医药数理统计方法6-4正态总体方差的检验
- 格式:ppt
- 大小:54.00 KB
- 文档页数:13
正态总体方差的假设检验一、引言假设检验是统计学中常用的一种方法,用于判断关于总体参数的某种陈述是否成立。
在实际应用中,我们经常需要对总体方差进行假设检验,以确定样本数据是否能够代表总体的特征。
二、正态总体方差的假设检验在正态总体方差的假设检验中,我们通常使用方差比检验来判断总体方差是否有显著差异。
具体而言,我们设立原假设H0和备择假设H1,然后利用样本数据进行检验。
1. 原假设和备择假设原假设H0通常为总体方差等于某个特定值,记为σ^2 = σ0^2;备择假设H1通常为总体方差不等于该特定值,记为σ^2 ≠ σ0^2。
2. 检验统计量在正态总体方差的假设检验中,我们使用F检验统计量来进行判断。
F检验统计量的计算公式为F = S^2 / σ0^2,其中S^2为样本方差。
3. 拒绝域和接受域在给定显著性水平α的情况下,我们可以根据F检验统计量的分布来确定拒绝域和接受域。
一般来说,当F检验统计量落在拒绝域内时,我们拒绝原假设;当F检验统计量落在接受域内时,我们接受原假设。
4. F分布表的使用由于F检验统计量的分布是F分布,因此我们可以利用F分布表来确定拒绝域和接受域的临界值。
F分布表中给出了不同自由度和显著性水平下的临界值。
5. 计算步骤进行正态总体方差的假设检验时,我们需要按照以下步骤进行计算:(1) 提出原假设H0和备择假设H1;(2) 选择适当的显著性水平α;(3) 根据样本数据计算样本方差S^2;(4) 根据样本量n和显著性水平α确定F分布的自由度;(5) 根据F分布表找到对应的临界值;(6) 比较计算得到的F检验统计量与临界值,判断是否拒绝原假设。
三、实例分析为了更好地理解正态总体方差的假设检验,我们以某电子产品的寿命为例进行实例分析。
假设我们对该电子产品的寿命进行了100次观测,得到样本方差为S^2 = 200。
现在我们想要判断该电子产品的寿命是否满足某个特定的标准。
我们设立原假设H0:电子产品的寿命方差等于标准值,备择假设H1:电子产品的寿命方差不等于标准值。