(好)电磁感应中的导轨类问题
- 格式:ppt
- 大小:2.28 MB
- 文档页数:45
电磁感应综合-导轨模型计算题1.(9分)如图所示,两根间距L=1m 、电阻不计的平行光滑金属导轨ab 、cd 水平放置,一端与阻值R =2Ω的电阻相连。
质量m=1kg 的导体棒ef 在外力作用下沿导轨以v=5m/s 的速度向右匀速运动。
整个装置处于磁感应强度B=0.2T 的竖直向下的匀强磁场中。
求:(1)感应电动势大小;(2)回路中感应电流大小; (3)导体棒所受安培力大小。
【答案】(1)V 1=E (2)0.5A I = (3)0.1N F =安【解析】 试题分析:(1)导体棒向右运动,切割磁感线产生感应电动势BLv E = 代入数据解得:V 1=E(2)感应电流RE I =代入数据解得:A 5.0=I(3)导体棒所受安培力BIL F =安 代入数据解得:N 10.F =安考点:本题考查了电磁感应定律、欧姆定律、安培力。
2.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距1 m ,导轨平面与水平面成θ=37°角,下端连接阻值为R 的电阻.匀强磁场方向与导轨平面垂直,质量为0.2 kg 、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25.(1)求金属棒沿导轨由静止开始下滑时的加速度大小.(2)当金属棒下滑速度达到稳定时,电阻R 消耗的功率为8 W ,求该速度的大小.(3)在上问中,若R =2 Ω,金属棒中的电流方向由a 到b ,求磁感应强度的大小与方向.(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)【答案】(1)4m/s 2(2)10m/s (3)0.4T 【解析】试题分析:(1)金属棒开始下滑的初速为零,Ve b a c由牛顿第二定律得:mgsinθ-μmgcosθ=ma ①由①式解得:a=10×(0.6-0.25×0.8)m/s 2=4m/s 2②;(2)设金属棒运动达到稳定时,速度为v ,所受安培力为F , 棒在沿导轨方向受力平衡:mgsinθ一μmgcos0一F=0 ③此时金属棒克服安培力做功的功率等于电路中电阻R 消耗的电功率:Fv=P ④ 由③、④两式解得:s m s m F P v /10/)8.025.06.0(102.08=⨯-⨯⨯==⑤ (3)设电路中电流为I ,两导轨间金属棒的长为l ,磁场的磁感应强度为B , 感应电流:RBlvI =⑥ 电功率:P=I 2R ⑦ 由⑥、⑦两式解得:T T vl PR B 4.011028=⨯⨯==⑧ 磁场方向垂直导轨平面向上;考点:牛顿第二定律;电功率;法拉第电磁感应定律. 3.(13分)如图,在竖直向下的磁感应强度为B 的匀强磁场中,两根足够长的平行光滑金属轨道MN 、PQ 固定在水平面内,相距为L 。
辅导23:电磁感应中的“杆+导轨”类问题(3大模型)解题技巧电磁感应中的杆+导轨模型的实质是不同形式的能量的转化过程,处理这类问题要从功和能的观点入手,弄清导体棒切割磁感线过程中的能量转化关系,现从力学、图像、能量三种观点出发,分角度讨论如下:类型一:单杆+电阻+导轨模型类【初建模型】【例题1】(2017·淮安模拟)如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。
整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。
将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。
重力加速度为g ,导轨电阻不计,杆与导轨接触良好。
求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。
【思路点拨】:【答案】:(1)g sin θ,方向沿导轨平面向下;2mgR sin θB 2L 2,方向沿导轨平面向下;(2)12mgx sin θ-m 3g 2R 2sin 2θB 4L 4【解析】:(1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BLv 回路中的感应电流I =ER +R杆所受的安培力F =BIL根据牛顿第二定律有mg sin θ-B 2L 2v 2R=ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L2,方向沿导轨平面向下。
(2)杆cd从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sinθ=Q总+12mv m2又Q杆=12Q总,所以Q杆=12mgx sin θ-m3g2R2sin2θB4L4。
【内化模型】单杆+电阻+导轨四种题型剖析题型一(v0≠0)题型二(v0=0)题型三(v0=0)题型四(v0=0)说明杆cd以一定初速度v0在光滑水平轨道上滑动,质量为m,电阻不计,两导轨间距为L轨道水平光滑,杆cd质量为m,电阻不计,两导轨间距为L,拉力F恒定倾斜轨道光滑,倾角为α,杆cd质量为m,两导轨间距为L竖直轨道光滑,杆cd质量为m,两导轨间距为L示意图力学观点杆以速度v切割磁感线产生感应电动势E=BLv,电流I=BLvR,安培力F=BIL=B2L2vR。
12专题:电磁感应中的动力学、能量、动量的问题一、电磁感应中的动力学问题1.如图所示,两平行且无限长光滑金属导轨MN、PQ与水平面的夹角为θ=30°,两导轨之间的距离为L=1 m,两导轨M、P之间接入电阻R=0.2 Ω,导轨电阻不计,在abdc区域内有一个方向垂直于两导轨平面向下的磁场Ⅰ,磁感应强度B0=1 T,磁场的宽度x1=1 m;在cd连线以下区域有一个方向也垂直于导轨平面向下的磁场Ⅱ,磁感应强度B1=0.5 T。
一个质量为m=1 kg的金属棒垂直放在金属导轨上,与导轨接触良好,金属棒的电阻r=0.2 Ω,若金属棒在离ab连线上端x0处自由释放,则金属棒进入磁场Ⅰ恰好做匀速运动。
金属棒进入磁场Ⅱ后,经过ef时又达到稳定状态,cd与ef之间的距离x2=8 m。
求:(g取10 m/s2)(1)金属棒在磁场Ⅰ运动的速度大小;(2)金属棒滑过cd位置时的加速度大小;(3)金属棒在磁场Ⅱ中达到稳定状态时的速度大小。
二、电磁感应中的能量问题2.如图甲所示,两条足够长的平行金属导轨间距为0.5 m,固定在倾角为37°的斜面上。
导轨顶端连接一个阻值为1 Ω的电阻。
在MN下方存在方向垂直于斜面向上、大小为1 T的匀强磁场。
质量为0.5 kg的金属棒从AB处由静止开始沿导轨下滑,其运动过程中的v-t图象如图乙所示。
金属棒运动过程中与导轨保持垂直且接触良好,不计金属棒和导轨的电阻,取g=10 m/s2,sin 37°=0.6,cos 37°=0.8。
(1)求金属棒与导轨间的动摩擦因数;(2)求金属棒在磁场中能够达到的最大速率;(3)已知金属棒从进入磁场到速度达到5 m/s时通过电阻的电荷量为1.3 C,求此过程中电阻产生的焦耳热。
三、电磁感应中的动量问题1、动量定理在电磁感应中的应用导体棒或金属框在感应电流所引起的安培力作用下做非匀变速直线运动时,安培力的冲量为:I安=B I Lt=BLq ,通过导体棒或金属框的电荷量为:q=IΔt=ER 总Δt=nΔΦΔt·R总Δt=nΔФR总,磁通量变化量:ΔΦ=BΔS=BLx.当题目中涉及速度v、电荷量q、运动时间t、运动位移x时常用动量定理求解.2、正确运用动量守恒定律处理电磁感应中的问题常见情景及解题思路双杆切割式(导轨光滑)杆MN做变减速运动.杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动.系统动量守恒,对其中某杆可用动量定理动力学观点:求加速度能量观点:求焦耳热动量观点:整体动量守恒求末速度,单杆动量定理求冲量、电荷量3.如图所示,光滑平行金属导轨的水平部分处于竖直向下的匀强磁场中,磁感应强度B=3 T。
应用动力学和能量观点解决电磁感应中的“导轨+杆”模型问题1.模型概述“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变.2.常见模型类型“电—动—电”型“动—电—动”型示意图已知量棒ab长L,质量m,电阻R;导轨光滑水平,电阻不计棒ab长L,质量m,电阻R;导轨光滑,电阻不计过程分析S闭合,棒ab受安培力F=BLER,此时加速度a=BLEmR,棒ab速度v↑→感应电动势E′=BLv↑→电流I↓→安培力F=BIL↓→加速度a↓,当安培力F=0时,a=0,v最大,最后匀速运动棒ab释放后下滑,此时加速度a=gsin α,棒ab速度v↑→感应电动势E=BLv↑→电流I=ER↑→安培力F=BIL↑→加速度a↓,当安培力F=mgsin α时,a=0,v最大,最后匀速运动能量转化通过安培力做功,把电能转化为动能克服安培力做功,把重力势能转化为内能运动形式变加速运动变加速运动最终状态匀速运动,vm=E′BL匀速运动vm=mgRsin αB2L2一、单棒问题1、发电式(1)电路特点:导体棒相当于电源,当速度为v时,电动势E=Blv(2)安培力特点:安培力为阻力,并随速度增大而增大(3)加速度特点:加速度随速度增大而减小(4)运动特点:加速度减小的加速运动(5)最终状态:匀速直线运动(6)两个极值F①v=0时,有最大加速度:②a=0时,有最大速度:(7)能量关系(8)动量关系(9)变形:摩擦力;改变电路;改变磁场方向;改变轨道解题步骤:解决此类问题首先要建立“动→电→动”的思维顺序,可概括总结为:(1)找”电源”,用法拉第电磁感应定律和楞次定律求解电动势的大小和方向;(2)画出等效电路图,求解回路中的电流的大小及方向;(3)分析安培力对导体棒运动速度、加速度的动态过程,最后确定导体棒的最终运动情况;(4)列出牛顿第二定律或平衡方程求解.(一)导轨竖直1、如图所示,足够长的光滑平行金属导轨MN、PQ竖直放置,其宽度L=1 m,一匀强磁场垂直穿过导轨平面,导轨的上端M与P之间连接阻值为R=0.40 Ω的电阻,质量为m=0.01 kg、电阻为r=0.30 Ω的金属棒ab紧贴在导轨上.现使金属棒ab由静止开始下滑,下滑过程中ab始终保持水平,且与导轨接触良好,其下滑距离x与时间t的关系如图乙所示,图象中的OA段为曲线,AB段为直线,导轨电阻不计,g=10 m/s2(忽略ab棒运动过程中对原磁场的影响),求:甲乙(1)磁感应强度B的大小;(2)金属棒ab在开始运动的1.5 s内,通过电阻R的电荷量;(3)金属棒ab在开始运动的1.5 s内,电阻R上产生的热量.答案(1)0.1 T(2)0.67 C(3)0.26 J解析(1)金属棒在AB段匀速运动,由题中图象乙得:v=ΔxΔt=7 m/s I=BLvr+R,mg=BIL 解得B=0.1 TNM22-+=()()mF mg R rvB lμ212E mFs Q mgS mvμ=++mFt BLq mgt mvμ--=-F B F(2)q =I Δt I =ΔΦR +r Δt ΔΦ=ΔSΔtB 解得:q =0.67 C(3)Q =mgx -12mv2 解得Q =0.455 J 从而QR =Rr +R Q =0.26 J2、 如图所示,竖直放置的两根足够长平行金属导轨相距L ,导轨间接有一定值电阻R ,质量为m ,电阻为r 的金属棒与两导轨始终保持垂直并良好接触,且无摩擦,整个装置放在匀强磁场中,磁场方向与导轨平面垂直,现将金属棒由静止释放,金属棒下落高度为h 时开始做匀速运动,在此过程中( )A .导体棒的最大速度为2ghB .通过电阻R 的电荷量为BLhR +rC .导体棒克服安培力做的功等于电阻R 上产生的热量D .重力和安培力对导体棒做功的代数和等于导体棒动能的增加量 答案 BD3、如图2所示,电阻为R ,其他电阻均可忽略,ef 是一电阻可不计的水平放置的导体棒,质量为m ,棒的两端分别与ab 、cd 保 持良好接触,又能沿框架无摩擦下滑,整个装置放在与框架垂直的 匀强磁场中,当导体棒ef 从静止下滑一段时间后闭合开关S ,则S 闭合后 ( ) A .导体棒ef 的加速度可能大于g B .导体棒ef 的加速度一定小于gC .导体棒ef 最终速度随S 闭合时刻的不同而不同D .导体棒ef 的机械能与回路内产生的电能之和一定守恒4、MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40m ,电阻不计.导轨所在平面与磁感应强度B 为0.50T 的匀强磁场垂直.质量m 为6.0×10-3kg 、电阻为1.0Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触.导轨两端分别接有滑动变阻器和阻值为3.0Ω的电阻R 1.当杆ab 达到稳定状态时以速率υ匀速下滑,整个电路消耗的电功率P 为0.27W ,重力加速度取10m/s 2,试求速率υ和滑动变阻器接入电路部分的阻值R 2.5、如图,两根足够长的金属导轨ab 、cd 竖直放置,导轨间距离为L 1电阻不计。
一、单棒问题基本模型运动特点最终特征阻尼式a逐渐减小的减速运动静止I=0电动式匀速a逐渐减小的加速运动I=0 (或恒定)匀速发电式a逐渐减小的加速运动I 恒定二、含容式单棒问题基本模型运动特点最终特征放电式a逐渐减小的加速运动匀速运动I=0 无外力充电式a逐渐减小的减速运动匀速运动I=0 有外力充电式匀加速运动匀加速运动I 恒定三、无外力双棒问题基本模型运动特点最终特征无外力等距式杆1做a渐小的加速运动杆2做a渐小的减速运动v1=v2I=0无外力不等距式杆1做a渐小的减速运动杆2做a渐小的加速运动a=0I=0L1v1=L2v2四、有外力双棒问题基本模型运动特点最终特征有外力等距式杆1做a渐大的加速运动杆2做a渐小的加速运动a1=a2,Δv 恒定I恒定有外力不等距式杆1做a渐小的加速运动杆2做a渐大的加速运动a1≠a2,a1、a2恒定I 恒定题型一阻尼式单棒模型如图。
1.电路特点:导体棒相当于电源。
2.安培力的特点:安培力为阻力,并随速度减小而减小。
F B =BIl=3.加速度特点:加速度随速度减小而减小,a= =4.运动特点:速度如图所示。
a 减小的减速运动5.最终状态:静止 6.三个规律 (1)能量关系:-0 = Q , =(2)动量关系: 00BIl t mv -⋅∆=-q =, q ==(3)瞬时加速度:a= =【典例1】如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽为L 的区域内,有一个边长为a (a<L )的正方形闭合线圈以初速v 0垂直磁场边界滑过磁场后速度变为v (v<v 0)那么( )A. 完全进入磁场中时线圈的速度大于(v0+v)/2B. 安全进入磁场中时线圈的速度等于(v0+v)/2C. 完全进入磁场中时线圈的速度小于(v0+v)/2D. 以上情况A、B均有可能,而C是不可能的【答案】B【解析】设线圈完全进入磁场中时的速度为v x。
线圈在穿过磁场的过程中所受合外力为安培力。
电磁感应中导轨问题的分类及应用一、单动式导轨的基本特点和规律如图所示,间距为l的平行导轨与电阻R相连,整个装置处在大小为B、垂直导轨平面向上的匀强磁场中。
质量为m、电阻为r的导体从静止开始沿导轨滑下,已知导体与导轨的动摩擦因数为μ。
1.电路特点导体为发电边,与电源等效。
当导体速度为v时,其电动势为E=Blv。
2.安培力特点安培力为运动阻力,并随速度按正比规律增大F B=Blv=B2l2v/(R+r)∝v3.加速度特点加速度随速度增大而减小,导体做加速度减小的加速运动ma=mgsinθ-μmgcosθ-B2l2v/(R+r)4.两个极值的规律当v=0时,F B =0,加速度最大为a=gsinθ-μgcosθ当a=0时,F合=0,速度最大。
根据平衡条件有mgsinθ=-μmgcosθ+B2l2v/(R+r)所以最大速度为v m=mg(sinθ-μcosθ)(R+r)/(B2l2)5.匀速运动时能量转化规律当导体以最大速度匀速运动时,重力的机械功率等于安培力功率(即电功率)和摩擦力功率之和,并均达到最大值。
P G=P F+Pμ P G=mgv m sinθ Pμ=μmgv m cosθP F=F m v m=I m E m=E m2/(R+r)=I m2(R+r)当μ=0时,重力的机械功率就等于安培力功率,也等于电功率,这就是发电导轨在匀速运动过程中最基本的能量转化和守恒定律mgv m sinθ= F m v m=I m E m=E m2/(R+r)=I m2(R+r)二、双动式导轨的基本问题和规律如图所示,间距为l的光滑平行导轨水平放置,处在大小为B、方向竖直向上的匀强磁场中,质量均为m、电阻均为r的两根导体分别在平行于导轨方向的两个大小相等、方向相反的水平拉力F作用下,以速度v向左右两侧反向匀速运动。
1.电路特点两导体反方向(相向或背向)运动,均为发电边,与两个同样的电源串联等效。
2.回路中电动势和电流的计算根据欧姆定律,电动势和电流分别为E合=2E=2BlvI= E合/R=2Blv/(2r)=Blv/r3.拉力和安培力的特点和计算拉力为动力,安培力为阻力;在匀速运动的条件下,两者为平衡力。
2021年高考物理100考点最新模拟题千题精练(选修3-2)第四部分 电磁感应专题4.11 电磁感应中的动力学问题(提高篇)一.选择题1. (2020陕西咸阳一模)CD 、EF 是两条水平放置的阻值可忽略的平行金属导轨,导轨间距为L ,在水平导轨的左侧存在磁感应强度方向垂直导轨平面向上的匀强磁场,磁感应强度大小为B ,磁场区域的长度为d ,如图所示导轨的右端接有一电阻R ,左端与一弯曲的光滑轨道平滑连接将一阻值也为R 的导体棒从弯曲轨道上h 高处由静止释放,导体棒最终恰好停在磁场的右边界处。
已知导体棒与水平导轨接触良好,且动摩擦因数为μ,则下列说法中正确的是( )A. 电阻R 2BL ghB. 流过电阻R 的电荷量为2BLdR C. 整个电路中产生的焦耳热为mgh-μmgd D. 电阻R 中产生的焦耳热为12mgh 【参考答案】ABC【名师解析】金属棒下滑过程中,由机械能守恒定律得:mgh=12mv 2,所以金属棒到达水平面时的速度v=2gh ,金属棒到达水平面后进入磁场受到向左的安培力做减速运动,则导体棒刚到达水平面时的速度最大,所以最大感应电动势为E=BLv ,最大的感应电流为I=E/2R=22BL ghR,故A 正确;流过电阻R 的电荷量为q=r R ∆Φ+=2BLdR,故B 正确;金属棒在整个运动过程中,由动能定理得:mgh-W B -μmgd=0-0, 则克服安培力做功:W B =mgh-μmgd ,所以整个电路中产生的焦耳热为Q=W B =mgh-μmgd ,故C 正确;克服安培力做功转化为焦耳热,电阻与导体棒电阻相等,通过它们的电流相等,则金属棒产生的焦耳热为:Q R =Q/2=12(mgh-μmgd ),故D 错误。
【关键点拨】。
金属棒在弯曲轨道下滑时,只有重力做功,机械能守恒,由机械能守恒定律或动能定理可以求出金属棒到达水平面时的速度,由E=BLv 求出感应电动势,然后求出感应电流;由q=可以求出流过电阻R 的电荷量;克服安培力做功转化为焦耳热,由动能定理(或能量守恒定律)可以求出克服安培力做功,得到导体棒产生的焦耳热。
电磁感应中的导轨上的导体棒问题,是力学和电学的综合问题。
解决 电磁感应中的导轨上的导体棒问题 ,首先要挖掘出导体棒的稳定条件及它最后能达到的稳定状态,然后才能利用相关知识和稳定条件列方程求解。
下文是常见导轨上的导体棒问题的分类及结合典型例题的剖析。
想必你阅过全文,你会对滑轨上的导体棒运动问题,有一个全面的细致的了解,能迅速分析出稳定状态,挖掘出稳定条件,能准确的判断求解所运用的方法。
一、滑轨上只有一个导体棒的问题滑轨上只有一个导体棒的问题,分两类情况:一种是含电源闭合电路的导体棒问题,另一种是闭合电路中的导体棒在安培力之外的力作用下的问题。
(一)含电源闭合电路的导体棒问题例 1、如图1所示,水平放置的光滑导轨MN、PQ上放有长为L、电阻为R、质量为m的金属棒 ab ,导轨左端接有内阻不计、电动势为E的电源组成回路,整个装置放在竖直向上的匀强磁场B中,导轨电阻不计且足够长,并与电键S串联。
当闭合电键后,求金属棒可达到的最大速度。
图 1分析:本题的稳定状态是金属棒最后的匀速运动;稳定条件是金属棒的加速度为零(安培力为零,棒产生的感应电动势与电源电动势大小相等)。
解析:闭合电键后,金属棒在安培力的作用下向右运动。
当金属棒的速度为v时,产生的感应电动势,它与电源电动势为反接,从而导致电路中电流减小,安培力减小,金属棒的加速度减小,即金属棒做的是一个加速度越来越小的加速运动。
但当加速度为零时,导体棒的速度达到最大值,金属棒产生的电动势与电源电动势大小相等,回路中电流为零,此后导体棒将以这个最大的速度做匀速运动。
金属板速度最大时,有解得(二)闭合电路中的导体棒在安培力之外的力作用下的问题1.导体棒在外力作用下从静止运动问题例 2、 如图 2,光滑导体棒 bc固定在竖直放置的足够长的平行金属导轨上,构成框架 abcd ,其中 bc棒电阻为R,其余电阻不计。
一质量为m且不计电阻的导体棒 ef 水平放置在框架上,且始终保持良好接触,能无摩擦地滑动。