框图中,输入0()cos f x x =,则输出的是__________.14.自极点O 向直线l 作垂线,垂足是(2,)3H π,则直线l 的极坐标方程为 .15. 已知函数33()cos 22f x x x a =++恒过点(,1)3π-.(1)求a 的值;(2)求函数()y f x =的最小正周期及单调递减区间.高三数学基础选择填空训练(8)时量:60分钟 满分:80分 班级: 姓名: 计分:1.2(1)i i -等于( ).A . 22i -B .22i +C .-2D .2 2.如图,甲、乙、丙是三个立方体图形的三视图,甲、乙、丙对应的标号正确的是( ).①长方体 ②圆锥 ③三棱锥 ④圆柱 A .④③② B . ②①③ C . ①②③ D . ③②④3.给出下列函数①3y x x =-,②sin cos ,y x x x =+③sin cos ,y x x =④22,x x y -=+其中是偶函数的有( ).A .1个B .2个C .3 个D .4个4.已知等差数列{}n a 的前n 项和为n S ,若4588,10,S a a ==则=( ). A .18 B .36 C .54 D .72 5.设全集U 是实数集R ,{}2|4M x x >=,{}|13N x x =<<,则图中阴影部分所表示的集合是( ). A .{}|21x x -≤< B .{}|22x x -≤≤ C .{}|12x x <≤ D .{}|2x x <6.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙二人下成和棋的概率为( ).A .60%B .30%C .10%D .50%7.以线段AB :20(02)x y x +-=≤≤为直径的圆的方程为( ). A .22(1)(1)2x y +++= B .22(1)(1)2x y -+-= C .22(1)(1)8x y +++= D .22(1)(1)8x y -+-= 8.下面程序运行后,输出的值是( ).A. 42B. 43C. 44D. 45i=0 DO i=i+1 LOOP UNTIL i*i>=2000 i=i -1 PRINT i END9.(文)(cos2,sin ),(1,2sin 1),(,)2a b πααααπ==-∈,若2,t a n ()54a b πα=+=则( ).A .13B .27C .17D .23(理)8的展开式中系数最大的项是( ).A.第3项B.第4项C.第2或第3项D.第3或第4项10.台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为( ). A .0.5小时 B .1小时 C .1.5小时 D .2小时11.已知椭圆中心在原点,一个焦点为(F -,且长轴是短轴长的2倍,则该椭圆的标准方程是 . 12.(文)某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体健康状况,需从他们中抽取一个容量为36的样本,抽取样本的合适方法是 . (理)空间12个点,其中5个点共面,此外无任何4个点共面,这12个点最多可决定_________个不同的平面.13.关于函数21()lg (0),x f x x x+=≠有下列命题:①其图像关于y 轴对称;②当x >0时,()f x 是增函数;当x <0时,()f x 是减函数;③()f x 的最小值是lg 2;④当102x x -<<>或时,()f x 是增函数;⑤()f x 无最大值,也无最小值.其中所有正确结论的序号是 .14.极坐标系内,点(2,)2π关于直线cos 1ρθ=的对称点的极坐标为 .15.某机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年总收入为50万元,设使用x 年后数控机床的盈利额为y 万元. (1)写出y 与x 之间的函数关系式;(2)从第几年开始,该机床开始盈利(盈利额为正值) (3)使用若干年后,对机床的处理方案有两种:(i )当年平均盈利额达到最大值时,以30万元价格处理该机床; (ii )当盈利额达到最大值时,以12万元价格处理该机床。
数学高三试卷(带答案)数学高三试卷(带答案)第一部分:选择题1. 设集合A = {1, 2, 3, 4},集合B = {3, 4, 5, 6},则A ∩ B =A) {1, 2, 3, 4} B) {3, 4} C) {5, 6} D) 空集2. 已知函数f(x) = x^2 + 1,g(x) = 2x - 1,则f(g(2)) =A) 3 B) 5 C) 7 D) 93. 解方程组:2x - y = -13x + y = 7得到的解为A) (x, y) = (1, 2) B) (x, y) = (2, 1) C) (x, y) = (-1, -2) D) (x, y) = (-2, -1)4. 设函数f(x) = 2x + 3,g(x) = x^2 - 1,则f(g(x)) = 0的解为A) x = -1, x = 2 B) x = -2, x = 1 C) x = 1, x = 2 D) x = -1, x = 15. 计算正弦函数si n(π/6)的值,结果等于A) 1/2 B) √3/2 C) √2/2 D) 1第二部分:填空题6. 二次函数y = ax^2 + bx + c的图像经过点(1, 3),则a + b + c =______.7. 已知复数z = 3 + 4i,其中i是虚数单位,则z的共轭复数为______.8. 若a + b = 3,a^2 + b^2 = 7,则ab的值为 ______.9. 在等差数列-2, 1, 4, 7, ...中,求第10项的值 ______.10. 已知二次函数y = ax^2 + bx + c的顶点坐标为(2, -1),则a + b + c 的值为 ______.第三部分:解答题11. 一个等差数列的首项为2,公差为3,前n项和为S。
当n = 5时,S = 35。
求此等差数列的第7项。
12. 设函数f(x)为一次函数,满足f(2) = 5,f(3) = 7。
高中数学高三试题及答案一、选择题(每题4分,共20分)1. 若函数f(x) = 2x + 3,则f(-1)的值为:A. -1B. 1C. 5D. -5答案:B2. 已知集合A={1, 2, 3},B={3, 4, 5},则A∩B的元素个数为:A. 1B. 2C. 3D. 0答案:A3. 函数y = x^2 - 6x + 8的对称轴方程为:A. x = 3B. x = -3C. x = 2D. x = -2答案:A4. 已知等差数列{a_n}的前三项分别为2,5,8,则该数列的公差为:A. 3B. 2C. 1D. 4答案:A5. 函数y = |x - 2| + |x + 2|的最小值为:A. 2B. 4C. 0D. 6答案:B二、填空题(每题5分,共20分)6. 已知向量a = (3, 4),向量b = (-4, 3),则向量a与向量b的夹角θ满足______。
答案:θ =135°7. 已知圆的方程为x^2 + y^2 - 6x + 8y - 24 = 0,求圆心坐标。
答案:(3, -4)8. 已知函数f(x) = x^3 - 3x^2 + 4x - 5,求f'(x)。
答案:f'(x) = 3x^2 - 6x + 49. 已知等比数列{a_n}的前三项分别为2,4,8,则该数列的公比为______。
答案:2三、解答题(每题10分,共60分)10. 解方程:x^2 - 5x + 6 = 0。
答案:x = 2 或 x = 311. 已知函数f(x) = 2x^3 - 3x^2 + 5x - 1,求f(x)的极值点。
答案:x = 1/2(极大值点),x = 2(极小值点)12. 已知直线l:y = 2x + 3,求与l平行且与x轴交于点(2, 0)的直线方程。
答案:y = 2x - 413. 已知三角形ABC的三边长分别为a = 5,b = 7,c = 8,求三角形ABC的面积。
全国高三数学试题及答案一、选择题(每题4分,共40分)1. 若函数f(x) = x^2 - 4x + 3的最小值为m,则m的值为:A. 0B. 1C. 2D. 32. 已知向量a = (3, -1),b = (1, 2),则向量a与b的数量积为:A. 1B. 2C. 3D. 43. 函数y = sin(x) + cos(x)的值域为:A. [-1, 1]B. [-√2, √2]C. [0, 2]D. [1, √2]4. 已知数列{an}的通项公式为an = 2n - 1,求数列的前n项和Sn:A. n^2B. n(n+1)C. n^2 - nD. n^2 + n5. 直线l:2x - y + 3 = 0与直线m:x + 2y - 5 = 0的交点坐标为:A. (1, 2)B. (2, 1)C. (-1, 2)D. (2, -1)6. 已知双曲线方程为x^2/a^2 - y^2/b^2 = 1,其中a > 0,b > 0,若双曲线的一条渐近线方程为y = 2x,则a与b的关系为:A. a = 2bB. a = b/2C. b = 2aD. b = a/27. 已知三角形ABC中,角A、B、C的对边分别为a、b、c,且满足a^2 + b^2 = c^2,若三角形ABC的面积为3√3,则c的值为:A. 2√3B. 3√3C. 6D. 6√38. 已知函数f(x) = x^3 - 3x^2 + 2x,求f'(x):A. 3x^2 - 6x + 2B. 3x^2 - 6x + 3C. 3x^2 - 6x + 1D. 3x^2 - 6x + 49. 已知抛物线方程为y^2 = 4x,求抛物线的焦点坐标:A. (1, 0)B. (0, 1)C. (1, 1)D. (0, 0)10. 已知椭圆方程为x^2/16 + y^2/9 = 1,求椭圆的离心率e:A. 1/4B. √5/4C. √3/2D. 3/4二、填空题(每题4分,共20分)11. 已知等差数列{an}的首项a1 = 2,公差d = 3,求该数列的第10项a10的值为______。
选择、填空题专项训练(四)
1 已知集合 A 二{x| —5 乞 2x -1 乞 3,x 三 R } , B = {x | x (x 「8)乞 0, x 三 Z },则 A 「] B 二
A . 0,2
B . [0,2]
C .〈0,2?
D . :0,1,2;
2•若复数(a i )2对应点在y 轴负半轴上,则实数 a 的值是
A. -1
B. 1
C. -2
D.
2
3.右图是2011年在某大学自主招生面试环节中,
七位评委为某考生打出的分数的茎叶统计
图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为 B. 84,1.6
D. 85,4
于.5,则该双曲线的方程为
A. 84,4.84 C. 85,1.6
2 2
4.已知双曲线务的一个焦点与抛物线
2
y = 4x 的焦点重合,且双曲线的离心率等
A. 5x 2
4y 2
5
2 2
x y B.-
5
4
=1
2 c.X 5
2
x
1 D.
4
5x 2亘
=1
5 .在等比数列{a n }中, A. 4
a 1 - a n B. -34, a 2 a n 』二64,且前n 项和S n =62 ,则项数n 等于
5
C. 6
D. 7
6.
:ABC 的三个内角 A 、B 、
C 所对边长分别为 a 、b 、c , 设向量 m 二(a b,sinC),
n = ( . 3a ■ c, sin B -sin A)若 m // n ,则角 B 的大小为
JI
A.-
6
5■:
B .
6
7.设平面区域 D 是由双曲线x 2
2
y
1的两条渐近线和直线 6x- y-8 =0所围成三角形的边 4
界及内部. 当(x,y) • D 时, x 2 y 2 2x 的最大值是
A. 24 B . 25 C . 4 D . 7
& 已知 ABC 中,AB = AC =4, BC =4 3,点P 为BC 边所在直
■KN
线上的一个动点,则AP (AB AC)满足(
A.最大值为16
B. 最小值为4
C. 为定值8
D. 与P的位置有关
9. 如图为一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸
如图,则该几何体的全面积为
A. 6 - 3匹2. 3
B. 2 2恵:卜4.. 2
C. 8 5恵诩2. 3
D. 2 - 3恵:卜4.. 2
10. 下列四个命题中,正确的是
2 2
A.对于命题p : x := R,使得x x 0 ,则—p : - x:= R ,均有x x 1 0 ;
B.函数f(x)二e」-e x切线斜率的最大值是2;
0sinxdx,则f [f(》)I
C.已知函数f (a) =1 cos1
0IL 2
D.函数y =3 2x -1的图象可以由函数y = 2x的图象仅通过平移变换得到;
11.已知函数f (x)的定义域为(-2,2),导函数为f (x) =2 • COSX,且f(0)=0,则满足
f (1 x) f(x-x2)>0的实数x的取值范围为
A. (-1,1)
B. (-1,1 、、2)
C. (1-「2,,)
D. (1-、2, 1 、、2)
12. 在正三棱锥S-ABC中,M N分别是SC BC的中点,且MN _ AM,若侧棱SA=2.. 3 ,
则正三棱锥S-ABC外接球的表面积为
A. 12 二
B. 32 7:
C. 36 二D 48 二
r^~i
13. 设曲线y=x n1(N*)在点(1, 1)处的切线与x轴的交点的横坐
标为x n , lo g 2012 x1 log2012 x2 '丨I (log2012 x2011 的值为------------
*—[冲“
14、已知实数[0,10],执行如右图所示的程序框图,则输出的x不
小于47的概率为_______
x
根据以上事实,由归纳推理可得:
当 n € N 且 n > 2 时,f m (x ) =f (f m-1 ( x )) = ___________ .
X 2
+1
16.函数 f(x)=lg -------------- (XH O , X ^R ),有下列命题:
x
①f(x)的图象关于y 轴对称; ②f (x)的最小值是2 ;
③f (x)在(-::,0)上是减函数,在(0, •::)上是增函数; ④f (x)没有最大值.
15.设函数
(x > 0),观察:
f l x ]=f X 二
X
T~2
f 3(X )=f(f
)=
x 7x 8
f 2(x)=f(f f 4(X )=f(
1
(x ) )=
X 3x 4
(X ))=
X 15x 16。