异方差性的概念、类型、后果、检验和修正方法(含案例)
- 格式:ppt
- 大小:1.74 MB
- 文档页数:73
第六章异方差性Chapter 6 异方差性二、异方差的类型同方差:i2 = 常数f(Xi) 异方差:i2 = f(Xi) 四、异方差性的后果总而言之,在异方差情况下,我们建立在高斯马尔科夫定理基础上的用来检验各种假设的统计量都不再是有效的,因而OLS 估计量不再是最佳线性无偏估计量(即不具有BLUE 性质)。
五、异方差性的检验检验思路:辅助回归: 6. 怀特(White )检验怀特检验不需要排序,且适合任何形式的异方差。
怀特检验的基本思想与步骤(以二元为例):去掉交互项是一种方法,另一种方法也可以用原来模型OLS 回归得到的Y的拟合值作为辅助回归中的解释变量:在进行怀特异方差检验时,建立如下辅助回归:然后在计算LM 统计量例子6-5 异方差检验的说明性例子P160 图示法G-Q 检验F 检验LM 检验怀特检验一旦获得了异方差稳健标准差,就可以构造异方差稳健t统计量。
稳健标准差的优点在于:不需要知道总体模型是否存在异方差以及是何种形式的异方差。
异方差稳健标准差比普通的OLS 标准差更有效。
在大样本下,截面数据分析中我们可以仅仅报告异方差稳健标准差,一般软件都提供。
例子6-6 P164 运用EViews 报告异方差稳健估计。
打开OLS 估计结果,Estimate, options, 在LS&TSLS 中选择Heteroskedasticity consistent coefficient\white 异方差稳健标准差通常大于OLS 标准差。
STATA :reg y x1 x2, vce(robust) (一)异方差为已知的解释变量的某一函数形式时的加权最小二乘估计模型检验出存在异方差性,可用加权最小二乘法(Weighted Least Squares, WLS )进行估计。
如果直接用作为权数,则容易验证变换后模型的随机干扰项的方差等于1,也满足同方差性。
此时加权最小二乘法就是对如下加了权的模型采取OLS 法:指数函数,我们需要估计FWLS 估计量的性质例子6-7 :FWLS 若以指数函数求权函数fx OLS 回归后,log(resid^2) gene fx=exp(…….) 权数1/sqr(fx) 第五节:案例分析P172 1988 年美国18 个工业群体的研发注意:辅助回归仍是检验与解释变量可能的组合的显著性,因此,辅助回归方程中还可引入解释变量的更高次方。
第五章异方差性本章教学要求:根据类型,异方差性是违背古典假定情况下线性回归模型建立的另一问题。
通过本章的学习应达到,掌握异方差的基本概念包括经济学解释,异方差的出现对模型的不良影响,诊断异方差的方法和修正异方差的方法。
经过学习能够处理模型中出现的异方差问题。
第一节异方差性的概念一、例子例1,研究我国制造业利润函数,选取销售收入作为解释变量,数据为1998年的食品年制造业、饮料制造业等28个截面数据(即n=28)。
数据如下表,其中y表示制造业利润函数,x表示销售收入(单位为亿元)。
Y对X的散点图为从散点图可以看出,在线性的基础上,有的点分散幅度较小,有的点分散幅度较大。
因此,这种分散幅度的大小不一致,可以认为是由于销售收入的影响,使得制造业利润偏离均值的程度发生了变化,而这种偏离均值的程度大小不同是一种什么现象?如何定义?如果非线性,则属于哪类非线性,从图形所反映的特征看并不明显。
下面给出制造业利润对销售收入的回归估计。
模型的书写格式为2ˆ12.03350.1044(0.6165)(12.3666)0.8547,..84191.34,152.9322213.4639,146.4905Y YX R S E FY s =+=====通过变量的散点图、参数估计、残差图,可以看到模型中(随机误差)很有可能存在一种系统性的表现。
例2,改革开放以来,各地区的医疗机构都有了较快发展,不仅政府建立了一批医疗机构,还建立了不少民营医疗机构。
各地医疗机构的发展状况,除了其他因素外主要决定于对医疗服务的需求量,而医疗服务需求与人口数量有关。
为了给制定医疗机构的规划提供依据,分析比较医疗机构与人口数量的关系,建立卫生医疗机构数与人口数的回归模型。
根据四川省2000年21个地市州医疗机构数与人口数资料对模型估计的结果如下:i iX Y 3735.50548.563ˆ+-= (291.5778) (0.644284) t =(-1.931062) (8.340265)785456.02=R 774146.02=R 56003.69=F式中Y 表示卫生医疗机构数(个),X 表示人口数量(万人)。
异方差性的概念类型后果检验及其修正方法异方差性(heteroscedasticity)是指随着自变量的变化,被解释变量的方差不保持恒定,呈现出不同的分散特征。
异方差性可能会导致线性回归模型的参数估计不精确,误差项的标准误差的估计不准确,常见的检验和修正方法包括Breusch-Pagan检验和White检验,同时,还可以采取加权最小二乘法或者转换变量的方法来修正异方差性。
异方差性可以分为条件异方差和非条件异方差两种类型。
条件异方差是指在给定自变量的情况下,被解释变量方差的大小存在差异;非条件异方差则是指被解释变量的方差在整个样本空间内都存在差异。
异方差性的后果是导致参数估计的不准确性和偏误。
当存在异方差性时,OLS(普通最小二乘法)估计的标准误差会低估真实标准误差,从而使得参数显著性以及模型拟合效果可能出现问题。
此外,在存在异方差性的情况下,t检验、F检验等假设检验的结果也会受到影响。
在进行线性回归模型时,常常需要对异方差性进行检验。
一种常用的检验方法是Breusch-Pagan检验,其基本思想是对残差的平方与自变量进行回归,然后通过F检验来判断异方差的存在与否。
另一种常用的检验方法是White检验,它是在一个包含自变量和交互项的扩展模型中对残差的平方与自变量进行回归,通过Wald检验统计量来判断异方差的存在与否。
异方差性可以通过多种修正方法来处理。
其中,一种常用的方法是采用加权最小二乘法(WLS)来估计参数。
WLS的基本思想是将方差不恒定的观测值加权,使得每个观测值的权重与方差的倒数成正比。
另一种常用的方法是通过转换变量,使得原始数据变换成具有恒定方差的形式,例如对数变换、平方根变换等。
下面以一个案例来说明如何检验和修正异方差性。
假设我们研究了城市的房价(被解释变量)与房屋面积和所在地区(自变量)之间的关系。
我们采集了100个样本数据,并构建了线性回归模型进行分析。
1.检验异方差性:使用Breusch-Pagan检验来检验模型的异方差性。