中考数学一轮总复习专项练习-解直角三角形及其应用
- 格式:pptx
- 大小:2.11 MB
- 文档页数:27
2023年中考数学一轮专题练习 ——解直角三角形的实际应用(解答题部分)一、解答题(本大题共16小题)1. (湖北省恩施州2022年)如图,湖中一古亭,湖边一古柳,一沉静,一飘逸、碧波荡漾,相映成趣.某活动小组赏湖之余,为了测量古亭与古柳间的距离,在古柳A 处测得古亭B 位于北偏东60°,他们向南走50m 到达D 点,测得古亭B 位于北偏东45°,求古亭与古柳之间的距离AB 1.41≈ 1.73≈,结果精确到1m ).2. (湖南省湘潭市2022年)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中0.618DHAH≈):伞柄AH 始终平分BAC ∠,20cm AB AC ==,当120BAC ∠=︒时,伞完全打开,此时90BDC ∠=︒.请问最少需要准备多长的伞柄?(结果保留整数,参考数1.732≈)3. (湖南省怀化市2022年)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A 位于C 村西南方向和B 村南偏东60°方向上,C 村在B 村的正东方向且两村相距2.4千米.有关部门计划在B 、C 两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明.,≈1.41)4. (湖南省邵阳市2022年)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60︒方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45︒方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.(提示:≈)1.414≈, 1.7325. (湖南省郴州市2022年)如图是某水库大坝的横截面,坝高20mCD=,背水坡BC i=.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员的坡度为11:1i=A与原起点B之间的距离.(参准备把背水坡的坡度改为2≈.结果精确到0.1m)≈ 1.731.416. (天津市2022年)如图,某座山AB的项部有一座通讯塔BC,且点A,B,C在同一条直线上,从地面P处测得塔顶C的仰角为42︒,测得塔底B的仰角为35︒.已知通讯塔BC的高度为32m,求这座山AB的高度(结果取整数).参考数据:,.︒≈︒≈tan350.70tan420.907. (四川省自贡市2022年)某数学兴趣小组自制测角仪到公园进行实地测量,活动过程如下:(1)探究原理:制作测角仪时,将细线一段固定在量角器圆心O 处,另一端系小重物G .测量时,使支杆OM 、量角器90°刻度线ON 与铅垂线OG 相互重合(如图①),绕点O 转动量角器,使观测目标P 与直径两端点,A B 共线(如图②),此目标P 的仰角POC GON ∠=∠.请说明两个角相等的理由.(2)实地测量:如图③,公园广场上有一棵树,为了测量树高,同学们在观测点K 处测得顶端P 的仰角60POQ ∠=,观测点与树的距离KH 为5米,点O 到地面的距离OK 为1.5米;求树高PH 1.73≈,结果精确到0.1米)(3)拓展探究:公园高台上有一凉亭,为测量凉亭顶端P 距离地面高度PH (如图④),同学们讨论,决定先在水平地面上选取观测点,E F (,,E F H 在同一直线上),分别测得点P 的仰角,αβ,再测得,E F 间的距离m ,点12,O O 到地面的距离12,O E O F 均为1.5米;求PH (用,,m αβ表示).8. (四川省遂宁市2022年)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A 处测得塔楼顶端点E 的仰角50.2GAE ∠=︒,台阶AB 长26米,台阶坡面AB 的坡度5:12i =,然后在点B 处测得塔楼顶端点E 的仰角63.4EBF ∠=︒,则塔顶到地面的高度EF 约为多少米. (参考数据:tan50.2 1.20︒≈,tan63.4 2.00︒≈,sin50.20.77︒≈,sin63.40.89︒≈)9. (四川省内江市2022年)如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)10. (四川省眉山市2022年)数学实践活动小组去测量眉山市某标志性建筑物的高CD.如图,在楼前平地A处测得楼顶C处的仰角为30,沿AD方向前进60m到达B处,测得楼顶C处的仰角为45︒,求此建筑物的高.(结果保留整数.参考数据: 1.41≈,≈)1.7311. (四川省泸州市2022年)如图,海中有两小岛C,D,某渔船在海中的A处测得小岛C位于东北方向,小岛D位于南偏东30°方向,且A,D相距10 nmile.该渔船自西向东航行一段时间后到达点B,此时测得小岛C位于西北方向且与点B相距8 nmile.求B,D间的距离(计算过程中的数据不取近似值).12. (四川省凉山州2022年)去年,我国南方菜地一处山坡上一座输电铁塔因受雪灾影响,被冰雪从C 处压折,塔尖恰好落在坡面上的点B 处,造成局部地区供电中断,为尽快抢通供电线路,专业维修人员迅速奔赴现场进行处理,在B 处测得BC 与水平线的夹角为45°,塔基A 所在斜坡与水平线的夹角为30°,A 、B 两点间的距离为16米,求压折前该输电铁塔的高度(结果保留根号).13. (湖北省鄂州市2022年)亚洲第一、中国唯一的航空货运枢纽一一鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C 处看见飞机A 的仰角为45°,同时另一市民乙在斜坡CF 上的D 处看见飞机A 的仰角为30°,若斜坡CF 的坡比=1:3,铅垂高度DG =30米(点E 、G 、C 、B 在同一水平线上).求:(1)两位市民甲、乙之间的距离CD ; (2)此时飞机的高度AB ,(结果保留根号)14. (四川省成都市2022年)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈)15. (黑龙江省绥化市2022年)如图所示,为了测量百货大楼CD 顶部广告牌ED 的高度,在距离百货大楼30m 的A 处用仪器测得30DAC ∠=︒;向百货大楼的方向走10m ,到达B 处时,测得48EBC ∠=︒,仪器高度忽略不计,求广告牌ED 的高度.(结果保留小数点后一位)1.732≈,sin 480.743︒≈,cos480.669︒≈,tan 48 1.111︒≈)16. (四川省广元市2022年)如图,计划在山顶A 的正下方沿直线CD 方向开通穿山隧道EF .在点E 处测得山顶A 的仰角为45°,在距E 点80m 的C 处测得山顶A 的仰角为30°,从与F 点相距10m 的D 处测得山顶A 的仰角为45°,点C 、E 、F 、D 在同一直线上,求隧道EF 的长度.参考答案1. 【答案】古亭与古柳之间的距离AB 的长约为137m 【分析】过点B 作AD 的垂直,交DA 延长线于点C ,设m AC x =,则(50)m CD x =+,分别在Rt BCD 和Rt ABC △中,解直角三角形求出,BC AB 的长,再建立方程,解方程可得x 的值,由此即可得出答案. 【详解】解:如图,过点B 作AD 的垂直,交DA 延长线于点C , 由题意得:50m,60,45AD BAC D =∠=︒∠=︒, 设m AC x =,则(50)m CD AC AD x =+=+, 在Rt BCD 中,tan (50)m BC CD D x =⋅=+,在Rt ABC △中,tan m BC AC BAC =⋅∠=,2m cos ACAB x BAC==∠,则50x +=,解得25x =,则250137(m)AB x ==≈,答:古亭与古柳之间的距离AB 的长约为137m .2. 【答案】72cm 【分析】过点B 作BE AH ⊥于点E ,解Rt ,Rt ABE BED ,分别求得,AE ED ,进而求得AD ,根据黄金比求得DH ,求得AH 的长,即可求解. 【详解】如图,过点B 作BE AH ⊥于点EAB AC =,120BAC ∠=︒,AH 始终平分BAC ∠, 60BAE CAD ∴∠=∠=︒ 1cos60102AE AB AB ∴=︒⨯==,BE =,,AB AC BAD CAD AD AD =∠=∠=ADC ADB ∴≌ 90BDC ∠=︒ 45ADB ADC ∴∠=∠=︒BE ED ∴=1027.32AD AE ED ∴=+=+≈0.618DHAH≈ 0.618DHDH AD∴≈+解得44.2DH ≈27.3244.271.5272AH AD DH ∴=+=+=≈ 答:最少需要准备72cm 长的伞柄 3. 【答案】不穿过,理由见解析 【分析】先作AD ⊥BC ,再根据题意可知∠ACD=45°,∠ABD =30°,设CD =x ,可表示AD 和BD ,然后根据特殊角三角函数值列出方程,求出AD ,与800米比较得出答案即可. 【详解】不穿过,理由如下:过点A 作AD ⊥BC ,交BC 于点D ,根据题意可知∠ACD=45°,∠ABD =30°. 设CD =x ,则BD=2.4-x , 在Rt △ACD 中,∠ACD=45°, ∴∠CAD=45°, ∴AD=CD =x .在Rt △ABD 中,tan 30ADBD︒=,即2.4x x =-, 解得x =0.88,可知AD=0.88千米=880米,因为880米>800米,所以公路不穿过纪念园.4. 【答案】这艘轮船继续向正东方向航行是安全的,理由见解析 【分析】如图,过C 作CD ⊥AB 于点D ,根据方向角的定义及余角的性质求出∠BAC =30°,∠CBD =45°,解Rt △ACD 和Rt △BCD ,求出CD 即可. 【详解】解:过点C 作CD ⊥AB ,垂足为D .如图所示:根据题意可知∠BAC =90°−60°=30°,∠DBC =90°-45°=45°,AB =30×1=30(km ), 在Rt △BCD 中,∠CDB =90°,∠DBC =45°, tan ∠DBC =CD BD ,即CDBD=1 ∴CD =BD 设BD =CD =x km ,在Rt △ACD 中,∠CDA =90°,∠DAC =30°,∴tan ∠DAC =CD AD ,即30x x =+解得x, ∵40.98km>40km∴这艘船继续向东航行安全.5. 【答案】背水坡新起点A 与原起点B 之间的距离约为14.6m 【分析】通过解直角三角形Rt BCD 和Rt ACD ∆,分别求出AD 和BD 的长,由AB AD BD =-求出AB 的长. 【详解】解:在Rt BCD 中,∵背水坡BC 的坡度11:1i =,∴1CDBD=, ∴()20m BD CD ==.在Rt ACD ∆中,∵背水坡AC 的坡度2i = ∴CD AD =∴)m AD ==,∴()2014.6m AB AD BD =-=≈.答:背水坡新起点A 与原起点B 之间的距离约为14.6m . 6. 【答案】这座山AB 的高度约为112m 【分析】在Rt PAB 中,·tan AB PA APB =∠,在Rt PAC △中,·tan AC PA APC =∠,利用AC AB BC =+,即可列出等式求解. 【详解】解:如图,根据题意,324235BC APC APB ︒∠︒=∠==,,.在Rt PAC △中,tan ACAPC PA∠=, ∴tan ACPA APC=∠.在Rt PAB 中,tan AB APB PA∠=, ∴tan ABPA APB=∠.∵AC AB BC =+, ∴tan tan AB BC ABAPC APB+=∠∠.∴()tan 32tan 35320.70112m tan tan tan 42tan 350.900.70BC APB AB APC APB ⋅∠⨯︒⨯==≈=∠-∠︒-︒-.答:这座山AB 的高度约为112m . 7. 【答案】(1)证明见解析 (2)10.2米(3)tan tan 1.5tan tan m αβαβ⎛⎫+ ⎪-⎝⎭米 【分析】(1)根据图形和同角或等角的余角相等可以证明出结果;(2)根据锐角三角函数和题意,可以计算出PH 的长,注意最后的结果;(3)根据锐角三角函数和题目中的数据,可以用含αβ、、m 的式子表示出PH .(1)证明:∵9090,COG AON ∠=︒∠=︒∴POC CON GON CON ∠+∠=∠+∠∴POC GON ∠=∠(2)由题意得:KH =OQ =5米,OK =QH =1.5米,9060,OQP POQ ∠=︒∠=︒,在Rt △POQ 中tan ∠POQ =5PQ PQ OQ ==∴PQ =∴15102PH PQ QH =+=+≈..(米)故答案为:10.2米.(3)由题意得:1212, 1.5O O EF m O E O F DH m =====, 由图得:21==tan tan PD PD O D O D βα, 21tan tan PD PD O D O D βα==,, ∴1221O O O D O D =- ∴tan tan PD PD m βα=- ∴tan tan tan tan m PD αβαβ=- ∴tan tan 1.5tan tan m PH PD DH αβαβ⎛⎫=+=+ ⎪-⎝⎭米 故答案为:tan tan 1.5tan tan m αβαβ⎛⎫+ ⎪-⎝⎭米 8. 【答案】塔顶到地面的高度EF 约为47米【分析】延长EF 交AG 于点H ,则EH AG ⊥,过点B 作BP AG ⊥于点P ,则四边形BFHP 为矩形,设5BP x =,则12AP x =,根据解直角三角形建立方程求解即可.【详解】如图,延长EF 交AG 于点H ,则EH AG ⊥,过点B 作BP AG ⊥于点P ,则四边形BFHP 为矩形,∴FB HP =,FH BP =.由5:12i =,可设5BP x =,则12AP x =,由222BP AP AB +=可得()()22251226x x +=,解得2x =或2x =-(舍去),∴10BP FH ==,24AP =,设EF a =米,BF b =米,在Rt BEF △中tan EF EBF BF ∠=, 即tan 63.42a b︒=≈,则2a b =① 在Rt EAH 中,tan EH EF FH EF BP EAH AH AP PH AP BF++∠===++, 即10tan 50.2 1.2024a b +︒=≈+② 由①②得47a =,23.5b =.答:塔顶到地面的高度EF 约为47米.9. 【答案】(1)()米;【分析】(1)过点A 作AE ⊥l 于点E ,设CE =x ,在Rt △ADE 中可表示出DE ,在Rt △ACE 中可表示出AE ,通过解直角三角形ADE 求出x 即可;(2)过点B 作BF ⊥l ,垂足为F ,继而得出CE 的长,在Rt △BCF 中,求出CF ,继而可求出AB .(1)解:过点A 作AE ⊥l ,垂足为E ,设CE =x 米,∵CD =60米,∴DE =CE +CD =(x +60)米,∵∠ACB =15°,∠BCD =120°,∴∠ACE =180°﹣∠ACB ﹣∠BCD =45°,在Rt △AEC 中,AE =CE •tan 45°=x (米),在Rt △ADE 中,∠ADE =30°,∴tan 30°=AE ED =60x x + ∴x =,经检验:x =30是原方程的根,∴AE =(30)米,∴河的宽度为()米;(2)过点B 作BF ⊥l ,垂足为F ,则CE =AE =BF =()米,AB =EF ,∵∠BCD =120°,∴∠BCF =180°﹣∠BCD =60°,在Rt △BCF 中,CF =tan 60BF ︒= ∴AB =EF =CE ﹣CF =30﹣(∴古树A 、B 之间的距离为10. 【答案】82米【分析】设CD 的长为x ,可以得出BD 的长也为x ,从而表示出AD 的长度,然后利用解直角三角形中的正切列出方程求解即可.【详解】解:设CD 为x ,∵45CBD ∠=︒,∠CDB =90°,∴BD CD x ==,∴()60AD AB BD x =+=+,在Rt ACD 中,∠ADC =90°,∠DAC =30°,tan CD DAC AD∠=,即60x x =+ ∴30330x∴81.9m x =82m ≈.答:此建筑物的高度约为82m .11. 【答案】B ,D 间的距离为14nmile .【分析】如图,过点D 作DE ⊥AB 于点E ,根据题意可得,∠BAC =∠ABC =45°,∠BAD =60°,AD =10 nmile ,BC .再根据锐角三角函数即可求出B ,D 间的距离.【详解】解:如图,过点D 作DE ⊥AB 于点E ,根据题意可得,∠BAC =∠ABC =45°,∠BAD =60°,AD =10 nmile ,BC .在Rt △ABC 中,AC =BC∴AB =16(nmile),在Rt △ADE 中,AD =10 nmile ,∠EAD =60°,∴DE =AD , AE =12AD =5 (nmile), ∴BE =AB -AE =11(nmile),∴BD =14(nmile),答:B ,D 间的距离为14nmile .12. 【答案】(8+米【分析】过点B 作BD AC ⊥于点D ,在Rt △ABD 和Rt BCD 中,分别解直角三角形求出,,,AD BD CD BC 的长,由此即可得. 【详解】解:如图,过点B 作BD AC ⊥于点D ,由题意得:16AB =米,45,30,CBD E AC EF ∠=︒∠=︒⊥,BD EF ∴,30ABD E ∴∠=∠=︒,在Rt △ABD 中,182AD AB ==米,cos BD AB ABD =⋅∠=在Rt BCD 中,tan CD BD CBD =⋅∠=cos BD BC CBD ==∠则8AD CD BC ++=+答:压折前该输电铁塔的高度为(8+米.13. 【答案】(1)(2)()90米【分析】(1)先根据斜坡CF 的坡比=1:3,求出CG 的长,然后利用勾股定理求出CD 的长即可;(2)如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,BH =DG =30米,DH =BG ,证明AB =BC ,设AB =BC =x 米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米,解直角三角形得到3090x x -=+ (1)解:∵斜坡CF 的坡比=1:3,铅垂高度DG =30米, ∴13DG CG =, ∴90CG =米,∴CD ==米;(2)解:如图所示,过点D 作DH ⊥AB 于H ,则四边形BHDG 是矩形,∴BH =DG =30米,DH =BG ,∵∠ABC =90°,∠ACB =45°,∴△ABC 是等腰直角三角形,∴AB =BC ,设AB =BC =x 米,则()30AH AB BH x =-=-米,()90DH BG CG BC x ==+=+米, 在Rt △ADH中,tan AH ADH DH ∠==,∴3090x x -=+解得90x =,∴()90AB =米.14. 【答案】约为19cm【分析】在Rt △ACO 中,根据正弦函数可求OA =20cm ,在Rt △A DO '中,根据正弦函数求得A D '的值.【详解】解:在Rt △ACO 中,∠AOC =180°-∠AOB =30°,AC =10cm ,∴OA =10201sin 302OC,在Rt △A DO '中,18072A OC A OB ,20OA OA '==cm , ∴sin72200.9519A D OA cm .15. 【答案】4.9m【分析】 先求出BC 的长度,再分别在Rt △ADC 和Rt △BEC 中用锐角三角函数求出EC 、DC ,即可求解.【详解】根据题意有AC =30m ,AB =10m ,∠C =90°,则BC =AC -AB =30-10=20,在Rt △ADC 中,tan 30tan 3010DC AC A =⨯∠=⨯=,在Rt △BEC 中,tan 20tan 48EC BC EBC =⨯∠=⨯,∴20tan 4810DE EC DC =-=⨯-即20tan 481020 1.11110 1.732 4.9DE =⨯-⨯-⨯=故广告牌DE 的高度为4.9m .16. 【答案】隧道EF 的长度()30米.【分析】过点A 作AG ⊥CD 于点G ,然后根据题意易得AG =EG =DG ,则设AG =EG =DG =x ,进而根据三角函数可得出CG 的长,根据线段的和差关系则有80x +=,最后问题可求解.【详解】解:过点A 作AG ⊥CD 于点G ,如图所示:由题意得:80m,10m,45,30CE DF AEF ADE ACE ==∠=∠=︒∠=︒,∴△EAD 是等腰直角三角形,∴AG =EG =DG ,设AG =EG =DG =x ,∴tan 30AG CG ==︒,∴80x +=,解得:40x =,∴()40m AG EG DG ===,∴()401030m EF ED DF =-=-=;答:隧道EF 的长度()30米.。
备考2023年中考数学一轮复习-解直角三角形的应用﹣坡度坡角问题-解答题专训及答案解直角三角形的应用﹣坡度坡角问题解答题专训1、(2018徐州.中考真卷) 如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m)参考数据: 1.414, 1.7322、(2019绍兴.中考模拟) 如图,一座山的一段斜坡BD的长度为600米,且这段斜坡的坡度i=1:3(沿斜坡从B到D时,其升高的高度与水平前进的距离之比).已知在地面B处测得山顶A的仰角为33°,在斜坡D处测得山顶A的仰角为45°.求山顶A到地面BC的高度AC是多少米?(结果用含非特殊角的三角函数和根式表示即可)3、(2011金华.中考真卷) 生活经验表明,靠墙摆放的梯子,当50°≤α≤70°时(α为梯子与地面所成的角),能够使人安全攀爬.现在有一长为6米的梯子AB,试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC.(结果保留两个有效数字,sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)4、(2019宁津.中考模拟) 数学活动课,老师和同学一起去测量校内某处的大树AB 的高度,如图,老师测得大树前斜坡DE的坡度i=1:4,一学生站在离斜坡顶端E的水平距离DF为8m处的D点,测得大树顶端A的仰角为30°,已知BE=2m,此学生身高CD=1.7m,求大树的高度AB的值.(结果保留根号)5、(2019十堰.中考真卷) 如图,拦水坝的横断面为梯形,坝高,坡角,,求的长.6、(2017娄底.中考模拟) 如图,某小区楼房附近有一个斜坡,小张发现楼房在水平地面与斜坡处形成的投影中,在斜坡上的影子长CD=6m,坡角到楼房的距离CB=8m.在D点处观察点A的仰角为60°,已知坡角为30°,你能求出楼房AB 的高度吗?7、(2017娄底.中考真卷) 数学“综合与实践”课中,老师带领同学们来到娄底市郊区,测算如图所示的仙女峰的高度,李红盛同学利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面A处测得山顶B的仰角∠BAC为38.7°,再由A沿水平方向前进377米到达山脚C处,测得山坡BC的坡度为1:0.6,请你求出仙女峰的高度(参考数据:tan38.7°≈0.8)8、(2016深圳.中考模拟) 2013年9月23日强台风“天兔”登录深圳,伴随着就是狂风暴雨.梧桐山山坡上有一棵与水平面垂直的大树,台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=3m.(1)求∠DAC的度数;(2)求这棵大树折断前的高度.(结果保留根号)9、(2016泸州.中考真卷) 如图,为了测量出楼房AC的高度,从距离楼底C处60米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈ ,计算结果用根号表示,不取近似值).10、(2017贵州.中考模拟) 为缓解“停车难”的问题,某单位拟造地下停车库,建筑设计师提供了该地下停车库的设计示意图如图所示,已知该坡道的水平距离AB的长为9m,坡面AD与AB的夹角∠BAD=18°,石柱BC=0.5m,按规定,地下停车库坡道上方BC处要张贴限高标志,以便告知停车人车辆能否安全驶入.请你帮设计师计算一下CE的高度,以便张贴限高标志,结果精确到0.1m.(参考数值:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)11、(2016贵阳.中考真卷) “蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)12、(2020启东.中考模拟) 如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是∠FDC=30°,若兰兰的眼睛与地面的距离是1.5米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4:3,坡高BE=8米,求小船C到岸边的距离CA的长.(参考数据:≈1.7,结果保留一位小数)13、(2020湘潭.中考真卷) 为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形为矩形,,其坡度为,将步梯改造为斜坡,其坡度为,求斜坡的长度.(结果精确到,参考数据:,)14、(2020河南.中考模拟) 如图,是垂直于水平面的一座大楼,离大楼30米(米)远的地方有一段斜坡(坡度为),且坡长米.某时刻,在太阳光的照射下,大楼的影子落在了水平面、斜坡、以及坡顶上的水平面处(均在同一个平面内).若米,且此时太阳光与水平面所夹锐角为(),试求出大楼的高.(参考数据:)15、(2021静安.中考模拟) 如图,一处地铁出入口的无障碍通道是转折的斜坡,沿着坡度相同的斜坡BC、CD共走7米可到出入口,出入口点D距离地面的高DA 为0.8米,求无障碍通道斜坡的坡度与坡角(角度精确到1',其他近似数取四个有效数字).解直角三角形的应用﹣坡度坡角问题解答题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
2023年中考数学一轮复习:解直角三角形及其应用一、单选题1.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线kyx=(k≠0)上,则k的值为()A.4B.﹣2C D.2.如图,平行四边形ABCD中,对角线AC、BD相交于点O,AE平分△BAD,分别交BC,BD于点E,P,连接OE,△ADC=60°,122AB BC==,则下列结论:①△CAD=30°;②14OE AD=;③S平行四边形ABCD=AB·AC;④27BD=⑤S△BEP=S△APO;其中正确的个数是()A.2B.3C.4D.5 3.如图,为了保证道路交通安全,某段高速公路在A处设立观测点,与高速公路的距离AC为20米.现测得一辆小轿车从B处行驶到C处所用的时间为4秒。
若△BAC=α,则此车的速度为()A.5tanα米/秒B.80tanα米/秒C.5tanα米/秒D.80tanα米/秒二、填空题4.如图,在 ABC 中,AD 是BC 上的高, cos tanB DAC =∠ ,若 1213sinC =, 12BC = ,则AD 的长 .5.某人沿着坡角为α的斜坡前进80m ,则他上升的最大高度是 m . 6.如图,建筑物BC 上有一旗杆AB ,点D 到BC 的距离为20m ,在点D 处观察旗杆顶部A 的仰角为52°,观察底部B 的仰角为45°,则旗杆的高度为 m .(精确到0.1m ,参考数据:520.79sin ︒≈,52 1.28tan ︒≈ 1.41≈ 1.73≈.)三、综合题7.在Rt△ACB 中,△C=90°,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AB 、AC 分别交于点D 、E ,且△CBE=△A.(1)求证:BE 是△O 的切线; (2)连接DE ,求证:△AEB△△EDB ;(3)若点F 为 AE 的中点,连接OF 交AD 于点G ,若AO=5,3sin 5CBE ∠= ,求OG 的长.8.如图(1)放置两个全等的含有30°角的直角三角板 ABC 与(30)DEF B E ∠=∠=︒ ,若将三角板 ABC 向右以每秒1个单位长度的速度移动(点C 与点E 重合时移动终止),移动过程中始终保持点B 、F 、C 、E 在同一条直线上,如图(2), AB 与 DF 、 DE 分别交于点P 、M , AC 与 DE 交于点Q ,其中 AC DF ==,设三角板 ABC 移动时间为x 秒.(1)在移动过程中,试用含x 的代数式表示AMQ 的面积;(2)计算x 等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?9.已知AB 是△O 的切线,切点为B 点,AO 交△O 于点C ,点D 在AB 上且DB=DC .(1)求证:DC 为△O 的切线;(2)当AD=2BD ,CD=2时,求AO 的长.10.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高 AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶 A 的仰角为 35︒ ,此时地面上C 点、屋檐上 E 点、屋顶上A 点三点恰好共线,继续向房屋方向走 8m 到达点D 时,又测得屋檐 E 点的仰角为 60︒ ,房屋的顶层横梁 12EF m = ,//EF CB , AB 交 EF 于点G (点C ,D , B 在同一水平线上).(参考数据:sin350.6︒≈ , cos350.8︒≈ , tan350.7︒≈ ,1.7≈ )(1)求屋顶到横梁的距离 AG ;(2)求房屋的高 AB (结果精确到 1m ).11.如图,直线 (0)y mx n m =+≠ 与双曲线 (0)ky k x=≠ 交于 A B 、 两点,直线AB 与坐标轴分别交于 C D 、 两点,连接 OA ,若 OA = ,1tan 3AOC ∠= ,点 (3,)B b - .(1)分别求出直线 AB 与双曲线的解析式; (2)连接 OB ,求 AOBS.12.如图,某港口O 位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.(1)若它们离开港口一个半小时后分别位于A 、B 处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?说明理由.(2)若“远航”号沿北偏东60︒方向航行,经过两个小时后位于F 处,此时船上有一名乘客需要紧急回到PE 海岸线上,若他从F 处出发,乘坐的快艇的速度是每小时80海里.他能在半小时内回到海岸线吗?说明理由.13.如图,某人在山坡坡脚A 处测得电视塔尖点 C 的仰角为 60︒ ,沿山坡向上走到p 处再测得点C 的仰角为 45︒ ,已知 100OA = 米,山坡坡度 1:2i = ,且O A B 、、 在同一条直线上,其中测倾器高度忽略不计.(1)求电视塔OC 的高度;(计算结果保留根号形式)(2)求此人所在位置点 P 的铅直高度.(结果精确到0.1米,参考数据:1.41= , 1.73= )14.我国于2019年6月5日首次完成运载火箭海上发射,达到了发射技术的新高度.如图,运载火箭海面发射站点M 与岸边雷达站N 处在同一水平高度。
备考2023年中考数学一轮复习-解直角三角形的应用﹣仰角俯角问题-综合题专训及答案解直角三角形的应用﹣仰角俯角问题综合题专训1、(2018山西.中考真卷) 祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目内容课题测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC,BC相交于点C,分别与桥面交于A,B两点,且点A,B,C在同一竖直平面内.测量数据∠A的度数∠B的度数AB的长度38°28°234米……(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).2、(2019石家庄.中考模拟) 如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA的位置时俯角∠EOA=30°,在0B的位置时俯角∠FOB=60°,若OCLEF,点A比点B高7cm.(要求:本题中的计算结果均保留整数。
参考值:≈1.7;π≈3.1)求:(1)单摆的长度;【答案】解:解:设单摆的长度为x.过A作AM⊥OC于点M,过B作BN⊥OC于点N∵OC⊥EF.∴∠COE=∠COF=90°∴∠AOM=∠COE-∠AOE=90°-30°=60°∠BON=∠COF-∠BOF=90°-60°=30°在Rt△AOM中,OM=OA·cos60°= x在Rt△BON中,ON=OB·cos30°= x由题知:MN=7∴ON-OM= x- x=7解得:x=7 +7≈7×1.7+7≈19答:单摆的长度约19cm.(1)从点A摆动到点B经过的路径长.3、(2019丹东.中考模拟) 如图,为了测量小山顶的铁塔AB高度,王华和杨丽在平地上的C点处测得A点的仰角为45°,向前走了18m后到达D点,测得A点的仰角为60°,B点的仰角为30°(1)求证:AB=BD;(2)求证铁塔AB的高度.(结果精确到0.1米,其中≈1.41 )4、(2019海宁.中考模拟) 如图,小聪和小明在校园内测量钟楼MN的高度.小聪在A 处测得钟楼顶端N的仰角为45°,小明在B处测得钟楼顶端N的仰角为60°,并测得A,B两点之间的距离为27.3米,已知点A,M,B依次在同一直线上.(1)求钟楼MN的高度,(结果精确到0.1米)(2)因为要举办艺术节,学校在钟楼顶端N处拉了一条宣传竖幅,并固定在地面上的C处(点C在线段AM上).小聪测得点C处的仰角∠NCM等于75°,小明测得点C,M之间的距离约为5米,若小聪的仰角数据正确,问小明测得的数据“5米”是否正确?为什么?(参考数据: 1.41, 1.73)5、(2014绍兴.中考真卷) 九(1)班同学在上学期的社会实践活动中,对学校旁边的山坡护墙和旗杆进行了测量.(1)如图1,第一小组用一根木条CD斜靠在护墙上,使得DB与CB的长度相等,如果测量得到∠CDB=38°,求护墙与地面的倾斜角α的度数.(2)如图2,第二小组用皮尺量的EF为16米(E为护墙上的端点),EF的中点离地面FB的高度为1.9米,请你求出E点离地面FB的高度.(3)如图3,第三小组利用第一、第二小组的结果,来测量护墙上旗杆的高度,在点P测得旗杆顶端A的仰角为45°,向前走4米到达Q点,测得A的仰角为60°,求旗杆AE的高度(精确到0.1米).备用数据:tan60°=1.732,tan30°=0.577,=1.732,=1.414.6、(2018广州.中考模拟) 如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.(1)山坡坡角(即∠ABC)的度数等于度;(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).7、(2016盐田.中考模拟) 如图,某高楼顶部有一信号发射塔,小凡在矩形建筑物ABCD的A、C两点处测得塔顶F的仰角分别为α和β,AD=18m,CD=78m.(1)用α和β的三角函数表示CE;(2)当α=30°、β=60°时,求EF(结果精确到1m).(参考数据:≈1.414,≈1.732)8、(2019贵阳.中考模拟) 如图,为测量学校旗杆AB的高度,小明从旗杆正前方6米处的点C出发,沿坡度为i=1:的斜坡CD前进2 米到达点D,在点D 处放置测角仪DE,测得旗杆顶部A的仰角为30°,量得测角仪DE的高为1.5米.A、B、C、D、E在同一平面内,且旗杆和测角仪都与地面垂直.(1)求点D的铅垂高度(结果保留根号);(2)求旗杆AB的高度(结果保留根号).9、(2019桂林.中考模拟) 如图,一座山的一段斜坡BD的长度为600米,且这段斜坡的坡度i=1:(沿斜坡从B到D时,其升高的高度与水平前进的距离之比),另一段斜坡AD的长400米,在斜坡BD的坡顶D处测得山顶A的仰角为45°(1)求斜坡BD的坡顶D到地面BC的高度是多少米?(2)求BC.(结果保留根号)10、(2017桂林.中考模拟) 如图,在大楼AB的正前方有一斜坡CD,已知斜坡CD长6 米,坡角∠DCE等于45°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的顶点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号).11、(2018海南.中考真卷) 如图,某数学兴趣小组为测量一棵古树BH和教学楼CG 的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G 的仰角∠GEF为60°,点A、B、C三点在同一水平线上.(1)计算古树 BH的高;(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)12、(2018遵义.中考模拟) 为纪念遵义会议80周年献礼,遵义市政府对城市建设进行了整改,如图,已知斜坡AB长60 米,坡角(即∠BAC)为45°,BC⊥AC,现计划在斜坡中点D处挖去部分斜坡,修建一个平行于水平线CA的休闲平台DE 和一条新的斜坡BE(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为∶1,求休闲平台DE的长是多少米?(2)一座建筑物GH距离A点33米远(即AG=33米),小亮在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G 在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?13、(2020铁岭.中考真卷) 如图,小明利用学到的数学知识测量大桥主架在水面以上的高度,在观测点处测得大桥主架顶端的仰角为30°,测得大桥主架与水面交汇点的俯角为14°,观测点与大桥主架的水平距离为60米,且垂直于桥面.(点在同一平面内)(参考数据)(1)求大桥主架在桥面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度.(结果精确到1米)14、(2021八步.中考模拟) 如图,某中学数学课外学习小组想测量教学楼的高度,组员小方在处仰望教学楼顶端处,测得,小方接着向教学楼方向前进到处,测得,已知,,.(,)(1)求的值;(2)求教学楼的高度.(结果精确到)15、随着科学技术的不断进步,无人机被广泛应用到实际生活中,小星利用无人机来测量翡翠湖某处东西岸边,两点之间的距离.如图所示,小星站在湖边的处遥控无人机,无人机在处距离地面的飞行高度是,此时从无人机测得岸边处的俯角为,他抬头仰视无人机时,仰角为,若小星的身高,(点,,,在同一平面内).(1)求仰角的正弦值;(2)求,两点之间的距离(结果精确到).(,,,,,)解直角三角形的应用﹣仰角俯角问题综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
2024成都中考数学第一轮专题复习之第四章第四节解直角三角形的实际应用知识精练基础题1.(2023天津)sin 45°+22的值等于()A.1B.2C.3D.22.(2023河北)淇淇一家要到革命圣地西柏坡参观,如图,西柏坡位于淇淇家南偏西70°的方向,则淇淇家位于西柏坡的()第2题图A.南偏西70°方向B.南偏东20°方向C.北偏西20°方向D.北偏东70°方向3.(2023南充)如图,小兵同学从A 处出发向正东方向走x 米到达B 处,再向正北方向走到C 处,已知∠BAC =α,则A ,C 两点相距()A.x sin α米B.x cos α米C.x ·sin α米D.x ·cos α米第3题图4.如图所示的网格是边长为1的正方形网格,则cos ∠CAB 的值为()第4题图A.55B.255C.22D.255.(2023包头)如图源于我国汉代数学家赵爽的弦图,它是由四个全等直角三角形与一个小正方形拼成的一个大正方形,若小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为α,则cosα的值为()A.34B.43C.35D.45第5题图6.(2023十堰)如图所示,有一天桥高AB为5米,BC是通向天桥的斜坡,∠ACB=45°,市政部门启动“陡改缓”工程,决定将斜坡的底端C延伸到D处,使∠D=30°,则CD的长度约为(参考数据:2≈1.414,3≈1.732)()第6题图A.1.59米B.2.07米C.3.55米D.3.66米7.(北师九下P20第2题改编)如图是某水库大坝的横截面示意图,已知AD∥BC,且AD,BC之间的距离为15米,背水坡CD的坡度i=1∶0.6,为提高大坝的防洪能力,需对大坝进行加固,加固后大坝顶端AE比原来的顶端AD加宽了2米,背水坡EF的坡度i=3∶4,则大坝底端增加的长度CF为()第7题图A.7米B.11米C.13米D.20米8.(2023武汉)如图,将45°的∠AOB按下面的方式放置在一把刻度尺上:顶点O与尺下沿的端点重合,OA与尺下沿重合,OB尺上沿的交点B在尺上的读数为2cm.若按相同的方式将37°的∠AOC放置在该刻度尺上,则OC与尺上沿的交点C在尺上的读数是________cm.(结果精确到0.1cm,参考数据sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)第8题图9.[新考法—跨学科](2022凉山州)如图,CD是平面镜,光线从A点出发经CD上点O反射后照射到B点,若入射角为α,反射角为β(反射角等于入射角),AC⊥CD于点C,BD⊥CD于点D,且AC=3,BD=6,CD=12,则tanα的值为________.第9题图10.[新考法—数学文化](2023枣庄改编)桔槔是一种原始的汲水工具,它是在一根竖立的架子上加上一根细长的杠杆,末端悬挂一重物,前端悬挂水桶.当人把水桶放入水中打满水以后,由于杠杆末端的重力作用,便能轻易把水提升至所需处.如图所示是桔槔汲水的简单示意图,若已知杠杆AB=6米,AO∶OB=2∶1,支架OM⊥EF,OM=3米,AB可以绕着点O自由旋转,当点A旋转到如图所示位置时∠AOM=45°,此时点B到水平地面EF的距离为________米.(结果保留根号)第10题图11.成都第31届世界大学生夏季运动会代表建筑主火炬塔,其构造设计理念为“大运之光”,塔身整体采用钢结构制作,造型呈细腰型,底座为直径约13米的内外同心圆环,内环延伸出4根主管呈螺旋上升型,外环12根副管与主管反向螺旋上升,象征着十二条太阳光芒螺旋升腾聚集于阳燧,寓意“东进兴川之光”.某数学活动小组利用课余时间测量主火炬塔的高度,在点A 处放置高为1米的测角仪AB ,在B 处测得塔顶F 的仰角为30°,沿AC 方向继续向前行38米至点C ,在CD 处测得塔顶F 的仰角为65°(点A ,C ,E 在同一条直线上),依据上述测量数据,求出主火炬塔EF 的高度.(结果保留整数,参考数据:3≈1.73,sin 25°≈0.42,cos 25°≈0.91,tan 25°≈0.47)第11题图拔高题12.[新考法—跨学科](2023甘肃省卷)如图①,某人的一器官后面A 处长了一个新生物,现需检测其到皮肤的距离.为避免伤害器官,可利用一种新型检测技术,检测射线可避开器官从侧面测量.某医疗小组制定方案,通过医疗仪器的测量获得相关数据,并利用数据计算出新生物到皮肤的距离方案如下:课题检测新生物到皮肤的距离工具医疗仪器等示意图第12题图①第12题图②说明如图②,新生物在A 处,先在皮肤上选择最大限度地避开器官的B 处照射新生物,检测射线与皮肤MN 的夹角为∠DBN ;再在皮肤上选择距离B 处9cm 的C 处照射新生物,检测射线与皮肤MN 的夹角为∠ECN .测量数据∠DBN =35°,∠ECN =22°,BC =9cm请你根据上表中的测量数据,计算新生物A 处到皮肤的距离.(结果精确到0.1cm ,参考数据:sin 35°≈0.57,cos 35°≈0.82,tan 35°≈0.70,sin 22°≈0.37,cos 22°≈0.93,tan 22°≈0.40)13.雨量监测站是一款以物联网为基础的现代型雨量站,通过这款设备,人们能远程获得降雨量的数据,并能根据当地环境气象判断出未来雨量情况,从而安排合理的农业作业.如图①是雨量监测站的实物图,如图②是该监测站的简化示意图,其中支杆AB,CD与支架MN 的夹角分别为∠BAM=45°,∠DCM=30°,支杆AB与太阳能供电板的夹角∠ABD=85°,且支杆AB,CD的端点A,C的距离为14cm,支杆CD的端点D到支架MN的水平距离为16cm,求支杆AB,CD的端点B,D之间的距离.(结果精确到0.1cm.参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,3≈1.73)图①图②第13题图参考答案与解析1.B【解析】原式=22+22=2.2.D【解析】∵南北方向是平行的,∴淇淇家位于西柏坡的北偏东70°方向.3.B 【解析】∵在Rt △ABC 中,cos α=AB AC ,∴AC =AB cos α.∵AB =x ,∴AC =x cos α.4.B 【解析】如解图,连接BD ,在△ABD 中,AB =32+12=10,AD =22+22=22,BD =12+12=2,∴AD 2+BD 2=AB 2,∴△ABD 是直角三角形,∴cos ∠CAB =AD AB=255.第4题解图5.D 【解析】如解图,∵两个正方形的面积分别为1,25,∴两个正方形的边长分别为CD =1,AB =5,设Rt △ABC 的AC 边为x ,则x 2+(x +1)2=52,解得x 1=3,x 2=-4(舍去),∴BC =4,∴cos α=BC AB =45.第5题解图6.D 【解析】根据题意可知,∠BAD =90°,∠BCA =45°,AB =5,∴AC =AB =5,在Rt △ABD中,∠D =30°,∴tan 30°=AB AD ,∴AD =AB tan 30°=5tan 30°=53,∴CD =AD -AC =53-5≈3.66(米).7.C 【解析】如解图,过点D 作DM ⊥BC 于点M ,过点E 作EN ⊥BC 于点N .由题意可知DM =EN =15,∵背水坡CD 的坡度i =1∶0.6,∴DM CM =53,∴CM =9.∵DE =MN =2,∴CN =7.∵背水坡EF 的坡度i =3∶4,∴EN NF =157+CF=34,解得CF =13.第7题解图8.2.7【解析】如解图,过点B 作BD ⊥OA 于点D ,过点C 作CE ⊥OA 于点E .在△BOD 中,∠BDO =90°,∠DOB =45°,∴BD =OD =2cm ,∴CE =BD =2cm.在△COE 中,∠CEO =90°,∠COE =37°,∵tan 37°=CE OE≈0.75,∴OE ≈2.7cm.∴OC 与尺上沿的交点C 在尺上的读数约为2.7cm.第8题解图9.43【解析】由平面镜反射知识可知α=∠A =β=∠B ,∴tan α=tan B =OD BD.易知△ACO ∽△BDO ,∴AC BD =OC OD =36=12.∵CD =12,∴OD =8,∴tan α=tan B =43.10.(3+2)【解析】如解图,过点O 作OC ⊥BT ,垂足为C ,由题意得BC ∥OM ,∴∠AOM =∠OBC =45°,∵AB =6米,AO ∶OB =2∶1,∴AO =4米,OB =2米,在Rt △OBC 中,BC =OB ·cos 45°=2×22=2(米).∵OM =3米,∴此时点B 到水平地面EF 的距离=BC +OM =(3+2)米.第10题解图11.解:如解图,设BD 的延长线与EF 交于点G ,由题意可得∠FDG =65°,∠FGD =90°,∴∠DFG =25°.AB =CD =EG =1米,AC =BD =38米,设FG =x 米,在Rt △BFG 中,∠FBG =30°,tan 30°=FG BG =x BG =33,解得BG =3x ,在Rt △DFG 中,∠DFG =25°,tan 25°=DG FG =DG x≈0.47,解得DG =0.47x ,∴BD =BG -DG =3x -0.47x =38,解得x ≈30,∴EF =FG +EG =30+1=31(米).∴主火炬塔EF 的高度约为31米.第11题解图12.解:如解图,过点A 作AF ⊥MN ,垂足为点F ,设BF =x cm ,∵BC =9cm ,∴CF =BC +BF =(x +9)cm.在Rt △ABF 中,∠ABF =∠DBN =35°,∴AF =BF ·tan 35°≈0.7x cm.在Rt △ACF 中,∠ACF =∠ECN =22°,∴AF =CF ·tan 22°≈0.4(x +9)cm ,∴0.7x =0.4(x +9),解得x =12,∴AF =0.7x =8.4cm ,∴新生物A 处到皮肤的距离约为8.4cm.第12题解图13.解:如解图,过点B 作BE ⊥MN 于点E ,过点D 分别作DF ⊥MN 于点F ,作DG ⊥BE 于点G ,则易得四边形DGEF 是矩形,DF =16cm ,∴EF =DG ,DF =GE .在Rt △CDF 中,∠CFD =90°,tan ∠DCF =DF CF ,∴CF =DF tan ∠DCF =16tan 30°=1633=163cm.∵∠BAE=45°,∴∠ABE=45°,AE=BE.∵∠ABD=85°,∴∠DBG=∠ABD-∠ABE=85°-45°=40°.在Rt△DBG中,∠BGD=90°,sin∠DBG=DGBD,cos∠DBG=BGBD,∴DG=BD·sin∠DBG=BD·sin40°≈0.64BD,BG=BD·cos∠DBG=BD·cos40°≈0.77BD,∴AE=BE=BG+GE=(0.77BD+16)cm.∵AF=AE+EF=AC+CF,∴0.77BD+16+0.64BD=14+163,解得BD≈18.2cm.答:支杆AB,CD的端点B,D之间的距离约为18.2cm.第13题解图。
备考2023年中考数学一轮复习-解直角三角形的应用﹣仰角俯角问题-填空题专训及答案解直角三角形的应用﹣仰角俯角问题填空题专训1、(2012大连.中考真卷) 如图,为了测量电线杆AB的高度,小明将测量仪放在与电线杆的水平距离为9m的D处.若测角仪CD的高度为1.5m,在C处测得电线杆顶端A的仰角为36°,则电线杆AB的高度约为________m.(精确到0.1m).(参考数据sin36°≈0.59.cos36°≈0.81,tan36°≈0.73).2、(2015阜新.中考真卷) 如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为________m(结果保留根号).3、(2017庆云.中考模拟) 如图,从一艘船的点A处观测海岸上高为41m的灯塔BC (观测点A与灯塔底部C在一个水平面上),测得灯塔顶部B的仰角为35°,则观测点A到灯塔BC的距离为________.(精确到1m)【参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7】4、(2019苏州.中考模拟) 如图,在楼顶点处观察旗杆测得旗杆顶部的仰角为30°,旗杆底部的俯角为45°.已知楼高m,则旗杆的高度为________.(结果保留根号)5、(2014嘉兴.中考真卷) 如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为________ 米(用含α的代数式表示).6、(2016宁波.中考真卷) 如图,在一次数学课外实践活动中,小聪在距离旗杆10m 的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为________m(结果保留根号).7、(2018枣阳.中考模拟) 如图所示,小明在家里楼顶上的点A处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C处的俯角为45°,两栋楼之间的距离为30m,则电梯楼的高BC为________米(精确到0.1).(参考数据:≈1.414,≈1.732).8、(2019孝感.中考真卷) 如图,在处利用测角仪测得某建筑物的顶端点的仰角为60°,点的仰角为45°,点到建筑物的距离为米,则________米.9、(2017黄石.中考真卷) 如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,则建筑物AB的高度约为________米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:≈1.41,≈1.73)10、(2017番禺.中考模拟) 如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D处测得河岸B处的俯角为45°,测得河对岸A处的俯角为30°(A,B,C在同一条直线上),则河的宽度AB约为________.11、(2019宝鸡.中考模拟) 如图,某飞机于空中探测某座山的高度,在点处飞机的飞行高度是米,从飞机上观测山顶目标的俯角是,飞机继续以相同的高度飞行米到地,此时观察目标的俯角是,则这座山的高度是________米(参考数据:,,)12、(2017.中考模拟) 如图,数学实习小组在高300米的山腰(即PH=300米)P处进行测量,测得对面山坡上A处的俯角为30°,对面山脚B处的俯角60°,已知tan∠ABC= ,点P,H,B,C,A在同一个平面上,点H,B,C在同一条直线上,且PH⊥BC,则A,B两点间的距离为________米.13、(2020湖州.中考模拟) 如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为30°,看这栋大楼底部C的俯角为60°,热气球A的高度为270米,则这栋大楼的高度为________米.14、(2021浦东新.中考模拟) 如果从某一高处甲看低处乙的俯角为36度,那么从低处乙看高处甲的仰角是度.15、(2022汕尾.中考模拟) 如图,从楼顶处看楼下荷塘处的俯角为,看楼下荷塘处的俯角为,已知楼高为米,则荷塘的宽为米.(结果保留根号)16、(2021烟台.中考真卷) 数学兴趣小组利用无人机测量学校旗杆高度,已知无人机的飞行高度为40米,当无人机与旗杆的水平距离是45米时,观测旗杆顶部的俯角为30°,则旗杆的高度约为米.(结果精确到1米,参考数据:,)17、(2021百色.中考真卷) 数学活动小组为测量山顶电视塔的高度,在塔的椭圆平台遥控无人机.当无人机飞到点P处时,与平台中心O点的水平距离为15米,测得塔顶A点的仰角为30°,塔底B点的俯角为60°,则电视塔的高度为米.18、(2021赤峰.中考真卷) 某滑雪场用无人机测量雪道长度.如图,通过无人机的镜头C测一段水平雪道一端A处的俯角为50°,另一端B处的俯角为45°,若无人机镜头处的高度为米,点A,D,B在同一直线上,则通道AB的长度为米.(结果保留整数,参考数据,,)19、如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD 的长度为20m,DE的长为10m,则树AB的高度是m.20、如图,为了配合疫情工作,浦江某学校门口安装了体温监测仪器,体温检测有效识别区域AB长为6米,当身高为1.5米的学生进入识别区域时,在点B处测得摄像头M的仰角为,当学生刚好离开识别区域时,在点A处测得摄像头M的仰角为,则学校大门ME的高是米.解直角三角形的应用﹣仰角俯角问题填空题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:。
2023年安徽中考数学总复习专题:解直角三角形的实际应用1.超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到万丰路的距离为100米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为4秒且∠APO=60°,∠BPO =45°.(1)求A、B之间的路程;(2)请判断此车是否超过了万丰路每小时70千米的限制速度?(参考数据:2≈1.41,3≈1.73).2.小丽与爸妈在公园里荡秋千.如图,小丽坐在秋千的起始位置A处,OA与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1.2m高的B处接住她后用力一推,爸爸在C处接住她.若妈妈与爸爸到OA的水平距离BD、CE分别为1.8m和2.4m,∠BOC=90°.(1)△CEO与△ODB全等吗?请说明理由.(2)爸爸在距离地面多高的地方接住小丽的?(3)秋千的起始位置A处与距地面的高是 m.3.投影仪,又称投影机,是一种可以将图象或视频投射到幕布上的设备.如图①是屏幕投影仪投屏情景图,如图②是其侧面示意图,已知支撑杆AD与地面FC垂直,且AD的长为12cm,脚杆CD的长为50cm,AD距墙面EF的水平距离为240cm,投影仪光源散发器与支撑杆的夹角∠EAD=120°,脚杆CD与地面的夹角∠DCB=42°,求光源投屏最高点与地面间的距离EF.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,3≈1.73)4.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC∥AD,BE⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移多少m时,才能确保山体不滑坡.(取tan50°≈1.2)5.小华在网上看到一个如图(1)的躺椅,他决定自己动手用木条制作一个简易的躺椅,如图(2)是简易躺椅的侧面,其中∠B=44°,∠ACB=17°,∠DEC=∠DCE=48°,AE=13AC,若木条AB=5dm,请你计算木条AC,DE,DC的长.(相关数据:sin44°=0.69,cos44°=0.72,tan44°=0.97,sin17°=0.29,cos17°=0.96,tan17°=0.31,sin48°=0.74,cos48°=0.67,tan48°=1.11,结果保留一位小数)6.“蛟龙号”载人潜水器是中国探索深蓝的利器.如图,在某次任务中,当蛟龙号下潜到点B处时,科研人员在海面的观察点A测得点B的俯角为60°,当蛟龙号继续垂直下潜2千米到达海底C处时,在观察点A测得点C的俯角为75.97°,求点C到海面的深度.(结果精确到0.1千米)参考数据:3≈1.73,sin75.97°=0.97,cos75.97°≈0.24,tan75.97°≈4.007.图1是重庆欢乐谷的一个大型娱乐设施——“重庆之眼”摩天轮,它是全球第六、西南最高的观光摩天轮.如图2,小嘉从摩天轮最低处B出发先沿水平方向向左行走37米到达点C,再经过一段坡度(坡面的垂直高度与水平方向的距离的比)为i=1:2.4,坡长为26米的斜坡CD到达点D,然后再沿水平方向向左行走50米到达点E.在E处小嘉操作一架无人勘测机,当无人勘测机飞行至点E的正上方点F时,测得点D处的俯角为58°,摩天轮最高处A的仰角为24°.AB所在的直线垂直于地面,垂足为O,点A、B、C、D、E、F、O在同一平面内,求AB的高度.(结果精确到1米,参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,sin24°≈0.40,cos24°≈0.91,tan24°≈0.45)8.一艘渔船在海中自西向东航行,速度为28海里/小时,船在A处测得灯塔C在北偏东60°方向,半小时后渔船到达B点,测得灯塔C在北偏东15°方向,求船与灯塔间的最近距离.9.海洋安全预警系统为海洋安全管理起到了巨大作用,某天海洋监控中心收到信息,在A 的北偏西60°方向的120海里的C处,疑似有海盗船在沿CB方向行驶,C在B的北偏西30°方向上,监控中心向A正西方向的B处海警船发出指令,海警船立即从B出发沿BC方向行驶,在距离A为602海里的D处拦截到该可疑船只.(1)求点A到直线CB的距离;(2)若海警船的速度是30海里/小时,那么海警船能否在1小时内拦截到可疑船只?请说明理由.(结果保留一位小数,参考数据:3≈1.73)10.如图1,图2分别是某款篮球架的实物图与侧面示意图,已知底座矩形BCLK的高BK=19cm,宽BC=40cm,底座BC与支架AC所成的角∠ACB=76°,支架AF的长为240cm,篮板顶端F到篮筐D的距离FD=90cm(FE与地面LK垂直,支架AK与地面LK 垂直,支架HE与FE垂直),篮板底部支架HE与支架AF所成的角∠FHE=66°,求篮筐D到地面的距离(精确到1cm).(参考数据:sin66°≈910,cos66°≈25,tan66°≈94,sin76°≈0.96,cos76°≈0.24,tan76°≈4.0)参考答案1.解:(1)在Rt△BOP中,∠BOP=90°,∵∠BPO=45°,OP=100,∴OB=OP=100.在Rt△AOP中,∠AOP=90°,∵∠APO=60°,∴AO=OP•tan∠APO.∴AO=1003(米),∴AB=100(3―1)(米);(2)∵此车的速度=100(3―1)4=25(3―1)≈25×0.73=18.25米/秒,70千米/小时=700003600米/秒≈19.4米/秒,18.25米/秒<19.4米/秒,∴此车没有超过了万丰路每小时70千米的限制速度.2.解:(1)△OBD与△COE全等.理由如下:由题意可知∠CEO=∠BDO=90°,OB=OC,∵∠BOC=90°,∴∠COE+∠BOD=∠BOD+∠OBD=90°.∴∠COE=∠OBD,在△COE和△OBD中,∠COE=∠OBD∠CEO∠ODBOC=OB,∴△COE≌△OBD(AAS);(2)∵△COE≌△OBD,∴CE=OD,OE=BD,∵BD、CE分别为1.8m和2.4m,∴OD=2.4m,OE=1.8m,∴DE=OD﹣OE=CE﹣BD=2.4﹣1.8=0.6(m),∵妈妈在距地面1.2m高的B处,即DM=1.2m,∴EM=DM+DE=1.8(m),答:爸爸是在距离地面1.8m的地方接住小丽的;(3)∵OA=OB=OD2+BD2=2.42+1.82=3(m),∴AM=OD+DM﹣OA=2.4+1.2﹣3=0.6(m).∴秋千的起始位置A处与距地面的高0.6m.故答案为:0.6.3.解:过点A作AG⊥EF,垂足为G,过点D作DH⊥EF,垂足为H,则AB=GF,AG=BF=240cm,∠GAB=90°,在Rt△DBC中,∠DCB=42°,CD=50cm,∴DB=CD•sin42°≈50×0.67=33.5(cm),∵AD=12cm,∴GF=AB=AD+DB=45.5(cm),∵∠EAD=120°,∴∠EAG=∠EAD﹣∠GAB=30°,在Rt△EAG中,EG=AG•tan30°=240×33=803(cm),∴EF=EG+GF=803+45.5≈183.9(cm),∴光源投屏最高点与地面间的距离EF约为183.9cm.4.解:作∠DAG=50°,AG交BC于G,过点G作GH⊥AD于H,则BEGH为矩形,∴GH=BE,BG=EH,设BE=12xm,∵斜坡AB的坡比为12:5,∴AE=5xm,由勾股定理得:(5x)2+(12x)2=262,解得:x=2(负值舍去),∴BE=24m,AE=12m,∴GH=BE=24m,在Rt△GAH中,tan∠GAH=GH AH,则24AH≈1.2,解得:AH=20,∴EH=AH﹣AE=10(m),∴BG=EH=10m,答:坡顶B沿BC至少向右移10m时,才能确保山体不滑坡.5.解:过点A作AM⊥BC于点M,过点D作DN⊥FC于点N,如图,在Rt△ABM中,AB=5dm,∠ABC=44°,∵sin∠ABM=AM AB,∴AM=AB•sin∠ABM=5•sin44°=5×0.69=3.45dm,在Rt△ACM中,∠ACM=17°,∵sin∠ACM=AM AC∴AC=AMsin∠ACM=AMsin17°=3.450.29≈11.9dm;∵AE=13 AC,∴EC=AC―AE=23AC=23×11.9≈7.93dm,∵∠DEC=∠DCE=48°,∴DE=DC,∵DN⊥FC∴FN=CN=12EC≈3.97dm,在Rt△DEN中,EN=3,97dm,∠DEN=48°,∵cos∠DEN=EN DE,∴DE=ENcos∠DEN=3.97cos48°=3.970.67≈5.9dm答:AC的长为11.9dm,DE的长为5.9dm,DC的长为5.9dm.6.解:延长CB,交AE于点D,由题意得,∠DAB=60°,∠DAC=75.97°,∠ADC=90°,BC=2千米,设BD=x千米,则CD=(x+2)千米,在Rt△ABD中,tan60°=BDAD=xAD=3,解得AD=33 x,在Rt△ACD中,tan75.97°=CDAD=x+233x≈4.00,解得x≈1.5,经检验,x≈1.5是原方程的解且符合题意,∴CD≈3.5千米.∴点C到海面的深度约为3.5千米.7.解:过C作CM⊥OD于M,过F作FN⊥AB于N,如图所示:则FN=EO,ON=EF,OM=BC=37米,BO=CM,FN∥EO,∴∠EDF=∠DFN=58°,∵斜坡CD的坡度为i=1:2.4,CD=26米,∴BO=CM=10(米),MD=24(米),∵DE=50米,∴FN=EO=DE+MD+OM=50+24+37=111(米),在Rt△DEF中,tan∠EDF=EFDE=tan58°≈1.60,∴EF≈1.60DE=1.60×50=80(米),∴ON=EF≈80米,∴BN=ON﹣BO≈70(米),在Rt△AFN中,∠AFN=24°,∵tan∠AFN=ANFN=tan24°≈0.45,∴AN≈0.45FN=0.45×111=49.95(米),∴AB=AN+BN=49.95+70≈120(米),即AB的高度约为120米.8.解:过点C作CD⊥AB,交AB的延长线于点D,过点B作BE⊥AC于点E,由题意得,∠CAB=90°﹣60°=30°,∠CBD=90°﹣15°=75°,AB=28×0.5=14(海里),∴∠ACB=∠CBD﹣∠CAB=45°,在Rt△ABE中,sin30°=BEAB=BE14=12,cos30°=AEAB=AE14=32,解得BE=7,AE=73,在Rt△BCE中,∠BCE=45°,∴BE=CE=7海里,∴AC=AE+CE=(7+73)海里,在Rt△ACD中,sin30°=CDAC=CD7+73=12,解得CD=72+732.∴船与灯塔间的最近距离为(72+732)海里.9.解:(1)过点A作AH⊥CB于点H,如图.由题意得:∠CAB=90°﹣60°=30°,∠ABC=180°﹣60°=120°,∴∠C=180°﹣30°﹣120°=30°,∴AH=12AC=12×120=60(海里).答:点A到直线CB的距离是60海里;(2)海警船能否在1小时内拦截到可疑船只,理由:在Rt△ADH中,AD=602海里,AH=60海里,∴DH=AD2―AH2=60(海里),∵∠ABH=∠BAC+∠C=60°,在Rt△ABH中,∠BAH=90°﹣∠ABH=30°,∴BH=12 AB,∴AB=2BH,∵BH2+AH2=AB2,∴BH2+602=(2BH)2,∴BH=203,∴BD=DH﹣BH=(60﹣203)海里,∵海警船的速度是30海里/小时,∴(60﹣203)÷30≈0.9<1,答:海警船能否在1小时内拦截到可疑船只.10.解:延长FE交地面LK于点M,过点A作AG⊥FM,垂足为G,则∠FML=90°,AK=GM,HE∥AG,∴∠FHE=∠FAG=66°,在Rt△ACB中,∠ACB=76°,BC=40cm,∴AB=BC•tan76°≈40×4=160(cm),∵BK=19cm,∴GM=AK=AB+BK=179(cm),在Rt△AFG中,AF=240cm,∴FG=AF•sin66°≈240×910=216(cm),∵FD=90cm,∴DM=FG+GM﹣FD=216+179﹣90=305(cm),∴篮筐D到地面的距离约为305cm.。
中考数学总复习《解直角三角形》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A 层·基础过关1.已知∠A 是锐角,sin A =35,则tan A 的值是 ( )A .35B .34C .43D .452.(2024·东营垦利区二模)如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,现测得∠A =88°,∠C =42°,AB =60,则点A 到BC 的距离为 ( )A .60sin 50°B .60sin50°C .60cos 50°D .60tan 50°3.宽与长的比是√5-12的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.如图,把黄金矩形ABCD 沿对角线AC 翻折,点B 落在点B'处,AB'交CD 于点E ,则sin ∠DAE 的值为 ( )A .√55B .12C .35D .2√554.(2024·淄博高青县模拟)在△ABC 中,若|sin A -12|+(√22-cos B )2=0,则∠C 的度数是 .5.(2024·绥化中考)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A测得该楼顶部点C的仰角为60°,测得底部点B的俯角为45°,点A与楼BC的水平距离AD=50 m,则这栋楼的高度为m(结果保留根号).6. (2024·赤峰中考)综合实践课上,航模小组用无人机测量古树AB的高度.如图,点C处与古树底部A处在同一水平面上,且AC=10米,无人机从C处竖直上升到达D 处,测得古树顶部B的俯角为45°,古树底部A的俯角为65°,则古树AB的高度约为米(结果精确到0.1米;参考数据:sin 65°≈0.906,cos 65°≈0.423,tan 65°≈2.145).7.(2024·浙江中考)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB=10,AD=6,tan∠ACB=1.(1)求BC的长;(2)求sin∠DAE的值.B 层·能力提升8.(2024·深圳中考)如图,为了测量某电子厂的高度,小明用高1.8 m 的测量仪EF 测得顶端A 的仰角为45°,小军在小明的前面5 m 处用高1.5 m 的测量仪CD 测得顶端A 的仰角为53°,则电子厂AB 的高度为 ( ) (参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43)A .22.7 mB .22.4 mC .21.2 mD .23.0 m9.(2024·包头中考)如图,在矩形ABCD 中,E ,F 是边BC 上两点,且BE =EF =FC ,连接DE ,AF ,DE 与AF 相交于点G ,连接BG.若AB =4,BC =6,则sin ∠GBF 的值为 ( )A .√1010B .3√1010 C .13 D .2310. (2024·盐城中考)如图,小明用无人机测量教学楼的高度,将无人机垂直上升到距地面30 m 的点P 处,测得教学楼底端点A 的俯角为37°,再将无人机沿教学楼方向水平飞行26.6 m至点Q处,测得教学楼顶端点B的俯角为45°,则教学楼AB的高度约为m.(精确到1 m,参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)11.(2024·上海中考)在平行四边形ABCD中,∠ABC是锐角,将CD沿直线l翻折至AB所在直线,对应点分别为C',D',若AC'∶AB∶BC=1∶3∶7,则cos∠ABC=.C层·素养挑战12.(2024·广元中考)小明从科普读物中了解到,光从真空射入介质发生折射时,入叫做介质的“绝对折射率”,简称射角α的正弦值与折射角β的正弦值的比值sinαsinβ“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.,β=30°,求该介质的(1)若光从真空射入某介质,入射角为α,折射角为β,且cos α=√74折射率;(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A,B,C,D分别是长方体棱的中点,若光线经真空从矩形A1D1D2A2对角线交点O处射入,其折射光线恰好从点C处射出.如图②,已知α=60°,CD=10 cm,求截面ABCD的面积.参考答案A 层·基础过关1.(2024·潍坊寿光市二模)已知∠A 是锐角,sin A =35,则tan A 的值是 (B)A .35B .34C .43D .452.(2024·东营垦利区二模)如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,现测得∠A =88°,∠C =42°,AB =60,则点A 到BC 的距离为 (A)A .60sin 50°B .60sin50°C .60cos 50°D .60tan 50°3.(2024·泸州中考)宽与长的比是√5-12的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.如图,把黄金矩形ABCD 沿对角线AC 翻折,点B 落在点B'处,AB'交CD 于点E ,则sin ∠DAE 的值为 (A)A .√55B .12C .35D .2√554.(2024·淄博高青县模拟)在△ABC 中,若|sin A -12|+(√22-cos B )2=0,则∠C 的度数是 105° .5.(2024·绥化中考)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60°,测得底部点B 的俯角为45°,点A 与楼BC 的水平距离AD =50 m,则这栋楼的高度为 (50+50√3) m(结果保留根号).6. (2024·赤峰中考)综合实践课上,航模小组用无人机测量古树AB的高度.如图,点C处与古树底部A处在同一水平面上,且AC=10米,无人机从C处竖直上升到达D 处,测得古树顶部B的俯角为45°,古树底部A的俯角为65°,则古树AB的高度约为11.5米(结果精确到0.1米;参考数据:sin 65°≈0.906,cos 65°≈0.423,tan 65°≈2.145).7.(2024·浙江中考)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB=10,AD=6,tan∠ACB=1.(1)求BC的长;(2)求sin∠DAE的值.【解析】(1)∵AD⊥BC,AB=10,AD=6∴BD=√AB2-AD2=√102-62=8;∵tan∠ACB=1,∴CD=AD=6∴BC=BD+CD=8+6=14;(2)∵AE 是BC 边上的中线,∴CE =12BC =7,∴DE =CE -CD =7-6=1,∵AD ⊥BC∴AE =√AD 2+DE 2=√62+12=√37∴sin ∠DAE =DEAE =√37=√3737.B 层·能力提升8.(2024·深圳中考)如图,为了测量某电子厂的高度,小明用高1.8 m 的测量仪EF 测得顶端A 的仰角为45°,小军在小明的前面5 m 处用高1.5 m 的测量仪CD 测得顶端A 的仰角为53°,则电子厂AB 的高度为 (A) (参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43)A .22.7 mB .22.4 mC .21.2 mD .23.0 m9.(2024·包头中考)如图,在矩形ABCD 中,E ,F 是边BC 上两点,且BE =EF =FC ,连接DE ,AF ,DE 与AF 相交于点G ,连接BG.若AB =4,BC =6,则sin ∠GBF 的值为 (A)A .√1010B .3√1010 C .13 D .2310. (2024·盐城中考)如图,小明用无人机测量教学楼的高度,将无人机垂直上升到距地面30 m 的点P 处,测得教学楼底端点A 的俯角为37°,再将无人机沿教学楼方向水平飞行26.6 m 至点Q 处,测得教学楼顶端点B 的俯角为45°,则教学楼AB 的高度约为 17 m .(精确到1 m,参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)11.(2024·上海中考)在平行四边形ABCD中,∠ABC是锐角,将CD沿直线l翻折至或AB所在直线,对应点分别为C',D',若AC'∶AB∶BC=1∶3∶7,则cos∠ABC=274.7C层·素养挑战12.(2024·广元中考)小明从科普读物中了解到,光从真空射入介质发生折射时,入叫做介质的“绝对折射率”,简称射角α的正弦值与折射角β的正弦值的比值sinαsinβ“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.(1)若光从真空射入某介质,入射角为α,折射角为β,且cos α=√7,β=30°,求该介质的4折射率;(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A,B,C,D分别是长方体棱的中点,若光线经真空从矩形A1D1D2A2对角线交点O处射入,其折射光线恰好从点C处射出.如图②,已知α=60°,CD=10 cm,求截面ABCD的面积.【解析】(1)∵cos α=√74∴如图设b=√7x,则c=4x,由勾股定理得,a=√(4x)2-(√7x)2=3x∴sin α=ac =3x4x=34,又∵β=30°∴sin β=sin 30°=12∴折射率为sinαsinβ=3412=32.(2)根据折射率与(1)的材料相同,可得折射率为32∵α=60°∴sinαsinβ=sin60°sinβ=32,∴sin β=√33.∵四边形ABCD是矩形,点O是AD中点∴AD=2OD,∠D=90°又∵∠OCD=β∴sin∠OCD=sin β=√33在Rt△ODC中,设OD=√3x,OC=3x由勾股定理得,CD=√(3x)2-(√3x)2=√6x∴tan β=ODCD =√3x√6x=√2.又∵CD=10 cm∴OD10=√2∴OD=5√2cm∴AD=10√2cm,∴截面ABCD的面积为:10√2×10=100√2cm2.。
备考2023年中考数学一轮复习-解直角三角形的应用﹣坡度坡角问题-综合题专训及答案解直角三角形的应用﹣坡度坡角问题综合题专训1、(2020开封.中考模拟) 如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB 所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)2、(2017松江.中考模拟) 某大型购物商场在一楼和二楼之间安装自动扶梯AC,截面如图所示,一楼和二楼地面平行(即AB所在的直线与CD平行),层高AD为8米,∠ACD=20°,为使得顾客乘坐自动扶梯时不至于碰头,A、B之间必须达到一定的距离.(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(1)要使身高2.26米的姚明乘坐自动扶梯时不碰头,那么A,B之间的距离至少要多少米?(精确到0.1米)(2)如果自动扶梯改为由AE,EF,FC三段组成(如图中虚线所示),中间段EF为平台(即EF∥DC),AE段和FC段的坡度i=1:2,求平台EF的长度.(精确到0.1米)3、(2021安阳.中考模拟) 已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B 的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)4、(2016济宁.中考真卷) 某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.5、(2017新化.中考模拟) 某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由.6、(2017深圳.中考模拟) 2013年9月23日强台风“天兔”登录深圳,伴随着就是狂风暴雨.梧桐山山坡上有一棵与水平面垂直的大树,台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=3m.(1)求∠DAC的度数;(2)求这棵大树折断前的高度.(结果保留根号)7、(2018官渡.中考模拟) 甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于10,那么甲获胜;如果积不大于10,那么乙获胜.清你解决下列问题:(1)利用树状图(或列表)的方法表示游戏所有可能出现的结果;(2)求甲、乙两人获胜的概率,并说明游戏是否公平.8、(2017兰州.中考模拟) 为方便市民通行,某广场计划对坡角为30°,坡长为60米的斜坡AB进行改造,在斜坡中点D处挖去部分坡体(阴影表示),修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为36°,则平台DE的长约为多少米?(2)在距离坡角A点27米远的G处是商场主楼,小明在D点测得主楼顶部H 的仰角为30°,那么主楼GH高约为多少米?(结果取整数,参考数据:sin36°=0.6,cos36°=0.8,tan36°=0.7,=1.7)9、(2019合肥.中考模拟) 如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(测角器的高度忽略不计,结果精确到0.1米.参考数据: 1.414,1.732)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.10、(2019枣庄.中考模拟) 日照间距系数反映了房屋日照情况.如图①,当前后房),其中L为楼间水平距离,H为南屋都朝向正南时,日照间距系数=L:(H﹣H1侧楼房高度,H为北侧楼房底层窗台至地面高度.1如图②,山坡EF朝北,EF长为15m,坡度为i=1:0.75,山坡顶部平地EM上有一高为22.5m的楼房AB,底部A到E点的距离为4m.(1)求山坡EF的水平宽度FH;(2)欲在AB楼正北侧山脚的平地FN上建一楼房CD,已知该楼底层窗台P处至地面C处的高度为0.9m,要使该楼的日照间距系数不低于1.25,底部C距F 处至少多远?11、(2020防城港.中考模拟) 如图,我国某边防哨所树立了“祖国在我心中”建筑物,它的横截面为四边形BCNM,其中BC⊥CN,BM∥CN,建筑物顶上有一旗杆AB,士兵小明站在D处,由E点观察到旗杆顶部A的仰角为52°,底部B的仰角为45°,已知旗杆AB=2.8米,DE=1.8米.(参考数据:sin52°≈0.788,tan52°≈1.280)(1)求建筑物的高度BC;(2)建筑物长50米,背风坡MN的坡度i=1:0.5,为提高建筑物抗风能力,士兵们在背风坡填筑土石方加固,加固后建筑物顶部加宽4.2米,背风坡GH的坡度为i=1:1.5,施工10天后,边防居民为士兵支援的机械设备终于到达,这样工作效率提高到了原来的2倍,结果比原计划提前20天完成加固任务,士兵们原计划平均每天填筑土石方多少立方米?12、(2020拱墅.中考模拟) 如图,甲、乙两座建筑物的水平距离BC为78m.从甲的顶部A处测得乙的顶部D处的俯角为48°,测得底部C处的俯角为58°,求甲、乙建筑物的高度AB和DC.(结果取整数,参考数据:tan48°≈1.1,tan58°≈1.60)13、(2020衢州.中考模拟) 小芳身高1.6米,此时太阳光线与地面的夹角为45°.(1)若小芳正站在水平地面A处上时,那么她的影长为多少米?(2)若小芳来到一个坡度i= 的坡面底端B处,当她在坡面上至少前进多少米时,小芳的影子恰好都落在坡面上?14、(2020泰州.中考模拟) 如图,大楼AN上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为48°,此时小颖距大楼底端N处20米.已知坡面DE=20米,山坡的坡度i= ,且D、M、E、C、N、B、A在同一平面内,M、E、C、N在同一条直线上.(参考数据:sin48°≈ ,tan48°≈ )(1)求BN的长度;(2)求条幅AB的长度(结果保留根号).15、(2022九下·重庆开学考) 如图所示,已知BC是水平面,AB、AD、CD是斜坡.AB 的坡角为42º,坡长为200米,AD的坡角为60º,坡长为100米,CD的坡比 .(1)求坡顶A到水平面BC的距离;(2)求斜坡CD的长度.(结果精确到1米,参考数据:,)解直角三角形的应用﹣坡度坡角问题综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
2023年中考数学一轮专题练习 ——解直角三角形的实际应用(解答题部分)一、解答题(本大题共18小题)1. (湖北省宜昌市2022年)知识小提示:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足5372α︒≤≤︒.如图,现有一架长4m 的梯子AB 斜靠在一竖直的墙AO 上.(1)当人安全使用这架梯子时,求梯子顶端A 与地面距离的最大值;(2)当梯子底端B 距离墙面1.64m 时,计算ABO ∠等于多少度?并判断此时人是否能安全使用这架梯子?(参考数据:sin530.80︒≈,cos530.60︒≈,tan53 1.33︒≈,sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈,sin 660.91︒≈,cos660.41︒≈,tan66 2.25︒≈)2. (湖南省常德市2022年)第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图是其示意图,已知:助滑坡道50AF =米,弧形跳台的跨度7FG =米,顶端E 到BD 的距离为40米,HG BC ∥,40AFH ∠=︒,25EFG ∠=︒,36ECB ∠=︒.求此大跳台最高点A 距地面BD 的距离是多少米(结果保留整数).(参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈,sin 250.42︒≈,cos250.91︒≈,tan 250.47︒≈,sin360.59︒≈,cos360.81︒≈,tan360.73︒≈)3. (湖北省江汉油田、潜江、天门、仙桃2022年)小红同学在数学活动课中测量旗杆的高度,如图,已知测角仪的高度为1.58米,她在A 点观测杆顶E 的仰角为30°,接着朝旗杆方向前进20米到达C 处,在D 点观测旗杆顶端E 的仰角为60°,求旗杆EF 的高度.(结果保留小数点后一位)(参考数据: 1.732)4. (江苏省连云港市2022年)我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点A 处测得阿育王塔最高点C 的仰角45CAE ∠=︒,再沿正对阿育王塔方向前进至B 处测得最高点C 的仰角53CBE ∠=︒,10m AB =;小亮在点G 处竖立标杆FG ,小亮的所在位置点D 、标杆顶F 、最高点C 在一条直线上, 1.5m FG =,2m GD =.(注:结果精确到0.01m ,参考数据:sin530.799︒≈,cos530.602︒≈,tan53 1.327︒≈)(1)求阿育王塔的高度CE ;(2)求小亮与阿育王塔之间的距离ED .5. (江苏省宿迁市2022年)如图,某学习小组在教学楼AB 的顶部观测信号塔CD 底部的俯角为30°,信号塔顶部的仰角为45°.已知教学楼AB 的高度为20m ,求信号塔的高度(计算结果保冒根号).6. (江苏省泰州市2022年)小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN ,MN 与墙面AB 所成的角∠MNB =118°,厂房高AB = 8 m ,房顶AM 与水平地面平行,小强在点M 的正下方C 处从平面镜观察,能看到的水平地面上最远处D 到他的距离CD 是多少?(结果精确到0.1 m ,参考数据:sin34°≈0.56, tan34°≈0.68,tan56°≈1.48)7. (辽宁省铁岭市、葫芦岛市2022年)数学活动小组欲测量山坡上一棵大树CD 的高度,如图,DC AM ⊥于点E ,在A 处测得大树底端C 的仰角为15︒,沿水平地面前进30米到达B 处,测得大树顶端D 的仰角为53︒,测得山坡坡角30CBM ∠=︒(图中各点均在同一平面内).(1)求斜坡BC 的长;(2)求这棵大树CD 的高度(结果取整数).(参考数据:sin 53︒≈45,cos 53︒≈35,tan 53︒≈43)8. (辽宁省营口市2022年)在一次数学课外实践活动中,某小组要测量一幢大楼MN的高度,如图,在山坡的坡脚A处测得大楼顶部M的仰角是58︒,沿着山坡向上走75米i=(坡度是到达B处.在B处测得大楼顶部M的仰角是22︒,已知斜坡AB的坡度3:4指坡面的铅直高度与水平宽度的比)求大楼MN的高度.(图中的点A,B,M,N,C︒≈︒≈)均在同一平面内,N,A,C在同一水平线上,参考数据:tan220.4,tan58 1.69. (山东省聊城市2022年)我市某辖区内的兴国寺有一座宋代仿木楼阁式空心砖塔,塔旁有一棵唐代古槐,称为“宋塔唐槐”(如图①).数学兴趣小组利用无人机测量古槐的高度,如图②所示,当无人机从位于塔基B点与古槐底D点之间的地面H点,竖直起飞到正上方45米E点处时,测得塔AB的顶端A和古槐CD的顶端C的俯角分别为26.6°和76°(点B,H,D三点在同一直线上).已知塔高为39米,塔基B与树底D的水平距离为20米,求古槐的高度(结果精确到1米).(参考数据:︒≈,cos760.24︒≈,sin760.97︒≈,sin26.60.45︒≈,tan26.60.50︒≈,cos26.60.89︒≈)tan76 4.0110. (山东省烟台市2022年)如图,某超市计划将门前的部分楼梯改造成无障碍通道.已知楼梯共有五级均匀分布的台阶,高AB=0.75m,斜坡AC的坡比为1:2,将要铺设的通道前方有一井盖,井盖边缘离楼梯底部的最短距离ED=2.55m.为防止通道遮盖井盖,所铺设通道的坡角不得小于多少度?(结果精确到1)(参考数据表)11. (山西省2022年)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测星AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:,,).︒≈︒≈︒≈sin700.94cos700.34tan70 1.7312. (重庆市2022年(B卷))湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿CA方向行驶,与救援船相遇后将该游客转运到救援船上.已知C在A的北偏东30°方向上,B在A的北偏东60°方向上,且B在C的正南方向900米处.(1)求湖岸A与码头C的距离(结果精确到1 1.732);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计)13. (重庆市2022年)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的AC=米.点E在点A的正北方人行步道.经测量,点C在点A的正东方向,200BD=米.点B在点A的北偏东30,点D在点E 向.点B,D在点C的正北方向,100的北偏东45︒.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:≈,1.4141.732)14. (浙江省台州市2022年)如图1,梯子斜靠在竖直的墙上,其示意图如图2,梯子与地面所成的角α为75°,梯子AB长3m,求梯子顶部离地竖直高度BC.(结果精确到0.1m;参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)15. (浙江省宁波市2022年)每年的11月9日是我国的“全国消防安全教育宣传日”,为了提升全民防灾减灾意识,某消防大队进行了消防演习.如图1,架在消防车上的云梯AB 可伸缩(最长可伸至20m ),且可绕点B 转动,其底部B 离地面的距离BC 为2m ,当云梯顶端A 在建筑物EF 所在直线上时,底部B 到EF 的距离BD 为9m .(1)若∠ABD =53°,求此时云梯AB 的长.(2)如图2,若在建筑物底部E 的正上方19m 处突发险情,请问在该消防车不移动位置的前提下,云梯能否伸到险情处?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)16. (浙江省金华市2022年)图1是光伏发电场景,其示意图如图2,EF 为吸热塔,在地平线EG 上的点B ,B '处各安装定日镜(介绍见图3).绕各中心点(),A A '旋转镜面,使过中心点的太阳光线经镜面反射后到达吸热器点F 处.已知1m,8m,AB A B EB EB ='==''=,在点A 观测点F 的仰角为45︒.(1)点F 的高度EF 为 m .(2)设,DAB D A B αβ''∠'=∠=,则α与β的数量关系是 .17. (浙江省嘉兴市2022年)小华将一张纸对折后做成的纸飞机如图1,纸飞机机尾的横截面是一个轴对称图形,其示意图如图2.已知10cm AD BE ==,5cm CD CE ==,AD CD ⊥,BE CE ⊥,40DCE ∠=︒.(结果精确到0.1cm ,参考数据:sin 200.34︒≈,cos200.94︒≈,tan 200.36︒≈,sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈)(1)连结DE ,求线段DE 的长.(2)求点A ,B 之间的距离.18. (四川省广安市2022年)八年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A 处向正北方向走了450米,到达菜园B 处锄草,再从B 处沿正西方向到达果园C 处采摘水果,再向南偏东37°方向走了300米,到达手工坊D 处进行手工制作,最后从D 处回到门口A 处,手工坊在基地门口北偏西65°方向上.求菜园与果园之间的距离.(结果保留整数)参考数据:sin65°≈ 0.91,cos65°≈0.42,tan65°≈2.14,sin37°≈ 0.60,cos37°≈ 0.80,tan37°≈0.75参考答案1. 【答案】(1)梯子顶端A 与地面的距离的最大值3.8米(2)66ABO ∠=︒,人能安全使用这架梯子【分析】(1)AB 的长度固定,当∠ABO 越大,OA 的高度越大,当72α=︒时,AO 取最大值,此时,根据∠ABO 的正弦三角函数计算出OA 长度即可;(2)根据AB =4,OB =1.64,利用∠ABO 的余弦函数值,即可求出∠ABO 的大小,从而得到答案.(1)∵5372α︒≤≤︒当72α=︒时,AO 取最大值,在Rt AOB 中,sin AO ABO AB∠=, ∴sin 4sin7240.95 3.8AO AB ABO =∠=︒≈⨯=,所以梯子顶端A 与地面的距离的最大值3.8米.(2)在Rt AOB 中,cos BO ABO AB∠=, cos 1.6440.41ABO ∠=÷=,cos660.41︒≈, ∴66ABO ∠=︒,∵5372α︒≤≤︒,∴人能安全使用这架梯子.2. 【答案】70【分析】过点E 作EN BC ⊥,交GF 于点M ,则四边形HBNM 是矩形,可得HB MN =,在Rt AHF △中,求得AH ,根据,tan tan tan EM EM EM FM MG EFG EGF ECB ===∠∠∠,7FG =,求得FM ,进而求得MN ,根据AB AH HB AH MN =+=+即可求解.【详解】如图,过点E 作EN BC ⊥,交GF 于点M ,则四边形HBNM 是矩形,HB MN ∴=,50AF =,40AFH ∠=︒,在Rt AHF △中,sin 500.6432AH AF AFH =⋅∠≈⨯=米,HG BC ∥,EGF ECB ∴∠=∠25EFG ∠=︒,36ECB ∠=︒,7FG =,tan tan tan EM EM EM FM MG EFG EGF ECB ===∠∠∠ 70.470.73EM EM ∴+=, 解得2EM ≈,顶端E 到BD 的距离为40米,即40EN =米40238MN EN EM ∴=-=-=米.323870AB AH HB AH MN ∴=+=+=+=米.3. 【答案】旗杆EF 的高度约为18.9米.【分析】过点D 作DG ⊥EF 于点G ,设EG =x ,则EF =1.58+x .分别在Rt △AEG 和Rt △DEG 中,利用三角函数解直角三角形可得AG 、DG ,利用AD =20列出方程,进而得到EF 的长度.【详解】 解:过点D 作DG ⊥EF 于点G ,设EG =x ,由题意可知:∠EAG =30°,∠EDG =60°,AD =20米,GF =1.58米.在Rt △AEG 中,tan ∠EAG =EG AG ,∴AG ,在Rt △DEG 中,tan ∠EDG =EG DG,∴DG =,∴=20, 解得:x ≈17.3,∵EF =1.58+x =18.9(米).答:旗杆EF 的高度约为18.9米.4. 【答案】(1)40.58m(2)54.11m【分析】(1)在Rt CEB 中,由tan 5310CE CE BE CE ︒==-,解方程即可求解. (2)证明Rt FGD Rt CED △∽△,根据相似三角形的性质即可求解.(1)在Rt CAE 中,∵45CAE ∠=︒,∴CE AE =.∵10AB =,∴1010BE AE CE =-=-.在Rt CEB 中,由tan 5310CE CE BE CE ︒==-, 得()tan5310CE CE ︒-=,解得40.58CE ≈.经检验40.58CE ≈是方程的解答:阿育王塔的高度约为40.58m .(2)由题意知Rt FGD Rt CED △∽△, ∴FG GD CE ED =, 即 1.5240.58ED=, ∴54.11ED ≈.经检验54.11ED ≈是方程的解答:小亮与阿育王塔之间的距离约为54.11m .5. 【答案】(20)m .【分析】过点A作AE⊥CD于点E,则四边形ABDE是矩形,DE=AB=20m,在Rt△ADE中,求出AE的长,在Rt△ACE中,∠AEC=90°,求出CE的长,即可得到CD的长,得到信号塔的高度.【详解】解:过点A作AE⊥CD于点E,由题意可知,∠B=∠BDE=∠AED=90°,∴四边形ABDE是矩形,∴DE=AB=20m,在Rt△ADE中,∠AED=90°,∠DAE=30°,DE=20m,∵tan∠DAE=DE AE,∴20tan tan30DEAEDAE===∠︒,在Rt△ACE中,∠AEC=90°,∠CAE=45°,∴△ACE是等腰直角三角形,∴CE AE=m,∴CD=CE+DE=(20)m,∴信号塔的高度为(20)m.6. 【答案】11.8m【分析】过M点作ME⊥MN交CD于E点,证明四边形ABCM为矩形得到CM=AB=8,∠NMC=180°-∠BNM=62°,利用物理学入射光线与反射光线之间的关系得到∠EMD=∠EMC,且∠CME=90°-∠CMN=28°,进而求出∠CMD=56°,最后在Rt△CMD中由tan∠CMD即可求解.【详解】解:过M点作ME⊥MN交CD于E点,如下图所示:∵C 点在M 点正下方,∴CM ⊥CD ,即∠MCD=90°,∵房顶AM 与水平地面平行,AB 为墙面,∴四边形AMCB 为矩形,∴MC=AB =8,AB ∥CM ,∴∠NMC =180°-∠BNM=180°-118°=62°,∵地面上的点D 经过平面镜MN 反射后落在点C ,结合物理学知识可知:∴∠NME =90°,∴∠EMD =∠EMC =90°-∠NMC =90°-62°=28°,∴∠CMD =56°,在Rt △CMD 中,tan CD CMD CM ,代入数据:1.488CD , ∴11.8411.8CD m ,即水平地面上最远处D 到小强的距离CD 是11.8m .7. 【答案】(1)斜坡BC 的长为30米(2)这棵大树CD 的高度约为20米【分析】(1)根据题意可得:15CAE ∠=︒,AB =30米,根据三角形的外角性质可求出15ACB ∠=︒,从而得出AB =BC =30米,即可得出答案. (2)在Rt CBE 中,利用锐角三角函数的定义求出CE ,BE 的长,然后在Rt DEB 中,利用锐角三角函数的定义求出DE 的长,最后进行计算即可解答.(1)解:由题意得15CAE ∠=︒,AB =30米,∵CBE ∠是ABC 的一个外角,∴15ACB CBE CAE ∠=∠-∠=︒,∴15ACB CAE ∠=∠=︒,∴AB =BC =30米,∴斜坡BC 的长为30米;(2) 解:在Rt CBE 中,30CBE ∠=︒,BC =30米,∴1152CE BC ==(米), ∴BE =在Rt DEB 中,53DBE ∠=︒,∴DE =BE tan 53︒43≈=米),∴DC =DE ﹣CE =1520≈(米),∴这棵大树CD 的高度约为20米.8. 【答案】大楼MN 的高度为92米【分析】过点B 分别作BE ⊥AC ,BF ⊥MN ,垂足分别为E 、F ,通过解直角三角形表示出BF 、AN 、AE 的长度,利用BF =NE 进行求解即可.【详解】过点B 分别作BE ⊥AC ,BF ⊥MN ,垂足分别为E 、F ,90BEA BFN BFM MNA ∴∠=∠=∠=∠=︒∴四边形BENF 为矩形,,BE AN BF NE ∴==设MN x =,在Rt ABE △中,斜坡AB 的坡度3:4i =,即34BE AE =, 3sin 5BE BAE AB ∴∠== 75AB =45,60BE AE ∴==45FN ∴=45MF x ∴=-在Rt AMN △中,tan ,58MN MAN MAN AN∠=∠=︒ tan 58 1.6x AN ∴︒=≈58AN x ∴≈ 5608NE AN AE x ∴=+=+ 在Rt BMF △中,tan ,22MF MBF MBF BF ∠=∠=︒ 45tan 220.4x BF-∴︒=≈ 5(45)2BF x ∴≈- 5560(45)82x x ∴+=- 解得92x =,所以,大楼MN 的高度为92米.9. 【答案】古槐的高度约为13米【分析】过点A 作AM ⊥EH 于M ,过点C 作CN ⊥EH 于N ,在Rt △AME 中,根据锐角三角函数求出AM =12米,进而求出CN =8米,再在Rt △ENC 中,根据锐角三角函数求出EN =32.08米,即可求出答案.【详解】解:过点A 作AM ⊥EH 于M ,过点C 作CN ⊥EH 于N ,由题意知,AM =BH ,CN =DH ,AB =MH ,在Rt AME 中,∠EAM =26.6°, ∴tan EAM EM AM ∠=, ∴453912tan tan 26.60.5EM EH MH AM EAM --==≈=∠︒米, ∴BH =AM =12米,∵BD =20,∴DH =BD -BH =8米,∴CN =8米,在Rt ENC 中,∠ECN =76°, ∴EN tan ECN CN∠=, ∴tan 8 4.0132.08EN CN ECN =⋅∠≈⨯=米,∴12.9213CD NH EH EN ==-=≈(米),即古槐的高度约为13米.10. 【答案】不得小于11度【分析】根据题意可得DF =15AB =0.15米,然后根据斜坡AC 的坡比为1:2,可求出BC ,CD 的长,从而求出EB 的长,最后在Rt △AEB 中,利用锐角三角函数的定义进行计算即可解答.【详解】解:如图:由题意得:DF =15AB =0.15(米), ∵斜坡AC 的坡比为1:2, ∴AB BC =12,DF CD =12, ∴BC =2AB =1.5(米),CD =2DF =0.3(米),∵ED =2.55米,∴EB =ED +BC ﹣CD =2.55+1.5﹣0.3=3.75(米),在Rt △AEB 中,tan ∠AEB =AB EB =0.753.75=15, 查表可得,∠AEB ≈11.310°≈11°,∴为防止通道遮盖井盖,所铺设通道的坡角不得小于11度.11. 【答案】58m【分析】延长AB 和CD 分别与直线OF 交于点G 和点H ,则90AGO EHO ∠=∠=︒,再根据图形应用三角函数即可求解.【详解】解:延长AB 和CD 分别与直线OF 交于点G 和点H ,则90AGO EHO ∠=∠=︒.又∵90GAC ∠=︒,∴四边形ACHG 是矩形.∴GH AC =.由题意,得60,24,70,30,60AG OF AOG EOF EFH ==∠=︒∠=︒∠=︒.在Rt AGO △中,90,tan AG AGO AOG OG ∠=︒∠=, ∴606021.822tan tan 70 2.75AG OG AOG ==≈≈≈∠︒﹒ ∵EFH ∠是EOF △的外角,∴603030FEO EFH EOF ∠=∠-∠=︒-︒=︒.∴EOF FEO ∠=∠.∴24EF OF ==.在Rt EHF 中,90,cos FH EHF EFH EF∠=︒∠= ∴cos 24cos6012FH EF EFH =⋅∠=⨯︒=.∴()22241258m AC GH GO OF FH ==++=++≈.答:楼AB 与CD 之间的距离AC 的长约为58m .12. 【答案】(1)湖岸A 与码头C 的距离为1559米(2)在接到通知后,快艇能在5分钟内将该游客送上救援船【分析】(1)过点A 作CB 垂线,交CB 延长线于点D ,设BD x =,则2AB x =,AD =,900CD x =+,在Rt ACD △中,tan CD CAD AD∠=,即可求出450x =,根据Rt ACD △中,sin CD CAD AC∠=即可求出湖岸A 与码头C 的距离;(2)设快艇将游客送上救援船时间为t 分钟,根据等量关系式:救援船行驶的路程+快艇行驶的路程= BC AC +,列出方程,求出时间t ,再和5分钟进行比较即可求解.(1)解:过点A 作CB 垂线,交CB 延长线于点D ,如图所示,由题意可得:60NAB ∠=︒,30NAC ∠=︒,900CB =米,则60CAD ∠=︒,30BAD ∠=︒ 设BD x =,则2AB x =,AD =,900CD x =+,在Rt ACD △中,tan CD CAD AD ∠=,∴=,解得450x =, 在Rt ACD △中,sin CD CAD AC ∠=,∴900 1.7321558.81559AC ===⨯=≈(米), ∴湖岸A 与码头C 的距离为1559米;(2)解:设快艇将游客送上救援船时间为t 分钟,由题意可得:1504009001559t t +=+,4.475t ≈<,∴在接到通知后,快艇能在5分钟内将该游客送上救援船.13. 【答案】(1)283米(2)经过点B 到达点D 较近【分析】(1)过E 作BC 的垂线,垂足为H ,可得四边形ACHE 是矩形,从而得到200EH AC ==米,再证得△DEH 为等腰直角三角形,即可求解;(2)分别求出两种路径的总路程,即可求解.(1)解:过E作BC的垂线,垂足为H,∴∠CAE=∠C=∠CHE=90°,∴四边形ACHE是矩形,∴200==米,EH AC根据题意得:∠D=45°,∴△DEH为等腰直角三角形,∴DH=EH=200米,∴283DE=(米);(2)解:根据题意得:∠ABC=∠BAE=30°,在Rt ABC中,∴2400==米,AB AC∴经过点B到达点D,总路程为AB+BD=500米,∴BC=∴100200100==+-=-=(米),AE CH BC BD DH∴经过点E到达点D,总路程为100529500≈>,∴经过点B到达点D较近.14. 【答案】梯子顶部离地竖直高度BC约为2.9m.【分析】根据竖直的墙与梯子形成直角三角形,利用锐角三角函数即可求出AC的长.【详解】解:在Rt△ABC中,AB=3,∠ACB=90°,∠BAC=75°,∴BC=AB⋅sin75°≈3×0.97=2.91≈2.9(m).答:梯子顶部离地竖直高度BC约为2.9m.15. 【答案】(1)15m(2)在该消防车不移动位置的前提下,云梯能够伸到险情处;理由见解析【分析】(1)在Rt△ABD中,利用锐角三角函数的定义求出AB的长,即可解答;(2)根据题意可得DE =BC =2m ,从而求出AD =17m ,然后在Rt △ABD 中,利用锐角三角函数的定义求出AB 的长,进行比较即可解答.(1)解:在Rt △ABD 中,∠ABD =53°,BD =9m ,∴AB =9cos530.6BD ≈︒=15(m ), ∴此时云梯AB 的长为15m ;(2)解:在该消防车不移动位置的前提下,云梯能伸到险情处,理由:由题意得:DE =BC =2m ,∵AE =19m ,∴AD =AE -DE =19-2=17(m ),在Rt △ABD 中,BD =9m ,∴AB ===m ),∵<20m ,∴在该消防车不移动位置的前提下,云梯能伸到险情处.16. 【答案】 9 ; 7.5αβ-=︒【分析】(1)过点A 作AG ⊥EF ,垂足为G ,证明四边形ABEG 是矩形,解直角三角形AFG ,确定FG ,EG 的长度即可.(2)根据光的反射原理画出光路图,清楚光线是平行线,运用解直角三角形思想,平行线的性质求解即可.【详解】(1)过点A 作AG ⊥EF ,垂足为G .∵∠ABE =∠BEG =∠EGA =90°,∴四边形ABEG 是矩形,∴EG =AB =1m ,AG =EB =8m ,∵∠AFG =45°,∴FG =AG =EB =8m ,∴EF =FG +EG =9(m ).故答案为:9;(2)7.5αβ-=︒.理由如下:∵∠A 'B 'E =∠B 'EG =∠EG A '=90°,∴四边形A 'B 'EG 是矩形,∴EG =A 'B '=1m ,A 'G =E B '=,∴tan ∠A 'FG =A G FG '= ∴∠A 'FG =60°,∠F A 'G =30°,根据光的反射原理,不妨设∠FAN =2m ,∠F A 'M =2n ,∵ 光线是平行的,∴AN ∥A 'M ,∴∠GAN =∠G A 'M ,∴45°+2m =30°+2n ,解得n -m =7.5°,根据光路图,得90,90DAB m D A B n αβ'∠==-∠==-'',∴9090m n n m αβ-=--+=-,故7.5αβ-=︒,故答案为:7.5αβ-=︒ .17. 【答案】(1)3.4cm(2)22.2cm【分析】(1)过点C 作CF DE ⊥于点F ,根据等腰三角形的性质可得DF EF =,20DCF ECF ∠=∠=︒,再利用锐角三角函数,即可求解;(2)连结AB .设纸飞机机尾的横截面的对称轴为直线l ,可得对称轴l 经过点C .从而得到四边形DGCE 是矩形,进而得到DE =CG ,然后过点D 作DG AB ⊥于点G ,过点E 作EH ⊥AB 于点H ,可得1202GDC CEH DCE ∠=∠=∠=︒,从而得到2020DAB GDC EBH CEH ∠=∠=︒∠=∠=︒,,再利用锐角三角函数,即可求解.(1)解:如图2,过点C 作CF DE ⊥于点F ,∵CD CE =,∴DF EF =,CF 平分DCE ∠.∴20DCF ECF ∠=∠=︒,∴sin 2050.34 1.7DF CD ︒=⋅≈⨯=,∴2 3.4cm DE DF ==.(2)解:如图3,连结AB .设纸飞机机尾的横截面的对称轴为直线l ,∵纸飞机机尾的横截面示意图是一个轴对称图形, ∴对称轴l 经过点C .∴AB l ⊥,DE l ⊥,∴AB ∥DE .过点D 作DG AB ⊥于点G ,过点E 作EH ⊥AB 于点H , ∵DG ⊥AB ,HE ⊥AB ,∴∠EDG =∠DGH =∠EHG =90°,∴四边形DGCE 是矩形,∴DE =HG ,∴DG ∥l , EH ∥l , ∴1202GDC CEH DCE ∠=∠=∠=︒, ∵AD CD ⊥,BE ⊥CE ,∴2020DAB GDC EBH CEH ∠=∠=︒∠=∠=︒,, ∴cos 20100.949.4,cos 20100.949.4AG AD BH BE =⋅︒≈⨯==⋅︒≈⨯=, ∴22.2cm AB BH AG DE =++=.18. 【答案】菜园与果园之间的距离为630米【分析】过点D 作EF AB ⊥,交AB 于点E ,则CF BC ⊥,四边形BCFE 是矩形,在Rt CDF △中,求得180DF =,CF =240,进而求得AE =210,在Rt ADE △中,利用正切进行求解即可.【详解】解:如图,过点D 作EF AB ⊥,交AB 于点E ,则CF BC ⊥,∵∠B =90°,∴四边形BCFE 是矩形, CF BE ∴=,BC =EF ,在Rt CDF △中,sin 3000.6180,cos 3000.8240DF CD FCD CF CD FCD =⋅∠≈⨯==⋅∠≈⨯=, ∴BE =240,∴AE =AB -BE =210,在Rt ADE △中,65DAE ∠=︒,tan =DE A AE , tan 210tan 65450DE AE A ∴=⋅=⨯︒≈米. ∴BC =EF =DF +DE =180+450=630 答:菜园与果园之间的距离630米.。