解三角形应用举例
- 格式:ppt
- 大小:183.50 KB
- 文档页数:12
解三角形应用举例一、测量距离问题例1(1)如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B 的距离,测量者可以在河岸边选定两点C,D,若测得CD=32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为km.答案6 4解析∵∠ADC=∠ADB+∠CDB=60°,∠ACD=60°,∴∠DAC=60°,∴AC=DC=32km.在△BCD中,∠DBC=180°-∠CDB-∠ACD-∠ACB=45°,由正弦定理,得BC=DCsin∠DBC·sin∠BDC=32sin 45°·sin 30°=64(km).在△ABC中,由余弦定理,得AB2=AC2+BC2-2AC·BCcos 45°=34+38-2×32×64×22=38.∴AB=64km.∴A,B两点间的距离为64km.(2)如图,为了测量两座山峰上P,Q两点之间的距离,选择山坡上一段长度为300 3 m且和P,Q两点在同一平面内的路段AB的两个端点作为观测点,现测得∠PAB=90°,∠PAQ=∠PBA=∠PBQ=60°,则P,Q两点间的距离为m.答案900解析由已知,得∠QAB=∠PAB-∠PAQ=30°.又∠PBA=∠PBQ=60°,∴∠AQB=30°,∴AB=BQ.又PB为公共边,∴△PAB≌△PQB,∴PQ =PA.在Rt△PAB中,AP=AB·tan 60°=900(m),故PQ=900 m,∴P,Q两点间的距离为900 m.二、测量高度问题例2如图所示,为测量一树的高度,在地面上选取A,B两点,从A,B两点分别测得树尖的仰角为30°,45°,且A,B 两点间的距离为60 m,则树的高度为m.答案30+30 3解析在△PAB中,∠PAB=30°,∠APB =15°,AB=60 m,sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin 30°=22×32-22×12=6-2 4,由正弦定理得PB sin 30°=AB sin 15°, 所以PB =12×606-24=30(6+2), 所以树的高度为PB ·sin 45°=30(6+2)×22=(30+303)(m ). 三、测量角度问题例3 已知岛A 南偏西38°方向,距岛A 3海里的B 处有一艘缉私艇.岛A 处的一艘走私船正以10海里/小时的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?⎝⎛⎭⎫参考数据:sin 38°≈5314,sin 22°≈3314 解 如图,设缉私艇在C 处截住走私船,D 为岛A 正南方向上一点,缉私艇的速度为x 海里/小时,结合题意知BC =0.5x ,AC =5,∠BAC =180°-38°-22°=120°.由余弦定理可得BC 2=AB 2+AC 2-2AB ·ACcos 120°,所以BC 2=49,所以BC =0.5x =7, 解得x =14.又由正弦定理得sin ∠ABC =AC ·sin ∠BAC BC=5×327=5314, 所以∠ABC =38°,又∠BAD =38°,所以BC ∥AD ,故缉私艇以14海里/小时的速度向正北方向行驶,恰好用0.5小时截住该走私船. 素养提升 数学抽象是指舍去事物的一切物理属性,得到数学研究对象的思维过程,主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并且用数学符号或数学术语予以表征.从实际问题中抽象出距离、高度、角度等数学问题,然后利用正弦定理、余弦定理求解,很好地体现了数学抽象的数学素养.。
解三角形(4)---解三角形应用举例例1、如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC=︒51,∠ACB=︒75.求A 、B 两点的距离(精确到0.1m )启发提问1:∆ABC 中,根据已知的边和对应角,运用哪个定理比较适当?启发提问2:运用该定理解题还需要那些边和角呢?分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB 的对角,AC 为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB 边。
解:根据正弦定理,得ACB AB ∠sin = ABCAC ∠sin AB =ABC ACB AC ∠∠sin sin =ABC ACB ∠∠sin sin 55 = )7551180sin(75sin 55︒-︒-︒︒ =︒︒54sin 75sin 55 ≈ 65.7(m) 答:A 、B 两点间的距离为65.7米变式练习:两灯塔A 、B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东30︒,灯塔B 在观察站C 南偏东60︒,则A 、B 之间的距离为多少?(画图建立数学模型。
答案:2a km )例2、如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法。
分析:这是例1的变式题,研究的是两个不可到达的点之间的距离测量问题.首先需要构造三角形,所以需要确定C 、D 两点.根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC 和BC ,再利用余弦定理可以计算出AB 的距离.解:测量者可以在河岸边选定两点C 、D ,测得CD=a ,并且在C 、D 两点分别测得∠BCA=α,∠ACD=β,∠CDB=γ,∠BDA =δ,在∆ADC 和∆BDC 中,应用正弦定理得:AC = )](180sin[)sin(δγβδγ++-︒+a = )sin()sin(δγβδγ+++a BC = )](180sin[sin γβαγ++-︒a = )sin(sin γβαγ++a 计算出AC 和BC 后,再在∆ABC 中,应用余弦定理计算出AB 两点间的距离AB =αcos 222BC AC BC AC ⨯-+ 分组讨论:还没有其它的方法呢?变式训练:若在河岸选取相距40米的C、D两点,测得∠BCA=60︒,∠ACD=30︒,∠CDB=45︒,∠BDA =60︒(画图建立数学模型。
解直角三角形在实际生活中的应用山东 李浩明在现实生活中, 有许多和解直角三角形有关的实际问题,如航海航空、建桥修路、测量技术、图案设计等,解决这类问题其关键是把具体问题抽象成“直角三角形”模型,利用直角三角形的边角关系以及勾股定理来解决.下面举例说明,供大家参考.一、航空问题例1.(2008年桂林市)汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒(如图1).求A 、B1.414 1.732==)分析:要求A 、B 两个村庄间的距离,由题意知AB =PB ,在Rt △PBC 中,可求得60PBC ∠=︒,又因为PC =450,所以可通过解直角三角形求得PB.解:根据题意得:30A ∠=︒,60PBC ∠=︒,所以6030APB ∠=︒-︒,所以A P B A ∠=∠,所以AB =PB .在Rt BCP ∆中,90,60C PBC ∠=︒∠=︒,PC =450,所以PB=450sin 60==︒.所以520AB PB ==≈(米) 答:A 、B 两个村庄间的距离为520米. 二、测量问题例2.(2008年湛江市)如图2所示,课外活动中,小明在离旗杆AB 10米的C 处,QB CP A 45060︒30︒图1用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD =1.5米,求旗杆AB 的高(精确到0.1米) .分析:要求AB 的高,由题意知可知CD=BE ,先在Rt △ADE 中求出AE 的长,再利用AB=BE +AE 求出AB 的长.解:在Rt △ADE 中,tan ∠ADE =DEAE. ∵DE =10,∠ADE =40︒.∴AE =DE tan ∠ADE =10tan 40︒≈100.84⨯=8.4. ∴AB =AE +EB =AE +DC =8.4 1.59.9+=.答:旗杆AB 的高为9.9米. 三、建桥问题例4.(2008年河南)如图所示,A 、B 两地之间有一条河,原来从A 地到B 地需要经过DC ,沿折线A →D →C →B 到达,现在新建了桥EF ,可直接沿直线AB 从A 地到达B 地.一直BC =11km ,∠A =45°,∠B =37°.桥DC 和AB 平行,则现在从A 地到达B 地可比原来少走多少路程?(结果精确到0.1km .参考数据: 1.412≈,sin37°≈0.60,cos37°≈0.80). 分析:要求现在比原来少走多少路程,就需要计算两条路线路程之差,如图构造平行四边形DCBG ,将两条路线路程之差转化为AD DG AG +-,作高线DH ,将△ADG 转化为两个直角三角形,先在在Rt DGH △中求DH 、GH ,再在Rt ADH △中求AD 、AH,此题即可得解.解:如图,过点D 作DH AB ⊥于H ,DG CB ∥交AB 于G .DC AB ∥,∴四边形DCBG 为平行四边形.∴DC GB =,11GD BC ==.∴两条路线路程之差为AD DG AG +-. 在Rt DGH △中,sin37110.60 6.60DH DG =⋅≈⨯=, cos37110.808.80GH DG =⋅⨯≈≈.在Rt ADH △中,1.41 6.609.31AD =⨯≈≈.6.60AH DH =≈.∴(9.3111)(6.608.80)AD DG AG +-=+-+≈即现在从A 地到B 地可比原来少走约4.9km . 四、图案设计问题例4.(2008年上海市)“创意设计”公司员工小王不慎将墨水泼在一张设计图纸上,导致其中部分图形和数据看不清楚(如图4所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O 的半径OC 所在的直线为对称轴的轴对称图形,A 是OD 与圆O 的交点.由于图纸中圆O 的半径r 的值已看不清楚,根据上述信息(图纸中1:0.75i =是坡面CE 的坡度),求r 的值.分析:要求圆O 的半径r 的值,需在直角三角形ODH 中来解决,而已知的条件太少,需要先在直角三角形CEH 中,根据条件5CE =、坡面CE 的坡度1:0.75i =求出EH 、CH ,然后在直角三角形ODH 中利用勾股定理列出方程,从而求出r 的值.解:由已知OCDE ⊥,垂足为点H ,则90CHE ∠=.图41:0.75i =,43CH EH ∴=. 在Rt HEC △中,222EH CH EC +=.设4CH k =,3(0)EH k k =>,又5CE =,得222(3)(4)5k k +=,解得1k =.∴3EH =,4CH =.∴7DH DE EH =+=,7OD OA AD r =+=+,4OH OC CH r =+=+. 在Rt ODH △中,222OH DH OD +=,∴222(4)7(7)r r ++=+. 解得83r =.航海中的安全问题船只在海上航行,特别要注意安全问题,这就需要运用数学知识进行有关的计算,以确保船只航行的安全性.请看下面两例.例1 (深圳市)如图1,某货船以24海里/时的速度将一批重要物资从A 处运往正东方向的M 处,在点A 处测得某岛C 在北偏东60的方向上.该货船航行30分钟后到达B 处,此时再测得该岛在北偏东30的方向上,已知在C 岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.分析:问题的关键是弄清方位角的概念,过点C 作CD ⊥AB 于D ,然后通过解直角三角形求出CD 的长,通过列方程解决几何问题也是一种常用方法.解:由已知,得AB=24×21=12,∠CAB=90°-60°=30°,∠CBD=90°-30°=60°,所以∠C=30°,所以∠C=∠CAB ,所以CB=AB=12.在Rt △CBD 中,sin ∠CBD=CB CD ,所以CD=CB ·sin ∠CBD=12×3623=.∵936> 所以货船继续向正东方向行驶无触礁危险.例2 如图2,一艘渔船在A 处观测到东北方向有一小岛C ,已知小岛C 周围4.8海里范围内是水产养殖场.渔船沿北偏东30°方向航行10海里到达B 处,在B 处测得小岛C 在北偏东60°方向上,这时渔船改变航线向正东(即BD )方向航行,这艘渔船是否有进入养殖场的危险?分析:先将实际问题转化为解直角三角形的问题.可有如下两种方法求解. 解法一:如图3,过点B 作BM ⊥AH 于M ,则BM//AF.所以∠ABM=∠BAF=30°. 在Rt △BAM 中,AM=21AB=5,BM=35. 过点C 作CN ⊥AH 于点N ,交BD 于K. 在Rt △BCK 中,∠CBK=90°-60°=30°. 设CK=x ,则BK=3x.在Rt △CAN 中,因为∠CAN=90°-45°=45°,所以AN=NC.所以AM+MN=CK+KN. 又NM=BK ,BM=KN ,所以x+35=5+3x.解得x=5. 因为5>4.8,所以渔船没有进入养殖场的危险.解法二:如图4,过点C 作CE ⊥BD 于E.所以CE//GB//FA. 所以∠BCE=∠GBC=60°,∠BCA=∠FAC=45°. 所以∠BCA=∠BCE-∠ACE=60°-45°=15°. 又∠BAC=∠FAC-∠FAB=45°-30°=15°,D图2图3图4所以∠BCA=∠BAC.所以BC=AB=10.在Rt △BCE 中,CE=BC ·cos ∠BCE=BC ·cos60°=10×21=5. 也5>4.8,所以渔船没有进入养殖场的危险.实际中的仰角和俯角问题在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.计算原理:视线、水平线、物体的高构成直角三角形,已知仰角、俯角和另一边,利用解直角的知识就可以求出物体的高度.梳理总结:⑴仰角和俯角是指视线相对于水平线而言的,不同位置的仰角和俯角是不同的;可巧记为“上仰下俯”.在测量物体的高度时,要善于将实际问题抽象为数学问题.⑵在测量山的高度时,要用“化曲为直”的原则把曲的山坡“化整为零地分成一些小段,把每一小段山坡长近似地看作直的,测出仰角求出每一小段山坡对应的高,再把每部分高加起来,就得到这座山的高度.例1 (成都)如图2,甲、乙两栋高楼的水平距离BD 为90米,从甲楼顶部C 点测得乙楼顶部A 点的仰角α为30︒,测得乙楼底部B 点的俯角β为60︒,求甲乙两栋高楼各有多高?(计算过程和结果都不取近似值.分析:过点C 作CE ⊥AB 于点E, 在Rt △BCE 和Rt △ACE 中, BE 和AE 可用含CE(即为水平距离)的式子表示出来,从而求得两楼的高.解:作CE ⊥AB 于点E,∵CE ∥DB,CD ∥AB,且∠CDB=090,∴四边形BECD 是矩形. ∴CD=BE,CE=BD.图 1 E图2在Rt △BCE 中, ∠β=060,CE=BD=90米. ∵,tan CEBE=β∴BE=CE 39060tan 90tan 0=⨯=⋅β(米). ∴CD=BE=390(米).在Rt △ACE 中, ∠α=030,CE=90米. ∵ ,tan CEAE=α∴AE=CE 330339030tan 90tan 0=⨯=⨯=⋅α(米). ∴AB=AE+BE=3120390330=+(米). 答:甲楼高为390米,乙楼高为3120米.反思:仰角和俯角问题是解直角三角形中的常见题型,作辅助线构造直角三角形(一般同时得到两个直角三角形)并解之是解决这类问题的常用方法.例2 (乐山)如图3,小山上有一棵树.现有测角仪和皮尺两种测量工具,请你设计一种测量方案,在山脚水平地面上测出小树顶端A 到水平地面的距离AB .要求:⑴画出测量示意图;⑵写出测量步骤(测量数据用字母表示); ⑶根据(2)中的数据计算AB .分析:要测量底步不能到达的物体的高度,要转化为双直角三角形问题,测量方案如图2,计算的关键是求 AE,可设AE=x,则在Rt △AGF 和 Rt △AEF 中, 利用三角函数可得αtan x HE =,βtan x EF = ,再根据HE-FE=CD=m 建立方程即可. 解:(1)测量图案(示意图)如图4所示(2)测量步骤:第一步:在地面上选择点C 安装测角仪,测得此时树尖A 的仰角AHE α=∠;第二步:沿CB 前进到点D ,用皮尺量出C D ,之间的距离CD m =;AB图3AE F H CDB图4第三步:在点D 安装测角仪,测得此时树尖A 的仰角AFE β=∠; 第四步:用皮尺测出测角仪的高h . (3)计算: 令AE=x,则,tan HE x =α得αtan x HE =,又,tan EF x =β得βtan xEF =, ∵HE-FE=HF=CD=m, ∴,tan tan m xx =-βα 解得αββαtan tan tan tan -⋅=m x ,∴AB=.tan tan tan tan h m +-⋅αββα反思:在多个直角三角形中一定要认真分析各条线段之间的关系(包括三角函数关系、相等关系),运用方程求解,有时可起到事半功倍之效.快乐套餐:1.(泰安)如图5,一游人由山脚A 沿坡角为30的山坡AB 行走600m ,到达一个景点B ,再由B 沿山坡BC 行走200m 到达山顶C ,若在山顶C 处观测到景点B 的俯角为45,则山高CD 等于 (结果用根号表示)2.(安徽)如图6,某幢大楼顶部有一块广告牌CD ,甲乙两人分别在相距8米的A 、B 两处测得D 点和C 点的仰角分别为45°°和60°,且A 、B 、E 三点在一条直线上,若BE=15米,求这块广告牌的高度.(1.73,计算结果保留整数)ABCD图5第19题图EDCB A450600图6参考答案:1. (300 .2. ∵AB=8,BE=15,∴AE=23,在Rt△AED中,∠DAE=45°,∴DE=AE=23.在Rt△BEC中,∠CBE=60°,∴CE=BE·tan60°=CD=CE-DE=23≈2.95≈3.即这块广告牌的高度约为3米.。
第23讲 解三角形应用举例1.仰角和俯角在视线和水平线所成的角中,视线在水平线!!! 上方 ###的角叫仰角,在水平线!!! 下方 ###的角叫俯角(如图①).2.方位角从指北方向!!!顺时针 ###转到目标方向线的水平角叫方位角,如B 点的方位角为α(如图②).3.方向角相对于某一正方向的水平角(如图③)(1)北偏东α,即由指北方向!!! 顺时针 ###旋转α到达目标方向. (2)北偏西α,即由指北方向!!! 逆时针 ###旋转α到达目标方向. (3)南偏西等其他方向角类似.4.坡度(比)坡角:坡面与水平面所成的!!! 二面角 ###的度数(如图④,角θ为坡角).坡比:坡面的铅直高度与水平长度之比(如图④,i 为坡度(比)). 5.解三角形应用题的一般步骤(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位、近似计算的要求等.1.思维辨析(在括号内打“√”或“×”).(1)公式S =12bc sin A =12ac sin B =12ab sin C 适用于任意三角形.( √ )(2)东北方向就是北偏东45°的方向.( √ ) (3)俯角是铅垂线与视线所成的角.( × )(4)方位角大小的范围是[0,2π),方向角大小的范围一般是⎣⎡⎭⎫0,π2.( √ ) 解析 (1)正确.三角形的面积公式对任意三角形都成立. (2)正确.数学中的东北方向就是北偏东45°或东偏北45°的方向. (3)错误.俯角是视线与水平线所构成的角.(4)正确.方位角是由正北方向顺时针转到目标方向线的水平角,故大小的范围为[0,2π),而方向角大小的范围由定义可知为⎣⎡⎭⎫0,π2. 2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( B )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析 如图所示,∠ACB =90°.又AC =BC ,∴∠CBA =45°,而β=30°, ∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°.3.如图,设A ,B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为( A ) A .50 2 m B .50 3 m C .25 2 m D .2522m解析 由正弦定理得 AB =AC ·sin ∠ACB sin B=50×2212=502(m).4.在相距2千米的A ,B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A ,C .解析 如图所示,由题意知∠C =45°, 由正弦定理得AC sin 60°=2sin 45°,∴AC =222×32= 6. 5.一船向正北航行,看见正东方向有相距8海里的两个灯塔恰好在一条直线上.继续航行半小时后,看见一灯塔在船的南偏东60°,另一灯塔在船的南偏东75°,则这艘船每小时航行!!! 8 ###海里.解析 如图,由题意知在△ABC 中, ∠ACB =75°-60°=15°,∠B =15°,∴AC =AB =8.在Rt △AOC 中,OC =AC ·sin 30°=4. ∴这艘船每小时航行412=8(海里).一 距离问题求解距离问题的一般步骤(1)选取适当基线,画出示意图,将实际问题转化为三角形问题. (2)明确要求的距离所在的三角形有哪几个已知元素. (3)确定使用正弦定理或余弦定理解三角形.【例1】 要测量对岸A ,B 两点之间的距离,选取相距 3 km 的点C ,点D ,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°,则点A ,B ###km.解析 如图,在△ACD 中,∠ACD =120°,∠CAD =∠ADC =30°,∴AC =CD =3(km). 在△BCD 中,∠BCD =45°, ∠BDC =75°,∠CBD =60°. ∴BC =3sin 75°sin 60°=6+22.在△ABC 中,由余弦定理,得 AB 2=(3)2+⎝⎛⎭⎪⎫6+222-2×3×6+22×cos 75°=3+2+3-3=5,∴AB =5(km),即A ,B 之间的距离为 5 km.二 高度问题高度问题一般是把它转化成三角形的问题,要注意三角形中的边角关系的应用,若是空间的问题要注意空间图形和平面图形的结合.【例2】 要测量电视塔AB 的高度,在点C 测得塔顶A 的仰角是45°,在点D 测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,则电视塔的高度为!!! 40 ###m.解析 设电视塔AB 高为x m ,则在Rt △ABC 中,由∠ACB =45°,得BC =x .在Rt △ADB 中,由∠ADB =30°,得BD =3x .在△BDC 中,由余弦定理,得BD 2=BC 2+CD 2-2BC ·CD ·cos 120°,即(3x )2=x 2+402-2·x ·40·cos 120°,解得x =40,所以电视塔高为40 m.三 角度问题解决角度问题的注意点(1)首先应明确方位角或方向角的含义.(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用. 【例3】 在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,红方侦察艇以每小时14 n mile 的速度沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.解析 如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x ,∠ABC =120°. 根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2.故AC =28,BC =20. 根据正弦定理得BC sin α=AC sin 120°,解得sin α=20sin 120°28=5314.所以红方侦察艇所需要的时间为2小时,角α的正弦值为5314.1.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则cos θ=( B )A .217B .2114 C .32114D .2128解析 如题图所示,在△ABC 中,AB =40海里,AC =20海里,∠BAC =120°,由余弦定理,得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800,故BC =207(海里).由正弦定理,得sin ∠ACB =AB BC ·sin ∠BAC =217,由∠BAC =120°,知∠ACB 为锐角,故cos ∠ACB =277.故cos θ=cos (∠ACB +30°)=cos ∠ACB cos 30°-sin ∠ACB sin 30°=2114. 第1题图第2题图2.如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m ,50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角∠CAD =( B )A .30°B .45°C .60°D .75°解析 依题意可得AD =2010 m ,AC =30 5 m ,又CD =50 m ,所以在△ACD 中, 由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=(305)2+(2010)2-5022×305×2010= 6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°.3.如图所示,在一个坡度一定的山坡AC 的顶上有一高度为25 m 的建筑物CD ,为了测量该山坡相对于水平地面的坡角θ,在山坡A 处测得∠DAC =15°,沿山坡前进50 m 到达B 处,又测得∠DBC =45°,根据以上数据可得cos θ解析 由∠DAC =15°,∠DBC =45°,可得∠BDA =30°,∠DBA =135°,∠BDC =90°-(15°+θ)-30°=45°-θ,由内角和定理可得∠DCB =180°-(45°-θ)-45°=90°+θ,根据正弦定理可得50sin 30°=DB sin 15°,即DB =100sin 15°=100×sin (45°-30°)=252(3-1),又25sin 45°=252(3-1)sin (90°+θ), 即25sin 45°=252(3-1)cos θ,得到cos θ=3-1. 4.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD解析 依题意有AB =600,∠CAB =30°,∠CBA =180°-75°=105°,∠DBC =30°,DC ⊥CB .∴∠ACB =45°,在△ABC 中,由AB sin ∠ACB =CB sin ∠CAB,得600sin 45°=CB sin 30°,有CB =3002,在Rt △BCD 中,CD =CB ·tan 30°=1006,则此山的高度CD =100 6 m.易错点 不注意实际问题中变量的取值范围错因分析:三角形中的最值问题,可利用正弦、余弦定理建立函数模型(或三角函数模型),转化为函数最值问题.求最值时要注意自变量的范围,要考虑问题的实际意义.【例1】 某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度 的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.解析 (1)设相遇时小艇航行的距离为S 海里,则 S =900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400 =900⎝⎛⎭⎫t -132+300. 故当t =13时,S min =103,v =10313=30 3.即小艇以303海里/小时的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在B 处相遇.则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°), 故v 2=900-600t +400t2.∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30, 故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20. 故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时.【跟踪训练1】 如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?解析 (1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45.从而sin B =sin [π-(A +C )]=sin (A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由AB sin C =AC sin B ,得AB =AC sin B ×sin C =1 2606365×45=1 040(m). 所以索道AB 的长为1 040 m.(2)设乙出发t 分钟后,甲、乙两游客距离为d m ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),因0≤t ≤1 040130,即0≤t ≤8,故当t =3537(min)时,甲、乙距离最短.(3)由BC sin A =AC sin B ,得BC =AC sin B ×sin A =1 2606365×513=500(m). 乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C . 设步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎣⎡⎦⎤1 25043,62514(单位:m/min)范围内.课时达标 第23讲[解密考纲]本考点考查利用正弦定理、余弦定理求解三角形,解决实际应用问题.题型一般为填空题或解答题,题目难度中等偏难.一、选择题1.两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站北偏东40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( B )A .北偏东10°B .北偏西10°C .南偏东10°D .南偏西10°解析依题意作出图形可知,A在B北偏西10°的地方.2.有一长为1千米的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则斜坡长为(C)A.1千米B.2sin 10°千米C.2cos 10°千米D.cos 20°千米解析由题意知DC=BC=1,∠BCD=160°,∴BD2=DC2+CB2-2DC·CB·cos 160°=1+1-2×1×1×cos(180°-20°)=2+2cos 20°=4cos210°,∴BD=2cos 10°.3.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°方向直线航行,30分钟后到达B处.在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是(A)A.10 2 海里B.10 3 海里C.20 3 海里D.20 2 海里解析如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,根据正弦定理得BCsin 30°=ABsin 45°,解得BC=102(海里),故选A.4.要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择甲、乙两观测点,在甲、乙两点分别测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500米,则电视塔的高度是(D)A.100 2 m B.400 mC.200 3 m D.500 m解析由题意画出示意图,设塔高AB=h m,在Rt△ABC中,由已知得BC=h m,在Rt△ABD中,由已知得BD=3h m,在△BCD中,由余弦定理BD2=BC2+CD2-2BC·CD cos ∠BCD,得3h2=h2+5002+h·500,解得h=500(m).5.长为3.5 m的木棒AB斜靠在石堤旁,木棒的一端A在离堤足C1.4 m的地面上,另一端B在离堤足C处的2.8 m的石堤上,石堤的倾斜角为α,则坡度值tan α=(A)A.2315B.516C.23116D.115解析由题意,可得在△ABC中,AB=3.5 m,AC=1.4 m,BC=2.8 m,且∠α+∠ACB=π.由余弦定理,可得AB2=AC2+BC2-2×AC×BC×cos∠ACB,即 3.52=1.42+2.82-2×1.4×2.8×cos(π-α),解得cos α=516,所以sin α=23116,所以tan α=sin αcos α=2315.6.(2018·四川成都模拟)如图所示,为测一建筑物的高度,在地面上选取A,B两点,从A,B两点分别测得建筑物顶端的仰角为30°,45°,且A,B两点间的距离为60 m,则该建筑物的高度为(A)A.(30+303) m B.(30+153) mC.(15+303) m D.(15+153) m解析设建筑物高度为h,则htan 30°-htan 45°=60,即(3-1)h=60,所以建筑物的高度为h=(30+303)m.二、填空题7.一艘船上午9:30在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距8 2 n mile,此船的航速是!!!32###n mile/h.解析 设航速为v n mile/h ,在△ABS 中,AB =12v ,BS =8 2 n mile ,∠BSA =45°,由正弦定理,得82sin 30°=12v sin 45°,∴v =32 n mile/h.8.某人在地上画了一个角∠BDA =60°,他从角的顶点D 出发,沿角的一边DA 行走10米后,拐弯往另一边的方向行走14米正好到达∠BDA 的另一边BD 上的一点,我们将该点记为点N ,则N 与D 之间的距离为!!! 16米 ###.解析 如图,设DN =x 米,则142=102+x 2-2×10×x cos 60°,∴x 2-10x -96=0. ∴(x -16)(x +6)=0.∴x =16. ∴N 与D 之间的距离为16米.9.如图所示,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°.从C 点测得∠MCA =60°,已知山高BC =100 m ,则山高MN =!!! 150 ###m.解析 在△ABC 中,AC =1002,在△MAC 中,MA sin 60°=ACsin 45°,解得MA =1003,在△MNA 中,MN 1003=sin 60°=32,故MN =150,即山高MN 为150 m.三、解答题10.已知岛A 南偏西38°方向,距岛A 3海里的B 处有一艘缉私艇,岛A 处的一艘走私船正以10海里/小时的速度向岛北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5小时能截住该走私船?⎝⎛⎭⎫参考数据:sin 38°=5314,sin 22°=3314解析 如图,设缉私艇在C 处截住走私船,D 为岛A 正南方向上一点,缉私艇的速度为每小时x 海里,则BC =0.5x ,AC =5海里,依题意,∠BAC =180°-38°-22°=120°,由余弦定理可得BC 2=AB 2+AC 2-2AB ·AC cos 120°,所以BC 2=49,BC =0.5x =7,解得x =14.又由正弦定理得 sin ∠ABC =AC ·sin ∠BACBC =5×327=5314,所以∠ABC =38°,又∠BAD =38°,所以BC ∥AD ,故缉私艇以每小时14海里的速度向正北方向行驶,恰好用0.5小时截住该走私船.11.(2018·广东广州模拟)如图,某测量人员为了测量西江北岸不能到达的两点A ,B 之间的距离,她在西江南岸找到一个点C ,从C 点可以观察到点A ,B ;找到一个点D ,从D 点可以观察到点A ,C ;找到一个点E ,从E 点可以观察到点B ,C ;并测量得到数据:∠ACD =90°,∠ADC =60°,∠ACB =15°,∠BCE =105°,∠CEB =45°,DC =CE =1(百米).(1)求△CDE 的面积; (2)求A ,B 之间的距离.解析 (1)连接DE ,在△CDE 中,∠DCE =360°-90°-15°-105°=150°,S △ECD =12DC ·CE ·sin 150°=12×sin 30°=12×12=14(平方百米).(2)依题意知,在Rt △ACD 中,AC =DC ·tan ∠ADC =1×tan 60°= 3. 在△BCE 中,∠CBE =180°-∠BCE -∠CEB =180°-105°-45°=30°. 由正弦定理,得BC =CE sin ∠CBE·sin ∠CEB =1sin 30°×sin 45°= 2.因为cos 15°=cos(60°-45°)=cos 60°cos 45°+sin 60°sin 45° =12×22+32×22=6+24. 连接AB ,在△ABC 中,由余弦定理得, AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB = (3)2+(2)2-23×2×6+24=2-3, 所以AB =2-3=6-22(百米). 12.(2018·河北石家庄重点高中摸底)某学校的平面示意图如图中的五边形区域ABCDE ,其中三角形区域ABE 为生活区,四边形区域BCDE 为教学区,AB ,BC ,CD ,DE ,EA ,BE为学校的主要道路(不考虑宽度).∠BCD =∠CDE =2π3,∠BAE =π3,DE =3BC =3CD =910km.(1)求道路BE 的长度;(2)求生活区△ABE 面积的最大值. 解析(1)如图,连接BD ,在△BCD 中,BD 2=BC 2+CD 2-2BC ·CD cos ∠BCD =27100,∴BD =3310 km.∵BC =CD ,∴∠CDB =∠CBD =π-2π32=π6,又∠CDE =2π3,∴∠BDE =π2.∴在Rt △BDE 中,BE =BD 2+DE 2=⎝⎛⎭⎫33102+⎝⎛⎭⎫9102=335(km).故道路BE 的长度为335km.(2)设∠ABE =α,∴∠BAE =π3,∴∠AEB =2π3-α.在△ABE 中,易得AB sin ∠AEB =BE sin ∠BAE=335sinπ3=65,∴AB =65sin ⎝⎛⎭⎫2π3-α,AE =65sin α. ∴S △ABE =12AB ·AE sin π3=9325sin ⎝⎛⎭⎫2π3-α·sin α= 9325⎣⎡⎦⎤12sin ⎝⎛⎭⎫2α-π6+14≤9325⎝⎛⎭⎫12+14=273100(km 2). ∵0<α<2π3,∴-π6<2α-π6<7π6.∴当2α-π6=π2,即α=π3时,S △ABE 取得最大值,最大值为273100km 2,故生活区△ABE 面积的最大值为273100km 2.。