第十三讲 工具变量回归
- 格式:ppt
- 大小:2.48 MB
- 文档页数:92
工具变量法及其应用一、工具变量法简介工具变量法是一种在统计分析中常用的技术,主要用于解决回归分析中的内生性问题。
内生性问题通常出现在一个或多个解释变量与误差项相关的情况下,这会导致回归模型的估计结果有偏且不一致。
为了解决这个问题,工具变量法通过引入一个或多个与内生解释变量相关,但与误差项无关的工具变量,来替代内生解释变量。
二、工具变量的选择工具变量的选择是工具变量法的关键步骤。
理想的工具变量应满足与内生解释变量相关,但与误差项无关的条件。
在实践中,通常需要根据研究问题的具体情况和理论依据来选择工具变量。
一些常见的选择方法包括使用先前的研究、使用相关行业的平均值、使用其他相关变量的滞后值等。
三、工具变量法的优缺点工具变量法的优点主要包括:可以解决内生性问题,提高回归模型的估计精度和一致性;可以扩大解释变量的范围,使得模型更全面地反映被解释变量的影响因素;可以降低误差项的相关性,从而降低模型的标准误,提高模型的置信度。
但是,工具变量法也存在一些缺点,如工具变量的选择困难、可能导致过度拟合和模型过度设定等问题。
四、工具变量法在经济学中的应用工具变量法在经济学中有着广泛的应用。
例如,在研究货币政策时,工具变量法可以用来解决货币供应量与通货膨胀之间的内生性问题,从而提高模型的预测精度;在研究劳动市场时,工具变量法可以用来解决工资与就业之间的内生性问题,从而更准确地估计模型的参数。
五、工具变量法在金融学中的应用工具变量法在金融学中也有着广泛的应用。
例如,在研究股票市场时,工具变量法可以用来解决市场收益率与风险之间的内生性问题,从而提高模型的预测能力和风险管理水平;在研究信贷市场时,工具变量法可以用来解决利率与信贷风险之间的内生性问题,从而更准确地估计模型的参数。
六、工具变量法在其他领域的应用工具变量法在其他领域也有着广泛的应用。
例如,在环境科学中,工具变量法可以用来解决环境污染与经济增长之间的内生性问题,从而更准确地估计模型的参数;在医学研究中,工具变量法可以用来解决吸烟与健康之间的内生性问题,从而更准确地估计模型的参数。
工具变量法工具变量法一、工具变量法得主要思想在无限分布滞后模型中,为了估计回归系数,通常得做法就是对回归系数作一些限制,从而对受限得无限分布滞后模型进行估计。
在这里,考伊克模型、适应性期望模型与部分调整模型给出了很好得解决此类问题得思路。
经过变换,新得模型中,随机扰动项得表达式为:考伊克模型: ( ,为衰减率) (1、1);适应性期望模型:(,为期望系数)(1、2);部分调整模型:( ,为调整系数) (1、3)。
为原无限分布滞后模型中得扰动项,为变换后得扰动项。
在原模型中得随机扰动项满足经典假设得前提下,部分调整模型也满足经典假设,但就是考伊克模型与适应性期望模型得随机扰动项由于存在原随机扰动项得滞后项,也就就是说考伊克模型与适应性期望模型得解释变量势必与误差项相关,因此,可能会出现上述两个模型得最小二乘估计甚至就是有偏得这样严重得问题。
那么,我们就是否可以找到一个与高度相关但与不相关得变量来替代?在这里,一个可行得估计方法就就是工具变量法。
在讨论工具变量法之前,我们先来了解一下外生变量与内生变量。
一般来说:一个回归模型中得解释变量有得与随机扰动项无关,我们称这样得解释变量为外生变量;而模型中有得解释变量与随机扰动项相关,我们可称这样得解释变量为内生解释变量。
内生解释变量得典型情况之一就就是滞后应变量为解释变量得情形,如上述考伊克模型与适应性期望模型中得。
外生解释变量:回归模型中得解释变量与随机扰动项无关;内生解释变量:回归模型中得解释变量与随机扰动项无关;了解了内生变量与外生变量得概念,我们接着讨论工具变量法得主要思想:工具变量法与普通最小二乘法就是模型参数估计得两类重要方法,在多元线性回归模型中,如果出现解释变量与随机误差项相关(即出现内生变量)时,其回归系数得普通最小二乘估计就是非一致得,这时就需要引入工具变量。
工具变量,顾名思义就是在模型估计过程中被作为工具使用,以替代模型中与随机误差性相关得随机解释变量(即内生变量)。
工具变量法工具变量法具体步骤工具变量法(Instrumental Variable Method)是一种用于处理内生性问题的统计方法,它通过引入一个“工具变量”来解决内生性问题。
工具变量是一个有着良好相关性但不会受到内生性干扰的变量,它可以用来代替内生变量,从而解决内生性的影响。
1.确定内生变量和工具变量:首先,需要确定研究中存在的内生变量和可能的工具变量。
内生变量是对所研究问题有影响的变量,而工具变量是与内生变量具有相关性但不会受到内生性干扰的变量。
内生性问题是由于内生变量的存在而导致的因果关系估计偏倚。
2.检验工具变量的相关性:接下来,需要检验所选取的工具变量与内生变量之间的相关性。
这可以通过计算相关系数或进行统计检验来实现。
如果工具变量与内生变量存在显著相关性,那么它可能是一个有效的工具变量。
3.确定工具变量的外生性:除了相关性外,工具变量还需要满足外生性的要求,即工具变量对因变量的影响是通过内生变量而不是其他方式引起的。
这可以通过进行实证分析来判断,例如通过回归模型来检验工具变量对因变量的影响是否通过内生变量进行中介。
如果工具变量的影响仅通过内生变量介导,则可以认为工具变量满足外生性的要求。
4.估计工具变量模型:一旦确定了有效的工具变量,可以使用工具变量法来估计因果关系。
工具变量法的核心思想是通过回归模型来解释内生变量对因变量的影响,并利用工具变量对内生变量进行替代。
通过将工具变量引入估计方程中,可以消除内生性的影响,从而得到无偏的因果关系估计。
5.进行统计推断:在估计了工具变量模型之后,可以进行统计推断来评估估计结果的显著性。
这可以通过计算标准误差、置信区间和假设检验等来实现。
统计推断可以帮助判断估计结果的可靠性,并验证因果关系的存在与否。
总结而言,工具变量法是一种用于解决内生性问题的统计方法。
它通过引入一个有效的工具变量来代替内生变量,消除内生性的干扰,从而得到无偏的因果关系估计。
工具变量法的具体步骤包括确定内生变量和工具变量、检验工具变量的相关性和外生性、估计工具变量模型,并进行统计推断。
工具变量法Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】工具变量法一、工具变量法的主要思想在无限分布滞后模型中,为了估计回归系数,通常的做法是对回归系数作一些限制,从而对受限的无限分布滞后模型进行估计。
在这里,考伊克模型、适应性期望模型与部分调整模型给出了很好的解决此类问题的思路。
经过变换,新的模型中,随机扰动项的表达式为:考伊克模型:1t t t v u u λ-=- (01λ<< ,λ为衰减率) (); 适应性期望模型:1(1)t t t v u u λ-=--(01λ<< ,λ为期望系数)();部分调整模型:(1)t t v u γ=-(01γ≤< ,1γ-为调整系数) ()。
t u 为原无限分布滞后模型中的扰动项,t v 为变换后的扰动项。
在原模型中的随机扰动项满足经典假设的前提下,部分调整模型也满足经典假设,但是考伊克模型与适应性期望模型的随机扰动项由于存在原随机扰动项的滞后项,也就是说考伊克模型与适应性期望模型的解释变量1t Y - 势必与误差项t v 相关,因此,可能会出现上述两个模型的最小二乘估计甚至是有偏的这样严重的问题。
那么,我们是否可以找到一个与1t Y -高度相关但与t v 不相关的变量来替代1t Y -在这里,一个可行的估计方法就是工具变量法。
在讨论工具变量法之前,我们先来了解一下外生变量和内生变量。
一般来说:一个回归模型中的解释变量有的与随机扰动项无关,我们称这样的解释变量为外生变量;而模型中有的解释变量与随机扰动项相关,我们可称这样的解释变量为内生解释变量。
内生解释变量的典型情况之一就是滞后应变量为解释变量的情形,如上述考伊克模型与适应性期望模型中的1t Y 。
外生解释变量:回归模型中的解释变量与随机扰动项无关; 内生解释变量:回归模型中的解释变量与随机扰动项无关;了解了内生变量和外生变量的概念,我们接着讨论工具变量法的主要思想:工具变量法和普通最小二乘法是模型参数估计的两类重要方法,在多元线性回归模型中,如果出现解释变量与随机误差项相关(即出现内生变量)时,其回归系数的普通最小二乘估计是非一致的,这时就需要引入工具变量。
工具变量方法原理工具变量方法(Instrumental Variable Method)是一种常用的实证研究方法,用于解决因果关系中的内生性问题。
当研究主变量与随机抽样原则(即不相关性假设)无关时,内生性问题会出现。
在这种情况下,使用传统的OLS(Ordinary Least Squares)回归模型估计将导致参数估计的无效性。
工具变量方法通过利用一个或多个工具变量,来解决内生性问题,并得到一致的估计结果。
工具变量是一个满足两个条件的变量:首先,工具变量与内生变量相关。
其次,工具变量与干扰项不相关。
这样,可以通过回归工具变量来消除内生性问题,从而得到因果关系的一致估计。
工具变量方法的基本思想是在原始模型中引入一个工具变量,在回归分析中用工具变量代替内生变量。
这样,内生变量与工具变量的回归关系就代替了内生变量与因变量的直接关系。
通过估计工具变量与因变量的关系,就可以得到一致的因果关系估计。
Y=α+βX+ε其中,Y是因变量,X是内生变量,α和β是参数,ε是误差项。
由于X与ε存在内生性问题,参数估计将变得无效。
为了解决内生性问题,引入一个工具变量Z。
使用工具变量方法得到的回归方程为:X=α+γZ+ε'其中,γ是工具变量与被解释变量的关系。
将工具变量引入原始模型,得到:Y=α+β(α+γZ+ε')+ε化简后可以得到:Y=α+βα+βγZ+βε'+ε由于内生性问题,βγ≠0,OLS估计将无效。
但是,由于工具变量与ε无相关性,βε'=0。
因此,使用工具变量方法可以得到一致的估计结果,即β的一致估计。
工具变量方法中的关键问题是选择合适的工具变量。
一个好的工具变量要满足两个条件:首先,与内生变量相关,以确保能够消除内生性问题;其次,与干扰项不相关,以确保工具变量不会引入新的内生性问题。
如果工具变量不满足这两个条件,工具变量方法仍然会产生一致的估计结果,但结果可能存在偏误。
要选择合适的工具变量,需要根据研究问题及具体情境进行判断。
工具变量法一.为什么需要使用工具变量法?当模型存在内生解释变量问题,一般为以下三种情形:(1)遗漏变量:如果遗漏的变量与其他解释变量不相关,一般不会造成问题。
否则,就会造成解释变量与残差项相关,从而引起内生性问题。
(2)解释变量与被解释变量相互影响(3)度量误差 (measurement error ):由于在关键变量的度量上存在误差,使其与真实值之间存在偏差,这种偏差可能会成为回归误差的一部分,从而导致内生性问题。
Ex :i 01122Y i i k ik i X X X ββββμ=+++⋅⋅⋅++ 其中:X 2为内生解释变量 当22Cov(X ,)=E[X ]0i i i i μμ≠时,内生解释变量与随机干扰项同期相关。
此时会导致回归参数估计量是有偏的且不一致,需要用工具变量法进行回归。
二.如何使用工具变量? (一)判断是否需要用工具变量当存在内生性变量时,则需使用工具变量,所以需要对内生性变量进行检验。
在实践中,往往是通过经济学理论先说明是否存在内生性变量,最后再通过检验证明确实存在内生变量。
(1)豪斯曼检验(Hausman )原假设H 0:所有解释变量均为外生变量将内生解释变量关于工具变量与外生变量进行OLS 回归估计 记录残差序列(^^IV OLS ββ−),加入原模型后进行OLS 估计 结果:若差值依概率收敛于0,接受原假设;反之,拒绝。
(2)杜宾-吴-豪斯曼检验(DWH )注:存在异方差的情况下传统豪斯曼检验不适用。
回归模型:'1122y x x ββε=++ z=(x 1,z 2) 第一阶段回归:''21x x z v γδ=++ 检验扰动项v 与ε相关性模型:=v+ερξ 其中:ρ为ε对v 回归系数,ε与v 不相关则ρ=0. 对 ^'''1122y=x x v e ββρ+++ 回归 对原假设H 0:ρ=0. 进行t 检验。
工具变量原理教学目的及要求:1、理解引入随机解释变量的目的及产生的影响2、理解估计量的渐进无偏性和一致性3、掌握随机解释变量OLS 的估计特性4、应用工具变量法解决随机解释变量问题第一节 随机解释变量问题一、随机解释变量问题产生的原因多元(k )线性回归模型:i ki k i i i U X X X Y ++⋅⋅⋅+++=ββββ22110 (8-1)其矩阵形式为:U XB Y += (8-2) 在多元(k )线性回归模型中,我们曾经假定,解释变量j X 是非随机的。
如果j X 是随机的,则与随机扰动项i U 不相关。
即:C o v ()i ij U X ,0= ),,2,1;,,2,1(n i k j ⋅⋅⋅=⋅⋅⋅= (8-3) 许多经济现象中,这种假定是不符合实际的,因为许多经济变量是不能用控制的方法进行观测的,所以作为模型中的解释变量其取值就不可能在重复抽样中得到相同和确定的数值,其取值很难精确控制,也不易用实验方法进行精确观测,解释变量成为随机变量。
又由于随机项U 包含了模型中略去的解释变量,而略去的解释变量往往是同模型中相关的变量,因而就很有可能在X 是随机变量的情况下与随机项U 相关,这样原有的古典假设就不能满足,产生随机解释变量。
在联立方程模型以及模型中包含有滞后内生变量等情况下,如果扰动项是序列相关的,那么均有扰动项和解释变量之间的相关性的出现,模型就存在随机解释变量问题。
例如,固定资产投资与国民收入的关系满足如下模型:其中,t I 为t 期的固定资产投资,1-t I 为1-t 期的固定资产投资,t Y 为t 期的国民收入,因为1-t I 是随机变量,故模型中存在随机解释变量。
再如,消费与收入之间的影响关系模型为其中,t C 为t 期的消费支出,1-t C 为1-t 期的消费支出,t Y 是t 期的收入,因为1-t C 是随机变量,故模型中存在随机解释变量。
二、随机解释变量问题的后果模型中,在解释变量为随机变量并且与扰动项相关的情况下,应用普通最小二乘法估计参数可能会出现估计的不一致性,使得估计值产生很大的偏误,造成拟合优度检验的全面失准,F 检验失效,t 检验失去意义。