2018-2019学年最新华东师大版九年级数学上册《一元二次方程的解法1》教学设计-评奖教案
- 格式:docx
- 大小:70.50 KB
- 文档页数:4
初三数学第一学期一元二次方程的概念及一元二次方程的解法一. 本周教学内容:一元二次方程的概念及一元二次方程的解法二.本周教学难点及重点:重点:一元二次方程的解法。
难点:配方法解一元二次方程。
三. 知识精讲[知识梳理]1. 一元二次方程的定义。
只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程。
[注]:(1)整式方程:方程两边都是关于未知数的整式。
(2)只含一个未知数。
(3)未知数的最高次数是2。
2. 一元二次方程的一般形式。
一般形式是:ax bx c 20++=(a ≠0,a ,b ,c 为常数)其中a 、b 、c 分别叫二次项系数、一次项系数、常数项。
[注]:a ≠03. 一元二次方程的解如果一个数能使一元二次方程左右两边的值相等,那么这个数就是一元二次方程的解。
4. 一元二次方程的解法(1)直接开平方法形如ax b ab 20=>()①,或()()mx n a m a +=≥200≠,②,方程可以利用平方根的定义,用直接开平方法解得其根。
其中①的解是x b a =±,②的解是x n a m=-±。
[注意]因为正数a 的平方根有两个,即±a ,所以利用直接开平方法时要避免丢解。
(2)配方法解一元二次方程把方程变为左边是一个含有未知数的完全平方式,右边是一个非负常数,再利用直接开平方法求解。
[注意]配方的关键是,在二次项系数为1的条件下,方程的两边都加上一次项系数一半的平方。
【典型例题】考查一元二次方程的概念例1. 下列关于x 的方程中,一定是一元二次方程的是()A. ax bx c 20++=B. k x k 2560++=C. 3241202x x --= D. 31202x x+-= 分析:要看一个方程是否为一元二次方程,就要严格按概念来对照,因此解答的关键是理解一元二次方程的概念,在二次项系数不等于零上常会出现错误。
解:A 中最高次项为ax 2,因无法判定a 是否不为零,所以不能确定该方程是否为一元二次方程;B 中最高次项为k 2x ,显然不是关于x 的一元二次方程;C 中方程是一元二次方程;D 中分母含有未知数,所以不是整式方程,从而也一定不是一元二次方程。
初三数学23.2 一元二次方程的解法华东师大版【本讲教育信息】一. 教学内容:23.2 一元二次方程的解法二. 重点、难点: 1. 重点:(1)理解一元二次方程解法中的降次思想;(2)会用直接开平方法、因式分解法、公式法、•配方法解一元二次方程.探索一元二次方程的解法过程,体验从不同角度寻求解决问题的策略;(3)知道一元二次方程根的判别式的概念,会用一元二次方程根的判别式判别根的情况.2. 难点:理解配方法,会用配方法推导一元二次方程的求根公式;三. 知识梳理: 1. 直接开平方法直接开平方法的概念:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.(1)形如2(0)x m m =≥的方程.方程的解是:x =当m =0时,方程有两个相等的实数根.(2)形如2()(0)x n m m -=≥的方程.方程的解是:x n =.(3)形如2()(0,0)a x n m ma a -=≥≠的方程.方程的解是:x n =. 总之,如果一元二次方程的一边是未知数的平方或者是含有未知数的代数式的平方,另一边是一个非负数,那么就可以用直接开平方法求解.温故知新: 平方根的意义:(1)文字语言表示:如果一个数的平方等于a ,这个数叫a 的平方根.(2)用式子表示:若x 2=a ,则x 叫做a 的平方根. 2. 因式分解法(1)因式分解法的概念:当一元二次方程的一边为0时,将方程的另一边分解成两个一次因式的积,进而分成两个一元一次方程来求解,这种解一元二次方程的方法叫做因式分解法.(2)因式分解法的理论依据是:两个因式的积等于0,则这两个因式至少有一个等于0.用式子表示为:若0b a =⋅,则a =0或b =0.(3)用因式分解法解一元二次方程的步骤是:①将方程化为20ax bx c ++=(a ≠0) 的形式; ②将方程的左边分解为两个一次因式的积;③令每个因式分别等于0,得到两个一元一次方程; ④解这两个一元一次方程,它们的解就是方程的解. 点拨:(1)分解因式常用的方法有提公因式法和运用公式法;(2)如果一个二项式,它能够化成两个整式的平方差,就可以用平方差公式分解因式,分解成两个整式的和与差的积;(3)等式的左边都是三项,其中两项符号为“+”,是一个整式的平方,还有一项符号可“+”可“-”,它是那两项乘积的两倍.凡具备这些特点的三项式,就是一个二项式的完全平方式,将它写成平方形式,便实现了因式分解. 3. 配方法配方法的含义:把方程的一边化为一个完全平方式,另一边化为非负数,然后利用开平方求解的方法叫做配方法.归纳:用配方法解一元二次方程的一般步骤是:(1)如果一元二次方程的二次项系数不是1,就先在方程的两边同时除以二次项系数,把二次项系数化为1;(2)把含未知数的项移到左边,常数项移到右边;(3)然后在方程的左右两边同时加上一次项系数一半的平方,这样使方程的左边变成一个完全平方式,右边是一个非负数的形式;(4)最后用直接开平方法解这个一元二次方程. 4. 公式法(1)二次方程20ax bx c ++=(a ≠0)的求根公式为:x =(240b ac -≥),其中公式中的a 、b 、c 分别是一元二次方程的二次项系数、一次项系数及常数项.我们用求根公式法求一元二次方程解的方法叫公式法.(2)用公式法解一元二次方程的一般步骤是: ①首先把一元二次方程化为一般形式; ②确定公式中a 、b 、c 的值;③求出24b ac -的值;④若24b ac -≥0,则把a 、b 、c 及24b ac -24b ac -<0时,此时方程无实数解. 说明:①求根公式是专指一元二次方程的求根公式,只有方程为一元二次方程时,方可运用求根公式,即20ax bx c ++=中a ≠0.②公式中的“24b ac -≥0”是公式成立的一个前提条件.5. 一元二次方程根的判别式(1)判别式的含义:在一元二次方程20ax bx c ++=(a ≠0)的求根公式的推导过程中,我们已经知道,一元二次方程是否有实数根,关键是由24b ac -24b ac -叫做一元二次方程根的判别式,且常用符号“△”表示,即△=24b ac -.(2)一元二次方程根的判别:(1)当24b ac ->0时,方程有两个不相等的实数根;(2)当24b ac -=0时,方程有两个相等的实数根;(3)当24b ac -<0时,方程没有实数根.反之也成立.(3)一元二次方程根的判别式的应用: ①不解方程判别根的情况;②根据方程解的情况确定系数的取值X 围; ③求解与根有关的综合题. 6. 一元二次方程的应用列一元二次方程解应用题是列一元一次方程解应用题的拓展,解题过程也分为审题、设未知数、列方程、解方程、检验、答六步.其中审题过程最为重要,通过认真分析题意,弄清已知量和未知量、以及量与量之间的关系,才能找出等量关系,列出方程.最后注意检验方程的解是否符合题意以及在实际问题中是否有意义.【典型例题】例1. 用直接开平方法解下列方程:(1)(x +1)2-4=0;(2)12(2-x )2-9=0.分析:对于形如x 2=a (a ≥0)或(mx -n )2=a (m ≠0, a ≥0)的方程,可根据平方根的意义,用直接开平方的方法求解.解:(1)原方程可以变形为(x +1)2=4, 直接开平方,得x +1=±2,即x +1=2或 x +1=-2. 所以原方程的解是x 1=1,x 2=-3.(2)原方程可以变形为()4322=-x , 直接开平方,得232±=-x ,即232=-x 或232-=-x . 所以原方程的解是232,23221+=-=x x .例2. 用配方法解下列方程:(1)x 2-6x -7=0;(2)2x 2+3=5x .分析:根据用配方法解一元二次方程的一般步骤求解.解:(1)移项,得x 2-6x =7方程左边配方,得x 2-2∙x ∙3+32=7+32即 (x -3)2=16. 所以x -3=±4.原方程的解是x 1=7,x 2=-1.(2)移项,得:2x 2-5x +3=0,把方程的各项都除以2,得023252=+-x x ,配方,得22245234525⎪⎭⎫ ⎝⎛+-=⎪⎭⎫⎝⎛+-x x ,即161452=⎪⎭⎫ ⎝⎛-x ,所以4145±=-x ,原方程的解是12321==x x ,.例3. 用配方法解方程:x 2+px +q =0(p 2-4q ≥0)分析:将字母p 和q 看成已知数,根据配方法的步骤即可求解.解:移项,得x 2+px =-q ,方程左边配方,得2222222⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+⋅⋅+p q p p x x 即44222q p p x -=⎪⎭⎫ ⎝⎛+ 当p 2-4q ≥0时,得2422qp p x -±=+原方程的解是24242221q p p ,x q p p x ---=-+-=点拨:在配方时方程两边一定要同时加上“一次项系数一半的平方”.例4. 用公式法解下列方程:(1)2x 2+x -6=0;(2)x 2+4x =2;分析:用公式法解一元二次方程的一般步骤是: ①把一元二次方程化为一般形式;②确定a 、b 、c 的值.③求出b 2-4ac 的值;④若b 2-4ac ≥0,则利用公式x=-b±b 2-4ac 2a 求出原方程的根;若b 2-4ac <0,则方程无实数解.解:(1)因为 a =2,b =1,c =-6。
22。
2一元二次方程的解法第一课时直接开平方法和因式分解法(1)教学目标知识技能目标1.认识形如x2=a(a≥0)类型的方程,并会用直接开平方法或因式分解法求解;2。
培养学生准确而简洁的计算能力及抽象概括能力;过程性目标1。
使学生体会运用直接开平方法和因式分解法解某些特殊的一元二次方程;2.在学生自主实践中感悟一元二次方程解法的多样性,从而初步认识一些特殊一元二次方程的求解思路.情感态度目标通过两边同时开平方或运用因式分解的方法,将一元二次方程转化为一元一次方程,渗透数学新知识的学习往往由未知(新知识)向已知(旧知识)转化的思想,这是研究数学问题常用的方法.重点和难点重点:掌握运用直接开平方法和因式分解法解某些特殊的一元二次方程;难点:怎样的一元二次方程用直接开平方法,以及用因式分解法,理解一元二次方程的解的情况.教学过程一、创设情境问题解下列方程,并说明你所用的方法,与同伴交流.(1)x2=4; (2)x2—1=0.二、探究归纳概括 (1)x 2=4,一个数x 的平方等于4,这个数x 叫做4的平方根(或二次方根);根据平方根的性质,一个正数有两个平方根,它们互为相反数;所以这个数x 为±2,所以x =±2.我们知道,求一个数平方根的运算叫做开平方.这种解一元二次方程的方法叫做直接开平方法.直接开平方法的实质是求一个数平方根的运算.(2)x 2-1=0,如果把它化为x 2=1,由直接开平方法,得x =±1.对于x 2-1=0,将左边运用平方差公式因式分解后再解这个方程,(x +1)(x -1)=0,必有x +1=0或x -1=0,从而得,x 1=-1,x 2=1.这种通过因式分解来解一元二次方程的方法叫因式分解法.通常用x 1、x 2来表示未知数为x 的一元二次方程的两个实数解.思考 (1)能够运用直接开平方法来求解的一元二次方程有什么特征?(2)x 2=4能否用因式分解法来解?要用因式分解法解,首先应将它化成什么形式? 能够运用直接开平方法来求解的一元二次方程形如x 2=a (a ≥0);用因式分解法来解时,首先应将它化成一般形式.三、实践应用例1 试用两种方法解方程:x 2-900=0.学生分组分别用直接开平方法和因式分解法解这个方程.并指出x =±30,或x 1=30,x 2=—30都可以作为方程的解.例2 解方程:(1)x 2—2=0;(2)16x 2—25=0.分析 对于缺少一次项的一元二次方程ax 2+c =0(a ≠0),用直接开平方法来解比较简便. 解 (1)移项,得 x 2=2,直接开平方,得 x =2±. 所以原方程的解是.,2221-==x x(2)移项,得16x 2=25,方程的两边都除以16,得x 21625=, 直接开平方,得45±=x , 原方程的解是454521=-=x x ,. 思考 本题若用因式分解法求解,应如何解?例3 解方程(1)3x 2+2x =0;(2)x 2=3x .分析 将方程化成一般形式后,可把左边因式分解再求解,因式分解的常用方法有提公因式法和运用公式法。
九年级数学上册新版华东师大版:21.2.1 直接开平方法教学内容运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.教学目标知识与技能理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.过程与方法提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.情感态度与价值观历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.重、难点1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.2.难点:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.教学过程一、复习引入学生活动:请同学们完成下列各题问题1.填空(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______)2.问题2.如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s•的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,•P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?BCAQ P 老师点评:问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(2p )22p.问题2:设x 秒后△PBQ 的面积等于8cm 2则PB=x ,BQ=2x 依题意,得:12x ·2x=8x 2=8根据平方根的意义,得x=±即x 1,x 2可以验证,和都是方程12x ·2x=8的两根,但是移动时间不能是负值.所以秒后△PBQ 的面积等于8cm 2.二、探索新知上面我们已经讲了x 2=8,根据平方根的意义,直接开平方得x=±,如果x 换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x ,那么2t+1=±即,方程的两根为t 1-12,t 212例1:解方程:x 2+4x+4=1分析:很清楚,x 2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1. 解:由已知,得:(x+2)2=1直接开平方,得:x+2=±1即x+2=1,x+2=-1所以,方程的两根x1=-1,x2=-3例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x.一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4(1+x)2=1.44直接开平方,得1+x=±1.2即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材P6练习.四、应用拓展例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?分析:设该公司二、三月份营业额平均增长率为x,那么二月份的营业额就应该是(1+x),三月份的营业额是在二月份的基础上再增长的,应是(1+x)2.解:设该公司二、三月份营业额平均增长率为x.那么1+(1+x)+(1+x)2=3.31把(1+x)当成一个数,配方得:(1+x+12)2=2.56,即(x+32)2=2.56x+32=±1.6,即x+32=1.6,x+32=-1.6方程的根为x1=10%,x2=-3.1因为增长率为正数,所以该公司二、三月份营业额平均增长率为10%.五、归纳小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0),那么x=(mx+n)2=p(p≥0),那么mx+n=,达到降次转化之目的.六、布置作业1.教材P16复习巩固1.2.选用作业设计:。
22.2一元二次方程的解法1. 直接开平方法和因式分解法知识与技能:1.会用直接开平方法解形如a(x-k)2=b(a≠0,ab≥0)的方程.2. 灵活运用因式分解法解一元二次方程.3. 使学生了解转化的思想在解方程中的应用.过程与方法:创设学生熟悉的问题情境,综合运用探究式、启发式、活动式等几种方法进行教学.情感态度:鼓励学生积极主动地参与“教”与“学”的整个过程,激发求知的欲望,体验求知的成功,增强学习的兴趣和自信心.教学重难点:重点:利用直接开平方法和因式分解法解一元二次方程.难点:合理选择直接开平方法和因式分解法较熟练地解一元二次方程.一、情境导入,初步认识问:怎样解方程(x+1)2=256?解:(方法1)直接开平方,得x+1=±16.所以原方程的解为x1=15,x2=-17.(方法2)原方程可变形为(x+1)2-256=0.方程左边分解因式,得(x+1+16)(x+1-16)=0,即(x+17)(x-15)=0.所以x+17=0或x-15=0.所以原方程的解为x1=15,x2=-17.【教学说明】让学生说出作业中的解法,教师板书.二、思考探究,获取新知例1 用直接开平方法解下列方程:(1)(3x+1)2=7;(2)y2+2y+1=24;(3)9n2-24n+16=11.解:(1)直接开平方,得3x+1=±7.所以原方程的解为x=317-±. (2)原方程可变形为(y+1)2=24. 直接开平方,得y+1=±62.所以原方程的解为x=-1±62.(3)原方程可变形为(n -34)2=911. 直接开平方,得n -34=±311.所以原方程的解为x =3114 . 【教学说明】运用开平方法解形如(x +m )2=n (n ≥0)的方程时,最容易出现的错误是漏掉负根.例2 用因式分解法解下列方程:(1)5x 2-4x =0; (2)3x (2x +1)=4x +2; (3)(x +5)2=3x +15. 解:(1)方程左边分解因式,得x (5x -4)=0. 所以x =0或5x -4=0. 所以原方程的解为x 1=0,x 2=54. (2)原方程可变形为6x 2-x -2=0. 方程左边分解因式,得6(x -32)(x +21)=0.所以x -32=0或x +21=0.所以原方程的解为x 1=32,x 2=-21.(3)原方程可变形为x 2+7x +10=0. 方程左边分解因式,得(x +2)(x +5)=0. 所以x +2=0或x +5=0.所以原方程的解为x 1=-5,x 2=-2.【教学说明】解这里的(2)(3)题时,注意整体化归的思想. 三、运用新知,深化理解 1. 用直接开平方法解下列方程:(1)3(x -1)2-6=0; (2)x 2-4x +4=5; (3)(x +5)2=25; (4)x 2+2x +1=4. 解:(1)x 1=1+2,x 2=1-2. (2)x 1=2+5,x 2=2-5.(3)x 1=0,x 2=-10. (4)x 1=1,x 2=-3.2. 用因式分解法解下列方程:(1)x 2+x =0;(2)x 2-23x =0;(3)3x 2-6x =-3;(4)4x 2-121=0;(5)(x -4)2=(5-2x )2.解:(1)x 1=0,x 2=-1. (2)x 1=0,x 2=23.(3)x 1=x 2=1. (4)x 1=211,x 2=-211. (5)x 1=1,x 2=3.3. 把小圆形场地的半径增加5 m 得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为x m. 则可列方程为2πx 2=π(x +5)2. 解得x 1=5+52,x 2=5-52(舍去). 答:小圆形场地的半径为(5+52)m.【教学说明】可由学生自主完成例题,分小组展示结果,教师点评. 四、师生互动,课堂小结1. 引导学生回忆用直接开平方法和因式分解法解一元二次方程的一般步骤.2. 对于形如a (x -k )2=b (a ≠0,b ≥0)的方程,只要把(x -k )看作一个整体,就可将其转化为x 2=n (n ≥0)的形式用直接开平方法解.3. 当方程出现相同因式(单项式或多项式)时,切不可约去相同因式,而应用因式分解 法解. 五、教学反思本节课教师引导学生探讨直接开平方法和因式分解法解一元二次方程,让学生小组讨论,归纳总结探究,掌握基本方法和步骤,合理、恰当、熟练地运用直接开平方法和因式分解法,在整个教学过程中注意整体化归的思想.2. 配方法知识与技能:1. 使学生掌握配方法的推导过程,熟练地用配方法解一元二次方程.2. 在配方法的应用过程中体会“转化”的思想,掌握一些转化的技能. 过程与方法:通过探索配方法的过程,让学生体会转化的数学思想方法. 情感态度:学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增加学生学习数学的 兴趣. 教学重难点:重点:使学生掌握用配方法解一元二次方程.难点:发现并理解配方的方法. 一、情境导入,初步认识问题:要使一块矩形场地的长比宽多6 m ,且面积为16 m 2,场地的长和宽分别是多少? 设场地的宽为x m ,则长为(x +6)m. 根据矩形的面积为16 m 2,得到方程为x (x + 6)=16. 整理,得x 2+6x -16=0.【教学说明】创设实际问题情境,让学生感受到生活中处处有数学,激发学生的主动性和求知欲.二、思考探究,获取新知探究:如何解方程x 2+6x -16=0?问题1: 通过上节课的学习,我们现在会解什么样的一元二次方程?举例说明. 【教学说明】用问题唤起学生的回忆,明确我们现在会解的一元二次方程的特点:等号左边是一个完全平方式,右边是一个非负常数,即(x +m )2=n (n ≥0),运用直接开平方法可求解.问题2: 你会用直接开平方法解下列方程吗?(1)(x +3)2=25;(2)x 2+6x +9=25;(3)x 2+6x =16;(4)x 2+6x -16=0.【教学说明】教师启发学生逆向思考问题的思维方式,将x 2+6x -16=0转化为(x +3)2=25的形式,从而求得方程的解. 解:(1)移项,得x 2+6x =16. 两边都加上9,即(26)2,使左边配成x 2+bx +b 2的形式,得x 2+6x +9=16+9, 左边写成完全平方形式,得(x +3)2=25. 开平方,得x +3=±5,(降次) 即x +3=5或x +3=-5.解一次方程,得x 1=2,x 2=-8.【归纳总结】将方程左边配成一个含有未知数的完全平方式,右边是一个非负常数,从而可以直接开平方求解,这种解一元二次方程的方法叫作配方法. 例1 填空:(1)x 2+8x + 16 =(x + 4)2;(2)x 2-x +41=(x -21)2;(3)4x 2+4x +1=(2x +1)2.例2 解方程:(1)x 2+6x +5=0; (2)2x 2+6x +2=0; (3)(1+x )2+2(1+x )-4=0. 解:(1)x 1=-1,x 2=-5. (2)x 1=-2325-,x 2=2325-. (3)x 1=5-2,x 2=-5-2.【教学说明】教师可让学生自主完成例题,小组展示,教师点评归纳. 【归纳总结】利用配方法解方程应该遵循的步骤: (1)把方程化为一般形式ax 2+bx +c =0; (2)把常数项移到方程的右边; (3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方形式,利用直接开平方法来解. 三、运用新知,深化理解 1. 用配方法解下列方程:(1)2x 2-4x -8=0;(2)x 2-4x +2=0;(3)x 2-21x -1=0. 2. 如果x 2-4x +y 2+6y +2 z +13=0,求(xy )z的值. 【答案】1. 解:(1)x 1=1+5,x 2=1-5. (2)x 1=-2+2,x 2=2+2. (3)x 1=41+417,x 2=41-417. 2. 解:由题意知,x =2,y =-3,z =-2. 所以(xy )z=(-6)-2=361. 【教学说明】学生独立解答,小组内交流,上台展示并讲解思路. 四、师生互动,课堂小结1. 用配方法解一元二次方程的步骤.2. 用配方法解一元二次方程的注意事项. 五、教学反思本节课先创设情境导入一元二次方程的解法,引导学生将要解决的问题转化为已学过的直接开平方法来解,从而探索出配方法的一般步骤,熟练运用配方法来解一元二次方程.3. 公式法知识与技能:1. 理解一元二次方程求根公式的推导过程,了解公式法的概念.2. 会熟练运用公式法解一元二次方程. 过程与方法:通过复习配方法解一元二次方程,引导学生推导出求根公式,使学生进一步认识特殊与一般的关系.情感态度:经历探索求根公式的过程,培养学生的抽象思维能力,渗透辩证唯物主义观点. 教学重难点:重点:求根公式的推导和公式法的运用. 难点:一元二次方程求根公式的推导. 一、情境导入,初步认识用配方法解方程:(1)x 2+3x +2=0;(2)2x 2-3x +5=0. 解:(1)x 1=-1,x 2=-2.(2)无解. 二、思考探究,获取新知如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根?问题:已知ax 2+bx +c =0(a ≠0),试推导它的两个根:x 1=a ac b b 242-+-,x 2=aac b b 242---.【分析】因为前面具体数字的题目已做得很多,现在不妨把a ,b ,c 也当成具体的数字,根据上面的解题步骤就可以推导下去.探究: 一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此, (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x =aac b b 242-±-就得到方程的根,当b 2-4ac <0时,方程没有实数根.(2)x =aac b b 242-±-叫作一元二次方程ax 2+bx +c =0(a ≠0)的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.【教学说明】教师可以引导学生利用配方法推出求根公式,体验获取知识的过程,体会成功的喜悦,可让学生小组展示. 例1 用公式法解下列方程:①2x 2-4x -1=0; ②5x +2=3x 2; ③(x -2)(3x -5)=0; ④4x 2-3x +1=0. 解:①x 1=1+26,x 2=1-26.②x 1=2,x 2=-31.③x 1=2,x 2=35.④无解.【教学说明】(1)②,③要先化成一般形式;(2)强调确定a ,b ,c 的值,注意它们的符号;(3)先计算b 2-4ac 的值,再代入公式. 三、运用新知,深化理解 用公式法解下列方程:(1)x 2+x -12=0; (2)x 2-2x -41=0; (3)x 2+4x +8=2x +11; (4)x (x -4)=2-8x ; (5)x 2+2x =0; (6)x 2+25x +10=0. 解:(1)x 1=3,x 2=-4. (2)x 1=232+,x 2=232-. (3)x 1=1,x 2=-3.(4)x 1=-2+6,x 2=-2-6. (5)x 1=0,x 2=-2. (6)无解.【教学说明】用公式法解方程的关键是要先将方程化为一般形式再求解. 四、师生互动,课堂小结 1. 求根公式的概念及其推导过程. 2. 公式法的概念.3. 运用公式法解一元二次方程. 五、教学反思在学习活动中,要求学生主动参与,认真思考,比较观察,交流与表述,体验知识获取的过程,激发学生的学习兴趣,利用师生的双边活动,适时调试,从而提高学习效率.4. 一元二次方程根的判别式知识与技能:1. 能运用根的判别式,判断方程根的情况和进行有关的推理论证.2. 会运用根的判别式求一元二次方程中字母系数的取值范围. 过程与方法:1. 经历一元二次方程根的判别式的产生过程.2. 向学生渗透分类讨论的数学思想.3. 培养学生的逻辑思维能力以及推理论证能力. 情感态度:1. 体验数学的简洁美.2. 培养学生的探索、创新精神和协作精神. 教学重难点:重点:根的判别式的正确理解与运用.难点:含字母系数的一元二次方程根的判别式的运用. 一、情境导入,初步认识用公式法解下列一元二次方程:(1)x 2+5x +6=0;(2)9x 2-6x +1=0;(3)x 2-2x +3=0. 解:(1)x 1=-2,x 2=-3. (2)x 1=x 2=31.(3)无解.【教学说明】让学生亲身感知一元二次方程根的情况,回顾已有知识. 二、思考探究,获取新知观察解题过程,可以发现:在把系数代入求根公式之前,需先确定a ,b ,c 的值,再求出b 2-4ac 的值,它能决定方程是否有解,我们把b 2-4ac 叫作一元二次方程根的判别式,通常用符号“Δ”来表示,即Δ=b 2-4ac .我们回顾一元二次方程求根公式的推导过程发现:(x +a b 2)2=a acb 2244-.【归纳结论】(1)当Δ>0时,方程有两个不相等的实数根:x 1=aacb b 242-+-,x 2=aacb b 242---;(2)当Δ=0时,方程有两个相等的实数根:x 1=x 2=-ab2; (3)当Δ<0时,方程没有实数根.例1 利用根的判别式判定下列方程的根的情况: (1))2x 2-3x -23=0;(2)16x 2-24x +9=0;(3)x 2-42x +9=0;(4)3x 2+10x =2x 2+8x . 解:(1)有两个不相等的实数根. (2)有两个相等的实数根. (3)无实数根.(4)有两个不相等的实数根.例2 当m 为何值时,方程(m +1)x 2-(2m -3)x +m +1=0. (1)有两个不相等的实数根; (2)有两个相等的实数根; (3)没有实数根. 解:(1)m <41且m ≠-1.(2)m =41. (3)m >41. 【教学说明】注意(1)中的m +1≠0这一条件. 三、运用新知,深化理解1. 方程x 2-4x +4=0的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 有一个实数根D. 没有实数根2. 已知x 2+2x =m -1没有实数根,求证:x 2+mx =1-2m 必有两个不相等的实数根. 【答案】 1. B2. 证明:∵x 2+2x =m -1没有实数根, ∴4-4(1-m )<0,解得m <0.将方程x 2+mx =1-2m 化为x 2+mx +2m -1=0,∴Δ=m 2-8m +4. ∵m <0,∴Δ>0,∴x 2+mx =1-2m 必有两个不相等的实数根. 【教学说明】引导学生灵活运用知识. 四、师生互动,课堂小结1. 用判别式判定一元二次方程根的情况:(1)当Δ>0时,一元二次方程有两个不相等的实数根; (2)当Δ=0时,一元二次方程有两个相等的实数根. (3)当Δ<0时,一元二次方程无实数根.2. 运用根的判别式解决具体问题时,要注意二次项系数不为0这一隐含条件. 【教学说明】可让学生先分组讨论,回忆整理,再由小组代表陈述. 五、教学反思本节课创设情境,启发引导,让学生充分感受理解知识的产生和发展过程,在教师适时的点拨下,学生在发现归纳的过程中积极主动地去探索,发现数学规律,培养了学生的创新意识、创新精神及思维能力.5. 一元二次方程的根与系数的关系知识与技能:1. 引导学生在已有的一元二次方程解法的基础上,探索出一元二次方程根与系数的关系,及其关系的运用.2. 通过观察、实践、讨论等活动,经历从观察判断到发现关系的过程. 过程与方法:通过探究一元二次方程的根与系数的关系,培养学生观察分析和综合判断的能力,激发学生发现规律的积极性,鼓励学生勇于探索的精神. 情感态度:在积极参与数学活动的同时,初步体验发现问题,总结规律的态度及养成质疑和独立思考的习惯. 教学重难点:重点:一元二次方程根与系数之间的关系的运用. 难点:一元二次方程根与系数之间的关系的运用. 一、情境导入,初步认识 1. 完成下列表格:问题:你发现了什么规律?①用语言叙述你发现的规律;(两根之和为一次项系数的相反数;两根之积为常数项) ②设方程x 2+px +q =0的两根分别为x 1,x 2,用式子表示你发现的规律.(x 1+x 2=-p ,x 1x 2=q ) 2. 完成下列表格:问题:上面发现的结论在这里成立吗?(不成立) 请完善规律:①用语言叙述你发现的规律;(两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比)②设方程ax 2+bx +c =0的两根分别为x 1,x 2,用式子表示你发现的规律.(x 1+x 2=-a b ,x 1x 2=ac)二、思考探究,获取新知通过以上的活动你发现了什么规律?对一般的一元二次方程ax 2+bx +c =0(a ≠0)这一规律是否成立?试通过求根公式加以说明.ax 2+bx +c =0的两根分别为x 1=a acb b 242-+-,x 2=a ac b b 242---,则x 1+x 2=-a b ,x 1x 2=ac.【教学说明】教师可引导学生根据求根公式推导出根与系数之间的关系,体会知识形成的过程,加深对知识的理解.例1 不解方程,求下列方程的两根之和与两根之积:(1)x 2-6x -15=0; (2)3x 2+7x -9=0; (3)5x -1=4x 2.解:(1)x 1+x 2=6,x 1x 2=-15.(2)x 1+x 2=-37,x 1x 2=-3. (3)x 1+x 2=45,x 1x 2=41. 【教学说明】先将方程化为一般形式,再找出对应的系数.例2 已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值. 解:另一根为23,k =3. 【教学说明】此题有两种解法,一种是根据根的定义,将x =-3代入方程先求k ,再求另一个根;一种是利用根与系数的关系解答.例3 已知α,β是方程x 2-3x -5=0的两根,不解方程,求下列代数式的值.(1)βα11+; (2)βα22+; (3)βα-. 解:(1)βα11+=-53. (2)βα22+=19.(3)βα-=29或βα-=-29.三、运用新知,深化理解1. 不解方程,求下列方程的两根之和与两根之积:(1)x 2-3x =15; (2)5x 2-1=4x 2; (3)x 2-3x +2=10;(4)4x 2-144=0; (5)3x (x -1)=2(x -1); (6)(2x -1)2=(3-x )2.2. 两根均为负数的一元二次方程是( )A. 7x 2-12x +5=0B. 6x 2-13x -5=0C. 4x 2+21x +5=0D. x 2+15x -8=0【教学说明】两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.【答案】1. 解:(1)x 1+x 2=3,x 1x 2=-15.(2)x 1+x 2=0,x 1x 2=-1.(3)x 1+x 2=3,x 1x 2=-8.(4)x 1+x 2=0,x 1x 2=-36.(5)x 1+x 2=35,x 1x 2=32. (6)x 1+x 2=-32,x 1x 2=-38. 2. C 【教学说明】可由学生自主完成抢答,教师点评.四、师生互动,课堂小结1. 一元二次方程的根与系数的关系.2. 一元二次方程根与系数的关系成立的前提条件.五、教学反思本节课先由学生探究特殊一元二次方程的根与系数的关系,再猜想一般一元二次方程的根与系数的关系,并从理论上加以推导证明,加深学生对知识的理解,培养学生严密的逻辑思维能力.。
华师大版九年级上册22.2一元二次方程的解法教案(2)
教学内容:因式分解法 教学目标
1、 理解因式分解法,会用因式分解法解一些特殊的方程;
2、 通过因式分解法解一元二次方程来解决一些实际问题;
3、 体会降次的思想。
教学重点:因式分解法。
教学难点:解决实际问题。
教学准备:课件 教学方法:练习引导法 一、练习 1、 解下列方程
(1)07262=-x (2)0125)52(362
=--x
2、随着人民生活水平的不断提高,某市家庭轿车的拥有量逐年增加.据统计,某小区2014年底拥有家庭轿车64辆,2016年底家庭轿车的拥有量达到100辆。
若该小区2014年底到2017年底家庭轿车拥有量的年平均增长率都相同,求该小区到2017年底家庭轿车将达到多少辆? 二、学习因式分解法 1、复习因式分解的方法
(1)提公因式法:)(c b a m mc mb ma ++=++
(2)运用公式法:2
2
2
2
2
)(2),)((b a b ab a b a b a b a ±=+±-+=- (3)十字相乘法:))(()(2b x a x ab x b a x ++=+++ 2、用因式分解法解一元二次方程 例1、解下列方程
(1)0862
=-x x (2))23()23(2-=-x x x
解:(1)方程左边提公因式,得0)43(2=-x x
由有理数乘法法则,得 02=x 或043=-x 解得:3
4,021=
=x x (2)移项,得0)23()23(2=---x x x 方程左边提公因式,得 0)22)(23(=--x x 由有理数乘法法则,得
023=-x 或022=-x
解得:1,3
2
21==
x x 例2、解下列方程
(1)09)15(22=-+x x (2)x x 12942
=+
解;(1)方程左边运用公式法分解因式,得 0)315)(315(=-+++x x x x 整理,得 0)12)(18(=++x x 由有理数乘法法则,得 018=+x 或012=+x
解得:2
1,81
21-
=-=x x (2)移项,得 091242
=+-x x
方程左边运用公式法分解因式,得0)32(2
=-x 由有理数乘法法则,得 032=-x 或032=-x
解得:2
321==x x 例3、解下列方程
(1)0652=+-x x (2)01522
=-+x x
解:(1)方程左边用十字相乘法分解因式,得0)3)(2(=--x x 由有理数乘法法则,得 02=-x 或03=-x
解得:3,221==x x
(2)方程左边用十字相乘法分解因式,得0)3)(5(=-+x x 由有理数乘法法则,得 05=+x 或03=-x 解得:3,521=-=x x 学生练习:课后练习第2题;
例4、新华商场销售某种冰箱,每台进货价为2500•元,•市场调研表明:•当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元? 分析:设每台冰箱的定价为x 元,用表格分析如下: 进价(元) 售价(元) 销售量(台) 利润(元) 2500 2900 8 8(2900-2500)
2500
x
8+
4502900⨯-x 50
)
2900(48)(2500(x x -+- 解:设每台冰箱的定价为x 元,则
50
)
2900(48)(2500(x x -+
-=5000
整理,得0756250055002
=+-x x
解得:275021==x x
答:每台冰箱的定价应为2750元。
学生练习:某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,•为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,•如果每件衬衫每降价一元,商场平均每天可多售出2件.
①若商场平均每天赢利1200元,每件衬衫应降价多少元?
②每件衬衫降价多少元时,商场平均每天赢利最多?请你设计销售方案. 三、小结 1、 学生小结;
2、 教师小结。
本节课学习了因式分解法解一元二次方程的方法。
四、作业设计
习题22.2第2、3题。
五、板书设计
22.2一元二次方程的解法(2)
一、复习因式分解
1、提公因式………
2、运用公式法………………………………………………………..
3、十字相乘法……………………………………………………………. 例1…………………..
……………………………
…………………………..
例2
…………………………………
………………………….
例3……………………..
……………………………
…………………………..
例4…………………………
…………………………….
…………………..
…………………………………。