高二数学正弦定理3
- 格式:pdf
- 大小:458.82 KB
- 文档页数:12
高二数学公式总结大全高二数学公式总结大全 1高中数学常用公式乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)高中数学常用公式三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/a x1_x2=c/a注:韦达定理高中数学常用公式判别式b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac<0注:方程没有实根,有共轭复数根高中数学常用公式三角函数公式两角和公式sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)ctg(a+b)=(ctgactgb-1)/(ctgb+ctga) ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))ctg(a/2)=√((1+cosa)/((1-cosa)) ctg(a/2)=-√((1+cosa)/((1-cosa))和差化积2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosbctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb高中数学常用公式某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角高二数学公式总结大全 1集合一、集合概念(1)集合中元素的特征:确定性,互异性,无序性。
编号1 正弦定理 导学案编者:栾卉凡 审核:丁秀芬【学习目标】 1. 理解正弦定理的推理过程;2. 熟练掌握正弦定理的内容及其变式的结构特征和作用;3. 能运用正弦定理解决一些简单的三角形问题。
【学习重点】正弦定理的内容及应用【学习难点】已知两边和其中一边对角,解三角形时,解的个数【课前自主预习】一.复习回顾 1.内角和定理:2.三角形中的三角公式:=+)sin(C B ______;=+)cos(C B ______;=+)tan(C B _____;=+)2sin(C B _____;=+)2cos(C B _____;=+)2tan(CB _____ 3.两角和与差的公式:=+)sin(βα_____________;=-)sin(βα_____________=+)cos(βα_____________;=-)cos(βα_____________4.降幂公式:=α2sin _____________;=α2cos _____________ 5. 面积公式:==∆C ab S sin 21_____________ = _____________=_____________ 二.自主预习1.把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素。
已知三角形的几个元素求其他元素的过程叫做___________.2. 正弦定理:在三角形中,________________________________________________________ 即____________=_____________=______________3. 正弦定理的几个变形(1)a =________ ,b=_________ ,c=_________ (2)sinA=_______, sinB=________ , sinC=_______ (3)a:b:c =____________________.4.在ABC ∆中,a,b 为B A,∠∠所对的边,则B A b a B A sin ____sin ___⇔>⇔【课内探究】一、正弦定理的推导(1)当ABC ∆为直角三角形时在Rt ABC ∆中,若 90C =︒,则sinA=_______, sinB=________, sinC=_______即: 对于任意三角形,这个结论还成立吗?(2)当ABC ∆为锐角三角形时(3)当ABC ∆为钝角三角形时探究一:(1)在ABC ∆中,A ∠的角平分线AD 与边BC 相交于D ,是否一定有ACABDC BD =?(2)在正弦定理中,设k CcB b A a ===sin sin sin ,那么k 与ABC ∆外接圆的半径R 有何关系?二、正弦定理的应用1:已知两角和任意一边,求其他两边和一角例1.已知:在B b a C A c ABC 和求中,,,30,45,1000===∆【练习】在ABC ∆中,已知45B =,60C =,12a =cm ,解三角形.思考:已知两角和一边,解三角形时,解的个数唯一吗?2.已知两边和其中一边对角,求另一边的对角,进而可求其他的边和角 例2. 在C A a c B b ABC ,,1,60,30和求中,===∆【练习】解下列三角形:(1)(2)∆ABC 中,3=a ,2=b ,oB 45=思考:已知两边和其中一边对角,解三角形时,解的个数唯一吗?3.应用正弦定理进行边角互化例3.已知在△ABC 中,(1)若5:3:1::=c b a ,求CA BA sin sin sin sin 2+-的值.(2)若045=A ,060=B ,求ba ba +-的值. (3)若C B A cos sin 2sin =且A C B 222sin sin sin =+,试判断三角形形状。
数学高二上册知识点归纳数学高二上册知识点归纳一:总体和样本①在统计学中,把研究对象的全体叫做总体。
②把每个研究对象叫做个体。
③把总体中个体的总数叫做总体容量。
④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,研究,我们称它为样本.其中个体的个数称为样本容量。
简单随机抽样也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随。
机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础,高三。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
数学高二上册知识点归纳二:简单随机抽样常用的方法①抽签法②随机数表法③计算机模拟法④使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
抽签法①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查。
数学高二上册知识点归纳三:函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;数学高二上册知识点归纳四:立体几何初步(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
高二数学正弦定理试题答案及解析1.在中,若,,则一定是A.钝角三角形B.正三角形C.等腰直角三角形D.非等腰三角形【答案】B【解析】由正弦定理得,,由于,得,整理得,由于,,所以三角形为等边三角形.【考点】判断三角形的形状.2.在锐角△ABC中,a、b、c分别为∠A、∠B、∠C所对的边,且a=2csinA.(1)确定∠C的大小;(2)若c=,求△ABC周长的取值范围.【答案】(1)∠C=60°;(2)(3+,3].【解析】(1)把已知的等式利用正弦定理化简,变形为: sinA=2sinCsinA,根据sinA不为0,可得出sinC的值,由三角形为锐角三角形,得出C为锐角,利用特殊角的三角函数值即可求出C的度数;(2)由c及sinC的值,利用正弦定理列出关系式,得到a=2sinA,b=2sinB,表示出三角形的周长,将表示出a,b及c的值代入,由C的度数,求出A+B的度数,用A表示出B,把B也代入表示出的周长,利用两角和与差的正弦函数公式及特殊角的三角函数值整理后,提取2再利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,根据A为锐角,得到A的范围,进而确定出这个角的范围,根据正弦函数的图象与性质求出此时正弦函数的值域,即可确定出周长的范围.试题解析:(1)已知a、b、c分别为∠A、∠B、∠C所对的边,由a=2csinA,得sinA=2sinCsinA,又sinA≠0,则sinC=,∴∠C=60°或∠C=120°,∵△ABC为锐角三角形,∴∠C=120°舍去。
∴∠C=60°.(2)∵c=,sinC=∴由正弦定理得:,即a=2sinA,b=2sinB,又A+B=π-C=,即B=-A,∴a+b+c=2(sinA+sinB)+=2[sinA+sin(-A)]+=2(sinA+sin cosA-cos sinA)+=3sinA+cosA+=2(sinAcos+cosAsin)+=2sin(A+)+,∵△ABC是锐角三角形,∴<∠A<,∴<sin(A+)≤1,则△ABC周长的取值范围是(3+,3].【考点】正弦定理;正弦函数的定义域和值域.3.已知:复数,,且,其中、为△ABC的内角,、、为角、、所对的边.(1)求角的大小;(2)若,求△ABC的面积.【答案】(1);(2).【解析】解题思路:(1)先利用复数相等得出三角形的边角关系,再利用正弦定理将边转化为角,利用三角关系求角B;(2)利用余弦定理求出有关的关系,再利用三角形的面积公式进行求解.规律总结:解三角形,要根据条件灵活选择正弦定理、余弦定理、面积公式,本题中已知两角与其中一角的对边,较容易想到先选择正弦定理.试题解析:(1),①,②;由①得③;在中,由正弦定理得∴∴,∵∴(2) ∵,由余弦定理得,--④由②得-⑤由④⑤得,∴=.【考点】1.复数相等的概念;2.正弦定理;3.余弦定理.4.设的内角的对边分别且,,若,求的值。
高二数学必修五 第一章解三角形一、本章知识结构:二、基础要点归纳1、三角形的性质: ①.A+B+C=π,222A B Cπ+=-⇒sin()sin A B C +=, cos()cos A B C +=-,sincos 22A B C+= ②.在ABC ∆中,a b +>c , a b -<c ; A >B ⇔sin A >sin B ,A >B ⇔cosA <cosB, a >b ⇔A >B③.假设ABC ∆为锐角∆,那么A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理: ①.正弦定理:2sin sin sin a b cR A B C === (2R 为ABC ∆外接圆的直径) 111sin sin sin 222ABCS ab C bc A ac B ∆=== ②.余弦定理:2222cos a b c bc A =+-222cos 2b c a A bc +-=2222cos b a c ac B =+-222cos 2a c b B ac+-=2222cos c a b ab C =+-222cos 2a b c C ab+-=〔必修五〕第二章、数列一、本章知识结构:二、本章要点归纳:1、数列的定义及数列的通项公式:①.()n a f n =,数列是定义域为N 的函数()f n ,当n 依次取1,2,⋅⋅⋅时的一列函数值。
②.n a 的求法:i.归纳法。
ii.11,1,2n n n S n a S S n -=⎧=⎨-≥⎩ 假设00S =,那么n a 不分段;假设00S ≠,那么n a 分段。
iii. 假设1n n a pa q +=+,那么可设1()n n a m p a m ++=+解得m,得等比数列{}n a m +。
iv. 假设()n n S f a =,那么先求1a ,再构造方程组:11()()n n n n S f a S f a ++=⎧⎨=⎩得到关于1n a +和n a 的递推关系式.2.等差数列:① 定义:1n n a a +-=d 〔常数〕,证明数列是等差数列的重要工具。
第一章 解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.正弦定理在ABC △中,若角A ,B ,C 对应的三边分别是a ,b ,c ,则各边和它所对角的正弦的比相等,即____________.正弦定理对任意三角形都成立.2.解三角形一般地,把三角形的三个角A ,B ,C 和它们的对边a ,b ,c 叫做三角形的____________.已知三角形的几个元素求其他元素的过程叫做____________.K 知识参考答案:1.sin sin sin a b c ==A B C2.元素 解三角形K —重点 正弦定理的变形和推广、正弦定理在解三角形中的应用 K —难点 三角形解的个数的探究、三角形形状的判断K —易错 解三角形时要明确角的取值范围,同时注意对角的讨论正弦定理的常见变形及推广(1)sin sin sin ,,,sin sin ,sin sin ,sin sin sin sin sin A a C c B ba Bb A a Cc A b C c B B b A a C c ======. (2)sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b cA B C A B A C B C A B C+++++======+++++. (3)::sin :sin :sin a b c A B C =. (4)正弦定理的推广:2sin sin sin a b cR A B C===,其中R 为ABC △外接圆的半径. (1)已知△ABC 中,sin :sin :sin =1:2:3A B C ,则a:b:c =_____________;(2)已知△ABC 中,∠A =60︒,3a ,则++sin +sin +sin a b cA B C=_____________.【答案】(1)1:2:3;(2)2.【解析】(1)根据正弦定理的变形,可得=sin :sin :sin =1:2:3a:b:c A B C . (2)方法1:设=sin sin a b A B ==(>0)sin ck k C,则有sin sin sin a k Ab k Bc k C ===,,, 从而sin sin sin sin sin sin sin sin sin a b c k A k B k C k A B C A B C ++++++++==,又32sin sin60a k A ===︒,所以sin sin sin a b c A B C ++++=2. 方法2:根据正弦定理的变形,可得2sin sin sin sin a b c aA B C A++++==.【名师点睛】熟记正弦定理的变形,可使解题过程更加简捷,从而达到事半功倍的效果.在ABC △中,求证:22sin 2sin 22sin a B b A ab C +=.【答案】证明见解析.【解析】设ABC △外接圆的半径为R ,则2sin ,2sin ,a R A b R B == 于是222222sin 2sin 2(2sin )sin 2(2sin )sin 28sin sin (sin cos cos sin )8sin sin sin 22sin 2sin sin 2sin ,a Bb A R A B R B A R A B A B A B R A B CR A R B C ab C +=+=+==⋅⋅⋅=所以22sin 2sin 22sin a B b A ab C +=. 【解题技巧】===2sin sin sin a b c R A B C的两种变形的应用: (1)(边化角)2sin ,2sin ,2sin a R A b R B c R C ===; (2)(角化边)sin ,sin ,sin 222a b cA B C R R R===. 正弦定理在解三角形中的应用、三角形解的个数的探究1.正弦定理可以用来解决下列两类解三角形的问题:(1)已知两角和任意一边,求其他的边和角; (2)已知两边和其中一边的对角,求其他的边和角. 2.三角形解的个数的探究(以已知a b ,和A 解三角形为例) (1)从代数角度来看①若sin sin 1b AB=a >,则满足条件的三角形的个数为0,即无解; ②若sin sin 1b AB=a=,则满足条件的三角形的个数为1;③若sin sin 1b AB=a<,则满足条件的三角形的个数为1或2. 注:对于(3),由sin 0sin 1b AB=a<<可知B 可能为锐角,也可能为钝角,此时应由“大边对大角”、“三角形内角和等于180°”等进行讨论. (2)从几何角度来看①当A 为锐角时:一解一解 两解 无解②当A 为钝角或直角时:一解 一解 无解 无解(1)已知在ABC △中,10,45,30c A C ==︒=︒,则a =_______,b =_______,B =_______;(2)已知在ABC △中,3,60,1b B c ==︒=,则a =_______,A =_______,C =_______; (3)已知在ABC △中,6,45,2c A a ==︒=,求b 和,B C .【答案】(1)102,5652+,105︒;(2)2,90︒,30︒;(3)见解析. 【解析】(1)10,45,30180()105c A C B A C ==︒=︒∴=︒-+=︒,,由sin sin a c A C =,得sin 10sin 45102sin sin 30c A a C ⨯︒===︒, 由sin sin b c B C =,得sin 10sin10562205652sin sin 304c B b C ⨯︒+===⨯=+︒.(2)∵sin 1sin 601,sin sin sin 23b c c B C B C b ⨯︒=∴===, ,60,b c B C B >=︒∴<,C 为锐角,30,90C A ∴=︒=︒,∴222=+=c b a .(3)sin 6sin 453,sin sin sin 22a c c A C A C a ⨯︒=∴===, sin ,60c A a c C <<∴=︒或120︒,∴当60C =︒时,sin 6sin 7575,31sin sin 60c B B b C︒=︒===+︒,当120C =︒时,sin 6sin1515,31sin sin 60c B B b C ︒=︒===-︒. 31,75,60b B C ∴=+=︒=︒或31,15,120b B C =-=︒=︒.【解题技巧】(1)已知三角形的两角与一边解三角形时,由三角形内角和定理可以计算出三角形的另一角,由正弦定理可计算出三角形的另两边.(2)已知两边和其中一边的对角解三角形时,先用正弦定理求出另一边所对的角的正弦值,若这个角不是直角,则利用三角形中“大边对大角”看能否判断所求这个角是锐角,①当已知的角为大边所对的角时,则能判断另一边所对的角为锐角;②当已知的角为小边所对的角时,则不能判断,此时就有两解,再分别求解即可;③然后由三角形内角和定理求出第三个角;④最后根据正弦定理求出第三条边.三角形形状的判断判断三角形形状的常用方法——边化角,已知条件中同时包含边角关系,判断三角形形状时,将边化为角,从三角变换的角度来研究角的关系和特征,进而判断三角形的形状.一般来说,这种方法能够判断的三角形都是特殊的三角形,如直角三角形、等腰三角形、等边三角形、等腰直角三角形.在ABC △中,已知sin sin sin a b Ba B A+=-,且cos()cos 1cos 2A B C C -+=-,则ABC △是 A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形【答案】B【解析】设ABC △的外接圆半径为R ,由正弦定理的推广,得sin 2a A R =,sin 2bB R=,代入sin sin sin a b B a B A +=-,可得a b ba b a+=-,即22b a ab -=. 因为cos()cos 1cos 2A B C C -+=-,所以2cos()cos()2sin A B A B C -++=, 即2sin sin sin A B C =. 由正弦定理的推广可得2()222a b cR R R⋅=,所以2ab c =, 由22b a ab -=及2ab c =可得222b a c =+,所以ABC △是直角三角形. 故选B .【名师点睛】注意到a ,b ,c 在条件式中是齐次线性关系,因此可以考虑利用正弦定理将边化为角.通过角的特征或者关系来判断三角形的形状.忽略角的取值范围而出错在ABC △中,若3C B =,求cb的取值范围. 【错解】由正弦定理,可得22sin sin 3sin 2cos cos 2sin =2cos cos 24cos 1sin sin sin c C B B B B B B B B b B B B +===+=-, 220cos 1,14cos 13B B ≤<∴-≤-<,由0,0b c >>,可得03cb<<. 故cb的取值范围为(0,3). 【错因分析】错解中没有考虑角B 的取值范围,误认为角B 的取值范围为(0,180)︒︒. 【正解】由正弦定理可得22sin sin 3sin 2cos cos 2sin =2cos cos 24cos 1sin sin sin c C B B B B B B B B b B B B +===+=-, 2180,3,045,cos 12A B C C B B B ++=︒=∴︒<<︒<<, 214cos 13B ∴≤-<,即13cb<<, 故cb的取值范围为(1,3). 【名师点睛】解三角形时要注意三角形的内角为正角且必须满足三角形内角和定理,这是解题中的隐含条件,应特别注意.忽略对角的讨论而出错已知在ABC △中,4,22,30,a b B ===︒ 求角,A C 和边c .【错解】由正弦定理sin sin a b A B =可得422sin sin 30A =︒, 2sin ,452A A ∴==︒,1803045105C ∴=︒-︒-︒=︒,62,sin105sin sin 4c b C B +=︒=,sin 232sin b C c B ∴==+. 【错因分析】错解中由正弦定理求出角A 的正弦值后误认为角A 是锐角,从而导致错误. 【正解】由正弦定理,sin sin a b A B =得422sin sin 30A =︒, 2sin ,2A ∴=,45a b A >∴=︒或135︒.当45A =︒时,1803045105C =︒-︒-︒=︒,62sin ,sin105,232sin sin 4sin c b b Cc C B B+=︒=∴==+;当135A =︒时,1803013515C =︒-︒-︒=︒,62sin ,sin15,232sin sin 4sin c b b Cc C B B-=︒=∴==-. 综上,45,105,232A C c =︒=︒=+或135,15,232A C c =︒=︒=-.【名师点睛】在ABC △中,已知两边和其中一边的对角解三角形时,可先用正弦定理求出另一边的对角,此时解的个数可能不确定,应注意讨论,避免漏解导致错误.1.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,83,6,60a b A ===︒,则sin B = A .2B 6C 2D 32.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若a =45B =︒,2b =,则A =A .30︒或150︒B .30︒C .150︒D .45︒3.在ABC △中,若∠A =60°,∠B =45°,BC =AC =A .B .CD 4.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知A :B :C =1:2:3,则a :b :c =A .1:2:3B .C .D .5.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,b =,4B π∠=,tan A =,则a =A .210B .C .10D .26.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin b C c B a A +=,则ABC △的形状为A .锐角三角形B .直角三角形C .钝角三角形D .不能确定7.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,15,18,30a b A ===︒,则此三角形解的个数为 A .0 B .1 C .2D .不能确定8.已知ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且cos A :cos B =b :a ,则ABC △是 A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形9.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若8a =,60B =︒,75C =︒,则b =______________.10.在ABC △中,角A ,C 的对边分别为a ,c ,其中1=a ,33=c 3A π=,则角=C ______________.11.在ABC △中,若B =30°,AB =23,AC =2,则ABC △的周长为______________. 12.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,己知A −C =90°,a +c =2b ,求C .13.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若a =52b ,A =2B ,则cos B = A 5 B 5C 5 D 5 14.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知π,3,23A a b ===,则B = A .π6 B .π4 C .π3D .π215.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知π3,6,3a b A ===,则角B 等于 A .π4B .3π4C .π4或3π4D .以上都不正确16.在ABC △中,角A ,B ,C 的对边为a ,b ,c ,若cos (2)cos c a B a b A -=-,则ABC △是A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形17.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos cos A B Ca b c==,则ABC △是 A .有一内角是30°的三角形 B .等边三角形C .等腰直角三角形D .有一内角是30°的等腰三角形18.在ABC △中,已知31,6,15b c B =-==︒,则边长a =A .31+或2B .31+C .2D .2319.在ABC △中,已知2AB AC =,30B =︒,则A =______________.20.如图所示,在一个坡度一定的山坡AC 的顶上有一高度为25m 的建筑物CD .为了测量该山坡相对于水平地面的坡角θ,在山坡的A 处测得15DAC ∠=︒,沿山坡前进50m 到达B 处,又测得45DBC ∠=︒.根据以上数据计算可得cos θ=______________.21.如图,在ABC △中,点D 在BC 边上,π72cos 42CAD AC ADB ∠==∠=,,. (1)求sin C 的值;(2)若5BD =,求AD 的长.22.(2017山东理)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是 A .2a b = B .2b a = C .2A B =D .2B A =23.(2017新课标全国Ⅰ文)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin (sin cos )0B A C C +-=,a =2,c 2,则C =A .π12 B .π6 C .π4D .π324.(2017新课标全国Ⅱ文)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A =+,则B =______________.25.(2017新课标全国Ⅲ文)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b ,c =3,则A =______________.26.(2018北京理)在△ABC 中,7a =,8b =,1cos 7B =-. (1)求A ∠;(2)求AC 边上的高.1.【答案】D【解析】∵83,6,60a b A ===,由sin sin a b A B =得sin 3sin .8b A B a ==故选D . 2.【答案】B【解析】在ABC △中,由sin sin a b A B =得21sin sin sin 4522a A Bb ===︒,由于a b <,所以A B <,所以30A =︒,故选B . 3.【答案】B【解析】由正弦定理得23sin 60sin 45AC =︒︒,所以AC =23sin 452 2.sin 60︒=︒故选B .4.【答案】C【解析】因为在ABC △中,A +B +C =π,且A :B :C =1:2:3,所以A =6π,B =3π,C =2π,由正弦定理的变形,得a :b :c =sin A :sin B :sin C 13=1=22::1:3:2.故选C .6.【答案】B【解析】由已知可得2sin cos cos sin sin B C B C A +=,∴2sin()sin B C A +=,∴sin 1A =,∴π2A =,三角形为直角三角形.故选B . 7.【答案】C【解析】由正弦定理可得sin 18sin 303sin 155b A B a ︒===,因为b a >,所以30B A >=︒,所以角B 可能是锐角,也可能是钝角,所以此三角形有两解,故选C .8.【答案】D【解析】由正弦定理可得cos sin cos sin A b BB a A==,即sin A cos A =sin B cos B ,所以sin2A =sin2B ,即2A =2B 或2A +2B =π,即A =B 或A +B =2π,故ABC △是等腰或直角三角形.故选D .9.【答案】46【解析】∵60B =︒,75C =︒,∴45A =︒,∵sin sin a bA B=,∴82322b=,∴46b =. 10.【答案】π6【解析】由正弦定理可得313πsin sin 3C =,即212333sin =⨯=C ,所以π6C =或5π6,又a c <,所以π6C =.12.【答案】o =15C .【解析】由正弦定理可得sin sin 2A C B +=,又由于o o90=180()A C B A C -=-+,,故cos sin 2)C C A C +=+o 22)22C C =+=,即22sin cos 2,22C C C +=o cos(45)cos 2C C -=. 因为o o 090C <<,所以o 2=45C C -,即o =15C . 13.【答案】B【解析】由正弦定理,得sin sin a A b B =,所以a =52b 可化为sin sin A B =52.又A =2B ,所以sin 2sin B B =52,所以cos B =54.故选B . 14.【答案】D【解析】在ABC △中,由正弦定理可得2πsin sin sin 133b B A a ==⨯=,又0πB <<,所以B =π2,故选D . 15.【答案】 A【解析】在ABC △中,∵π3,6,3a b A ===,∴36πsin sin sin sin 3a b A B B =⇒=2sin 2B ⇒=,又63b a =<=,∴π03B A <<=,∴π4B =,故选A .16.【答案】D【解析】由正弦定理和已知条件可得sin sin cos 2sin cos sin cos C A B A A B A -=-, 所以sin()sin cos 2sin cos sin cos ,A B A B A A B A +-=- 即cos (sin sin )0A B A -=,所以cos 0A =或sin sin 0B A -=,即90A =︒或=A B .故ABC △是等腰三角形或直角三角形. 故选D .18.【答案】A【解析】由正弦定理可得,sin 63sin 231c B C b ===-, 在ABC △中,c b >,60C ∴=或120.当60C =时,105A =︒,sin 6sin10531sin c A a C ︒∴===; 当120C =时,45A =︒,此时sin 6sin 452sin c A a C ︒∴===. 综上,可得31a =或2.故选A .19.【答案】105︒或15︒【解析】由正弦定理得sin sin AB AC C B =,得sin 2sin 2sin 302AB B C AC ==︒=, 由AB AC >,得C B >,所以45C =︒或135︒,从而105A =︒或15︒.21.【答案】(1)45;(2)22. 【解析】(1)因为2cos ADB ∠=72sin ADB ∠= 又π4CAD ∠=,所以π4C ADB =∠-, 所以πππ722224sin sin()sin coscos sin 4445C ADB ADB ADB =∠-=∠⋅-∠⋅==. (2)在ACD △中,由sin sin AD ACC ADC =∠,可得sin 22sin AC C AD ADC⋅==∠. 22.【答案】A【解析】由题意知sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+, 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,故选A . 23.【答案】B【解析】由sin()sin (sin cos )0A C A C C ++-=可得sin cos cos sin sin sin A C A C A C ++-sin cos 0A C =,即πsin (sin cos )2sin()04C A A C A +=+=,所以3π4A =.由正弦定理sin sin a c A C =可得223πsin sin 4C =,即1sin 2C =,因为c a <,所以C A <,所以π6C =,故选B . 24.【答案】π3【解析】由正弦定理可得12sin cos sin cos sin cos sin()sin cos 2B B A C C A A C B B =+=+=⇒=π3B ⇒=. 25.【答案】75︒【解析】由正弦定理sin sin b c B C=,可得36sin 22sin 32b C Bc ⨯===,结合b c <可得45B =︒,则18075A B C =︒--=︒. 26.【答案】(1)π3A ∠=;(2)AC 边上的高为332. 【解析】(1)在△ABC 中,因为1cos 7B =-,所以π(,)2B ∈π,所以243sin 1cos 7B B =-=. 由正弦定理7sin sin sin a b A B A =⇒=8437,所以3sin 2A =. 因为π(,)2B ∈π,所以π(0,)2A ∈,所以π3A ∠=(2)在△ABC 中,3114333sin sin()sin cos sin cos ()272714C A B A B B A =+=+=⨯-+⨯=. 如图所示,在△ABC 中,sin h C BC =,所以3333sin 7142h BC C =⋅=⨯=, 所以AC 边上的高为332.。
高二数学正弦定理试题答案及解析1.在△ABC中,、、分别是角、、的对边,且.(Ⅰ)求角的大小;(Ⅱ)若,求△ABC的面积.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)利用正弦定理并化简得,又,所以,因为为三角形的内角,所以.(Ⅱ)将已知条件代入余弦定理得 ac=3,所以.试题解析:(Ⅰ)由正弦定理得将上式代入已知即即∵∵∵为三角形的内角,∴.(Ⅱ)将代入余弦定理得,∴∴.【考点】1.解三角形的正弦定理与余弦定理;2.三角形的面积公式2.已知a,b,c分别为△ABC三个内角A,B,C的对边,a2=b2+c2﹣bc.(Ⅰ)求A;(Ⅱ)若a=2,求bsinB+csinC的最大值.【答案】(Ⅰ);(Ⅱ)2【解析】(Ⅰ)利用余弦定理可解得cosA=,因此A=;(Ⅱ)由正弦定理可知2r==,所以bsinB+csinC=(b2+c2),又b2+c2﹣4=bc≤得b2+c2≤8,所以bsinB+csinC=(b2+c2)≤2,所求的最大值为2.试题解析:(Ⅰ)△ABC中,∵a2=b2+c2﹣bc,∴cosA==,∴A=.(Ⅱ)若a=2,则2r==,∴bsinB+csinC=(b2+c2).∵b2+c2﹣4=bc≤,∴b2+c2≤8,∴(b2+c2)≤2,即bsinB+csinC的最大值为2.【考点】1.正弦定理与余弦定理;2.基本不等式的应用3.在中,角所对的边分别为,已知,(1)求的大小;(2)若,求的取值范围.【答案】(1);(2).【解析】(1)由条件结合正弦定理,构建关于的方程,从而解出的值.(2)求的取值范围,通过正弦定理转化为角或角的三角函数,运用三角函数的知识解决问题,注意角的范围.在三角函数中求式子的取值范围,通常是运用正、余弦定理转化为某个角的三角函数来求范围,很少转化为某条边的代数函数来求范围的.试题解析:(1)由已知条件结合正弦定理有:,从而有:,.(2)由正弦定理得:,,,即:.【考点】1.解三角形;2.三角函数图象与性质.4.在△ABC中,设A、B、C的对边分别为a、b、c,向量,,若(1)求角A的大小;(2)若的面积.【答案】(1);(2)16.【解析】解题思路:(1)利用平面向量的模长公式将条件转化为,再结合角的范围求角A;(2)由正弦定理将边的关系化成角的正弦的关系,进而判定三角形的形状和求三角形的面积.规律总结:以平面向量为载体考查三角函数问题,体现了平面向量的工具性,要灵活选择平面向量知识合理化简,出现三角函数关系式;根据三角函数值求角的,要注意结合所给角的范围;解三角形要根据条件合理选择正弦定理、余弦定理、面积公式.试题解析:(1)又,,,为等腰三角形,.【考点】1.平面向量的模长;2.解三角形.5.中,,,则()A.B.C.D.【答案】C【解析】在中,由正弦定理可得即,所以,因为,,所以为锐角,所以由可得,所以,选C.【考点】正弦定理.6.在中,,则等于A.30°B.60°C.60°或120°D.30°或150【答案】C【解析】由正弦定理得:,∴,∴60°或120°.【考点】正弦定理.7.在中,角A.B.C所对的边分别是..,若,,则等于()A.B.C.D.【答案】B【解析】由正弦定理与题中条件可得即,而为三角形的内角,所以,所以,故选B.【考点】1.正弦定理;2.正弦的二倍角公式.8.辽宁广播电视塔位于沈阳市沈河区青年公园西侧,蜿蜒的南运河带状公园内,占地8000平方米.全塔分为塔座、塔身、塔楼和桅杆四部分.某数学活动小组在青年公园内的A处测得塔顶B处的仰角为45°. 在水平地面上,沿着A点与塔底中心C处连成的直线行走129米后到达D处(假设可以到达),此时测得塔顶B处的仰角为60°.(1)请你根据题意,画出一个ABCD四点间的简单关系图形;(2)根据测量结果,计算辽宁广播电视塔的高度(精确到1米).【答案】305米【解析】由题意知,,可用正弦定理求出或的边长,最后在或中用三角函数求的边长。
高二数学知识点高二数学知识点在我们平凡无奇的学生时代,大家最熟悉的就是知识点吧?知识点也可以通俗的理解为重要的内容。
那么,都有哪些知识点呢?下面是店铺为大家整理的高二数学知识点,希望能够帮助到大家。
高二数学知识点11.不等式的定义:a-b>;0a>;b,a-b=0a=b,a-b<;0a①其实质是运用实数运算来定义两个实数的大小关系。
它是本章的基础,也是证明不等式与解不等式的主要依据。
②可以结合函数单调性的证明这个熟悉的知识背景,来认识作差法比大小的理论基础是不等式的性质。
作差后,为判断差的符号,需要分解因式,以便使用实数运算的符号法则。
2.不等式的性质:①不等式的性质可分为不等式基本性质和不等式运算性质两部分。
不等式基本性质有:(1) a>;bb(2) a>;b,b>;ca>;c (传递性)(3) a>;ba+c>;b+c (c∈R)(4) c>;0时,a>;bac>;bcc<;0时,a>;bac运算性质有:(1) a>;b,c>;da+c>;b+d.(2) a>;b>;0,c>;d>;0ac>;bd.(3) a>;b>;0an>;bn (n∈N,n>;1)。
(4) a>;b>;0>;(n∈N,n>;1)。
应注意,上述性质中,条件与结论的逻辑关系有两种:“”和“”即推出关系和等价关系。
一般地,证明不等式就是从条件出发施行一系列的推出变换。
解不等式就是施行一系列的等价变换。
因此,要正确理解和应用不等式性质。
②关于不等式的性质的考察,主要有以下三类问题:(1)根据给定的不等式条件,利用不等式的性质,判断不等式能否成立。
(2)利用不等式的性质及实数的性质,函数性质,判断实数值的大小。
(3)利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。
专题6.7 正弦、余弦定理知识储备一.余弦定理在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,则有【思考】在a 2=b 2+c 2-2bc cos A 中,若A =90°,公式会变成什么? 【答案】a 2=b 2+c 2,即勾股定理. 二.正弦定理在一个三角形中,各边和它所对角的正弦的比相等.即CcB b A a sin sin sin == 三.正弦定理的变形公式1.a =2R sin A ,b =2R sin B ,c =2R sin C .2.RcC R b B R a A 2sin ,2sin ,2sin ===(其中R 是△ABC 外接圆的半径). 【思考】在正弦定理中,三角形的各边与其所对角的正弦的比都相等,那么这个比值等于多少?与该三角形外接圆的直径有什么关系?【答案】等于2R (R 为该三角形外接圆的半径),与该三角形外接圆的直径相等.能力检测姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分150分,考试时间120分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021·广西桂林市·高二期末(理))ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若45A =︒,60B =︒,2a =,则b =( )ABCD.【答案】A【解析】因为45A =︒,60B =︒,2a =,所以由正弦定理可得sin sin a bA B=, 则b=2sin 2sin 60sin sin 45a B A ===,故选:A. 2.(2021·云南高三期末)在ABC 中,若4AC =,6AB =,BC =A ∠=( )A .6πB .4π C .3π D .2π 【答案】C【解析】由余弦定理可得:2221636281cos 22462b c a A bc +-+-===⨯⨯又()0,A π∈所以3A π=故选:C3.(2021·广西桂林市·高二期末(理))ABC 的内角,,A BC 的对边分别为,,a b c ,且1a =,c =6B π=,则ABC 的面积为( )A .32B .34C D 【答案】D【解析】在ABC 中,由1a =,c =6B π=,则111sin 12224ABCSac B ==⨯=. 故选:D .4.(2021·河南新乡市·高二期末(文))在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin 2sin sin b B c C a A +=,则ABC 的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定【答案】C【解析】因为2222b c a +=,所以2222cos 022b c a c A bc bc+--==<,所以90A >︒,所以ABC 的形状为钝角三角形.故选C5.(2021·河南信阳市·高二期末(理))已知ABC 中,角,,A B C 所对的边分别为,,a b c ,且22226c ab a b +=++,若ABC 的面积为2,则tan C 的值为( )A B C .1 D 1【答案】B【解析】由题意22222262cos c a b ab a b ab C =+-+=+-即()1cos 3ab C -=①,1sin 2S ab C ==①联立①①得1cossin C C -=sin 2sin 3C C C π⎛⎫=+= ⎪⎝⎭即sin 32C π⎛⎫+= ⎪⎝⎭又0C π<<4333C πππ∴<+< 2,333C C πππ∴+==tan C ∴=B . 6.(2021·江苏镇江市·高一期末)如皋定慧寺原有佛塔毁于五代时期,现在的观音塔为2002年6月12日奠基,历时两年完成的,是仿明清古塔建筑,框架七层、八角彩绘,总建筑面积700多平方米.塔内供奉观音大士铜铸32应身,玻璃钢彩铸大悲咒出相84尊,有通道拾级而上可登顶层.塔名由中国书法协会名誉主席、中国佛教协会顾问、国学大师启功先生题写.塔是佛教的工巧明(即工艺学,比如建筑学就是工巧明之一),东汉明帝永平年间方始在我国兴建.所谓救人一命胜造七级浮屠,这七级浮屠就是指七级佛塔.下面是观音塔的示意图,游客(视为质点)从地面D 点看楼顶点A 的仰角为30,沿直线DB 前进51米达到E 点,此时看点C 点的仰角为45︒,若23BC AC =,则该八角观音塔的高AB 约为( ) 1.73≈)A .8米B .9米C .40米D .45米【答案】D【解析】设AC x =,由23BC AC =得,32BC x =因为45CEB ∠=︒,所以32BE BC x ==,在Rt ABD △中,32tan 3033512x xAB BD x +︒===+,解得18x =≈所以5452AB x =≈故选D7.(2021·全国高三专题练习(理))秦九韶,字道古,汉族,鲁郡(今河南范县)人,南宋著名数学家,精研星象、音律、算术、诗词、弓、剑、营造之学.1208年出生于普州安岳(今四川安岳),咸淳四年(1268)二月,在梅州辞世. 与李冶、杨辉、朱世杰并称宋元数学四大家.他在著作《数书九章》中创用了“三斜求积术”,即是已知三角形的三条边长,,a b c ,求三角形面积的方法.其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S =,若ABC 满足2sin c A 2sin C =,3cos 5B =,且a<b<c ,则用“三斜求积”公式求得ABC 的面积为( ) A .35B .45 C .1 D .54【答案】B【解析】因为2sin c A 2sin C =,所以22,2ac c ac =∴=.因为3cos 5B =,所以22222236,2525a cb ac b ac +-+-=∴=,所以45S ==.故选:B 8.(2021·江西新余市·高二期末(文))在ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,b c =且sin 1cos sin cos B B A A-=,若点O 是ABC 外一点,()0AOB θθπ∠=<<,2OA =,1OB =.则平面四边形OACB 的面积的最大值是( )A B .44+ C .3 D .42+ 【答案】A【解析】在ABC 中,sin 1cos sin cos B BA A-=,sin cos cos sin sin B A B A A ∴+=, 即sin()sin()sin sin A B C C A π+=-==A C ∴=,b c =,∴ABC 是等边三角形,OACB AOBABCS SS∴=+211||||sin ||22OA OB AB θ=⋅+⨯)22121sin ||||2||||cos 2OA OB OA OB θθ=⨯⨯⨯+-⋅sin (41221cos )4θθ=++-⨯⨯⨯sin 4θθ=-+2sin 34πθ⎛⎫=-+ ⎪⎝⎭ 0θπ<<,2333πππθ∴-<-<, 则当32ππθ-=,即56πθ=时,sin 3πθ⎛⎫- ⎪⎝⎭取得最大值1,故四边形OACB 面积的最大值为2=故选A.二、多项选择题:本题共4小题,每小题5分,共20分。
第21讲-正弦定理和余弦定理一、 考情分析1.掌握正弦定理、余弦定理.2.能解决一些简单的三角形度量问题.二、 知识梳理1.正、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理公式a sin A =b sin B =csin C =2Ra 2=b 2+c 2-2bc cos__A ;b 2=c 2+a 2-2ca cos__B ; c 2=a 2+b 2-2ab cos__C 常见变形(1)a =2R sin A ,b =2R sin__B ,c =2R sin__C ;(2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R ; (3)a ∶b ∶c =sin__A ∶sin__B ∶sin__C ; (4)a sin B =b sin A ,b sin C =c sin B ,a sin C =c sin Acos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R ,r .3.在△ABC 中,已知a ,b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sin A b sin A <a <b a ≥b a >b a ≤b 解的个数一解两解一解一解无解[微点提醒]1.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ;(3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C 2. 2.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 3.在△ABC 中,两边之和大于第三边,两边之差小于第三边,A >B ⇔a >b ⇔sin A > sin B ⇔cos A <cos B .三、 经典例题考点一 利用正、余弦定理解三角形【例1】 (1)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若 (a +b )(sin A -sin B )=(c -b )sin C ,则A =( ) A.π6 B.π3 C.5π6 D.2π3(3)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B.π3C.π4D.π6 【解析】 (1)由正弦定理,得sin B =b sin C c =6×323=22, 结合b <c 得B =45°,则A =180°-B -C =75°. (2)∵(a +b )(sin A -sin B )=(c -b )sin C ,∴由正弦定理得(a +b )(a -b )=c (c -b ),即b 2+c 2-a 2=bc . 所以cos A =b 2+c 2-a 22bc =12, 又A ∈(0,π),所以A =π3.(3)因为a 2+b 2-c 2=2ab cos C ,且S △ABC =a 2+b 2-c 24,所以S △ABC =2ab cos C 4=12ab sin C ,所以tan C =1.又C ∈(0,π),故C =π4.规律方法 1.三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.2.已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数.考点二判断三角形的形状【例2】(1)在△ABC中,角A,B,C所对的边分别为a,b,c,若cb<cos A,则△ABC为()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形(2)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定【解析】(1)由cb<cos A,得sin Csin B<cos A,又B∈(0,π),所以sin B>0,所以sin C<sin B cos A,即sin(A+B)<sin B cos A,所以sin A cos B<0,因为在三角形中sin A>0,所以cos B<0,即B为钝角,所以△ABC为钝角三角形.(2)由正弦定理得sin B cos C+sin C cos B=sin2A,∴sin(B+C)=sin2A,即sin A=sin2A.∵A∈(0,π),∴sin A>0,∴sin A=1,即A=π2,∴△ABC为直角三角形.规律方法 1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系;(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.2.无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,否则会有漏掉一种形状的可能.注意挖掘隐含条件,重视角的范围对三角函数值的限制.考点三和三角形面积、周长有关的问题角度1 与三角形面积有关的问题【例3-1】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 【解析】(1)由sin A +3cos A =0及cos A ≠0, 得tan A =-3,又0<A <π, 所以A =2π3.由余弦定理,得28=4+c 2-4c ·cos 2π3. 即c 2+2c -24=0,解得c =-6(舍去),c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6. 故△ABD 与△ACD 面积的比值为12AB ·AD sin π612AC ·AD =1.又△ABC 的面积为12×4×2sin ∠BAC =23, 所以△ABD 的面积为 3.角度2 与三角形周长有关的问题【例3-2】 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足a sin B =3b cos A .若a =4,则△ABC 周长的最大值为________. 【解析】 由正弦定理a sin A =bsin B ,可将a sin B =3b cos A 转化为sin A sin B =3sin B cos A . 又在△ABC 中,sin B >0,∴sin A =3cos A , 即tan A = 3. ∵0<A <π,∴A =π3.由余弦定理得a 2=16=b 2+c 2-2bc cos A=(b +c )2-3bc ≥(b +c )2-3⎝⎛⎭⎪⎫b +c 22, 则(b +c )2≤64,即b +c ≤8(当且仅当b =c =4时等号成立), ∴△ABC 周长=a +b +c =4+b +c ≤12,即最大值为12.规律方法 1.对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.2.与面积周长有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. [方法技巧]1.正弦定理和余弦定理其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系.2.在已知关系式中,既含有边又含有角,通常的解题思路是:先将角都化成边或边都化成角,再结合正弦定理、余弦定理即可求解.3.在△ABC 中,若a 2+b 2<c 2,由cos C =a 2+b 2-c 22ab <0,可知角C 为钝角,则△ABC 为钝角三角形.4.在利用正弦定理解有关已知三角形的两边和其中一边的对角解三角形时,有时出现一解、两解,所以要进行分类讨论.另外三角形内角和定理起着重要作用,在解题中要注意根据这个定理确定角的范围,确定三角函数值的符号,防止出现增解等扩大范围的现象.5.在判断三角形的形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.四、 课时作业1.(2020·安徽省舒城中学高一月考(文))在ABC 中,a =c =60A =︒,则C =( ). A .30° B .45°C .45°或135°D .60°【答案】B【解析】由正弦定理得2,sinC ,45sin 60sin 2c a C C =∴=<∴=.2.(2020·四川外国语大学附属外国语学校高一月考)在ABC ∆中,,,a b c 分别为,,A B C 的对边,60,1A b ==,则a =( )A .2BC .D【答案】D 【解析】依题意11sin 1sin 60322S bc A c ==⋅⋅=,解得4c =,由余弦定理得13a ==.3.(2020·浙江省高一期中)在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,222c a b =+,则C =( ) A .60 B .30C .60或120D .120【答案】B【解析】222c a b =+,222a b c ∴+-=,由余弦定理得222cos 2a b c C ab +-==, 0180C <<,因此,30C =.4.(2020·金华市江南中学高一期中)钝角三角形ABC 的面积是12,AB=1,,则AC=( )A .5BC .2D .1【答案】B【解析】由面积公式得:1122B =,解得sin B =,所以45B =或135B =,当45B =时,由余弦定理得:21245AC =+-=1,所以1AC =,又因为AB=1,,所以此时ABC ∆为等腰直角三角形,不合题意,舍去;所以135B =,由余弦定理得:212AC =+-=5,所以AC =故选B.5.(2020·全国高三(文))在锐角ABC ∆中,若2C B =,则cb的范围( )A .B .)2C .()0,2D .)2【答案】A【解析】由正弦定理得c sinC sin2B sinB sinBb ===2cosB ,∵△ABC 是锐角三角形,∴三个内角均为锐角, 即有 0<B <2π, 0<C=2B <2π,0<π-A-B=π-3B <2π,解得6π<B <4π,余弦函数在此范围内是减函数.故2<cosB ∴c b ∈,故选A .6.(2020·全国高三(文))在△ABC 中,如果sin :sin :sin 2:3:4A B C =,那么cosC 等于 ( ) A .23B .23-C .13-D .14-【答案】D【解析】由正弦定理可得;sinA :sinB :sinC=a :b :c=2:3:4可设a=2k ,b=3k ,c=4k (k >0)由余弦定理可得,cosC=1-4,选D7.(2020·山东省枣庄八中高一开学考试)在ABC 中,π3A =,b 2=,其面积为sin sin A Ba b++等于( )A .14B .13C D 【答案】A【解析】因为在ABC 中,π3A =,b 2=,其面积为所以12bcsinA =,因此4c =, 所以22212416224122a b c bccosA =+-=+-⨯⨯⨯=,所以a = 由正弦定理可得:a b sinA sinB=,所以sin sin sin 14A B Aa b a +===+. 8.(2020·四川省高三二模(文))ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若sin 2sin B A =,3C π=,则ca的值为( )A B C .2 D .12【答案】A【解析】由sin 2sin B A =,据正弦定理有2b a =,又3C π=,根据余弦定理有222cos 2a b c C ab +-=,即222214222a a c a+-=⨯,223c a =故ca=9.(2020·秦皇岛市抚宁区第一中学高二月考(理))在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知sin cos 2A a B b c -=-,则A = A .6πB .4π C .3π D .23π 【答案】C【解析】由已知和正弦定理得sin sin cos 2sin sin B A A B B C -=-,sin sin cos 2sin sin()B A A B B A B -=-+,()sin sin cos 2sin sin cos cos sin B A A B B A B A B -=-+sin 2sin cos sin B A B A B =-,因为sin 0B ≠,cos 2A A +=,即sin 16A π⎛⎫+= ⎪⎝⎭,所以262A k πππ+=+,即23A k ππ=+,又(0,)A π∈,所以3A π=,故选C .10.(2020·金华市江南中学高一期中)在ABC ∆中,内角,,A B C 所对的边分别为,,,a b c若a =60A ︒=,45B ︒=,则b 的长为( )A.2B .1 CD .2【答案】C 【解析】在ABC ∆中,内角,,A B C 所对的边分别为,,,a b c且a =60A ︒=,45B ︒=由正弦定理sin sin a b A B= 得:sin sin a Bb A===故选:C.11.(2020·浙江省高二学业考试)已知ABC 的三个内角A ,B ,C 所对的三条边为a ,b ,c ,若::1:1:4A B C =,则::a b c =( )A .1:1:4B .1:1:2C .1:1:3D .1:1:3【答案】D【解析】设A x =,则,4B x C x ==,所以4180x x x ++=︒,解得30x =︒, 则30,30,120A B C =︒=︒=︒,则::sin :sin :sin sin 30:sin 30:sin1201:1:3a b c A B C ==︒︒︒=,故选:D. 12.(2020·威远中学校高一月考(文))在△ABC 中,a=3,b=5,sinA=,则sinB=( ) A . B .C .D .1【答案】B【解析】由正弦定理得,故选B .13.(2020·石嘴山市第三中学高三其他(理))在三角形ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且满足22265b c a bc +=+,则sin 2B C +⎛⎫= ⎪⎝⎭( ) A .22B 5C .25D 25【答案】D【解析】∵22265b c a bc +=+,即22265a b c bc -=+,由余弦定理可得2222cos a b c bc A =+-, ∴62cos 5bc A bc =, ∴3cos 5A =,则02A π<<, ∵ABC π++=, ∴1cos 25sin cos 222B C A A ++⎛⎫===⎪⎝⎭,故选:D . 14.(2020·山东省高三其他)在3世纪中期,我国古代数学家刘徽在《九章算术注》中提出了割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.这可视为中国古代极限观念的佳作.割圆术可以视为将一个圆内接正n 边形等分成n 个等腰三角形(如图所示),当n 变得很大时,等腰三角形的面积之和近似等于圆的面积.运用割圆术的思想,可得到sin 3°的近似值为( )(π取近似值3.14)A .0.012B .0.052C .0.125D .0.235【答案】B【解析】当120n =时,每个等腰三角形的顶角为360=3120︒︒,则其面积为21sin 32S r ∆=︒, 又因为等腰三角形的面积之和近似等于圆的面积, 所以221120sin 3sin 30.052260r r ππ⨯︒≈⇒︒≈≈,故选:B 15.(2020·全国高三(文))在ABC ∆中,若cos cos a cA C b++=,则ABC ∆的形状是( ) A .C 为直角的直角三角形 B .C 为钝角的钝角三角形 C .B 为直角的直角三角形 D .A 为锐角的三角形【答案】C【解析】因为cos cos a cA C b++=, 所以22222222b c a a b c a c bc ab b+-+-++=, 所以222222()()2()a b c a c a b c ac a c +-++-=+, 所以233()()()b a c a c ac a c +-+=+,所以222()()()()b a c a c a ac c ac a c +-+-+=+, 因为0a c +>,所以222()b a ac c ac --+=, 所以222a c b +=, 所以B 为直角.16.(2020·四川省成都外国语学校高一期中(文))在锐角..ABC 中, 2,2a B A ==,则b 的取值范围是( ) A .(2,23B .(22,23C .()2,4D .()23,4【答案】B【解析】由题得3,C B A A ππ=--=-因为三角形是锐角三角形,所以0202,,cos 2642032A B A A A C A ππππππ⎧<<⎪⎪⎪<=<∴<<<<⎨⎪⎪<=-<⎪⎩. 由正弦定理得22,,4cos sin sin sin 22sin cos sin b b b b A B A A A A A=∴==∴=.所以b ∈.17.(2020·四川省高一月考(理))在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若,23C c π==,当ABC 面积最大时,此时的ABC 为( )A .直角三角形B .钝角三角形C .等边三角形D .不能对形状进行判断 【答案】C【解析】1sin 23ABC S ab π==,当ab 取最大值,面积最大, 由余弦定理可得,2242a b ab ab ab ab =+-≥-=,解得4ab ≤,当2a b ==等号成立,所以ABC 为等边三角形.故选:C.18.(2020·宁夏回族自治区银川一中高三其他(文))已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的外接圆的面积为3π,且222cos cos cos 1sin sin A B C A C -+=+,则ABC 的最大边长为( )A .3B .4C .5D .6【答案】A【解析】因为222cos cos cos 1sin sin A B C A C -+=+,所以222sin sin sin sin sin A C B A C +-=-,由正弦定理得222a cb ac +-=-,所以2221cos 22a c b B ac +-==-,120B =︒,所以b 边最大, 设ABC 外接圆半径为R ,则23R ππ=,R =, 由2sin b R B=得2sin 3b R B ==︒=. 19.(2020·辽宁省高三月考(文))已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且满足6a =,c =2sin tan tan cos C A B A +=,则ABC S =( ) A.B. C. D.【答案】B 【解析】由2sin tan tan cos C A B A +=,得sin cos cos sin 2sin cos cos cos A B A B C A B A +=,即sin 2sin cos C C B=. 因为sin 0C ≠,所以1cos ,(0,)2B B π=∈,所以3B π=,因此11sin 622ABC S ac B ==⨯⨯△=20.(2020·威远中学校高一月考(文))在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若ABC ∆的面积为S ,且221,41a S b c ==+-,则ABC ∆外接圆的面积为( ) A .2π B .2π CD.4【答案】A【解析】∵由余弦定理可得:222222cos 1bc A b c a b c =+-=+-, 又∵1sin 2S bc A =,可得42sin S bc A =, ∵2241S b c =+-,可得:2cos 2sin bc A bc A =,即tan 1A =,∵()0,A π∈,∴4A π=,设ABC 外接圆的半径为R ,由正弦定理可得: 2sin R Aa =,22R =得:2R =,∴ABC 外接圆的面积22S R ππ==,故选:A.21.(2020·山东省高三其他)已知ABC △同时满足下列四个条件中的三个: ①π3A =;②2cos 3B =-;③ 7a =;④ 3b =. (Ⅰ)请指出这三个条件,并说明理由;(Ⅱ)求ABC △的面积.【解析】(Ⅰ)解:ABC △同时满足①,③,④.理由如下:若ABC △同时满足①,②. 因为21cos 32B =-<-,且(0,π)B ∈,所以2π3B >. 所以πA B +>,矛盾.所以ABC △只能同时满足③,④.所以a b >,所以A B >,故ABC △不满足②.故ABC △满足①,③,④.(Ⅱ)解:因为2222cos a b c bc A =+-, 所以222173232c c =+-⨯⨯⨯. 解得8c =,或5c =-(舍).所以△ABC 的面积1sin 2S bc A ==22.(2020·山东省枣庄八中高一开学考试)一道题目因纸张破损,其中的一个条件不清楚,具体如下:在ABC ∆中,已知a =_______,)22cos 1cos 2A C B +=,经过推断破损处的条件为该三角形一边的长度,且该题的答案为60A =︒,那么缺失的条件是什么呢?问题:(1)如何根据题目条件求出,B C 的大小?(2)由求得的,B C 的值和正弦定理如何求出,b c 的值?(3)破损处的条件应该用b 边的长度还是用c 边的长度,还是二者均可?为什么?【解析】(1)由()22cos=1+cos 2A C A C ++, 即()22cos =1+cos 1cos 2A C A CB ++=-又)22cos 1cos 2A C B +=所以cos 2B =,又()0,180B ∈ 所以45B =,则180456075C =--=(2)由sin sin sin a b c A B C ==且a =所以可知2sin 2sin a B b A ===由()6sin 75sin 4530+=+=所以62sin sin 2a C c A +=== (3)只能用c 若用b =sin sin aB A b == 那么60A =或120,故有两个值,所以不能用b =23.(2020·肥城市教学研究中心高三其他)在ABC 中,,,a b c 分别为角,,A B C 所对的边,且22()b a ac c -=-.(1)求角B .(2)若 b =2a c +的最大值.【解析】(1)22()b a a c c -=-即222b a c ac =+-2222cos b a c ac B =+-1cos 2B ∴= (0,)B π∈3B π∴=(2)由sin sin a c A C ==可得,2sin ,2sin a A c C ==24sin 2sin a c A C ∴+=+ 2+3A C π= 23C A π∴=- 224sin 2sin 3a c A A π∴+=+-() 5sin A A=)A ϕ=+(其中tan ϕ=) 203A π<< 2ac ∴+的最大值为24.(2020·山东省高三其他)已知,,a b c 分别为ABC ∆内角,,A B C 的对边试从下列①②条件中任选一个作为已知条件并完成下列(1)(2)两问的解答①sin sin sin sin A C A B b a c --=+;②2cos cos cos c C a B b A =+. (1)求角C(2)若c =a b +=求ABC ∆的面积. 【解析】(1)选择①根据正弦定理得a c a b b a c--=+, 从而可得222a c ab b -=-,根据余弦定理2222cos c a b ab C =+-,解得1cos 2C =, 因为()0,πC ∈,故π3C =. 选择②根据正弦定理有sin cos sin cos 2sin cos A B B A C C +=,即()sin 2sin cos A B C C +=,即sin 2sin cos C C C =因为()0,πC ∈,故sin 0C ≠,从而有1cos 2C =, 故π3C = (2)根据余弦定理得2222cos c a b ab C =+-,得223a b ab =+-,即()233a b ab =+-,解得83ab =, 又因为ABC 的面积为1sin 2ab C , 故ABC 的面积为23. 25.(2020·四川外国语大学附属外国语学校高一月考)如图,在四边形ABCD 中,AD AB ⊥,60CAB ︒∠=,120BCD ︒∠=,2AC =.(1)若15ABC ︒∠=,求DC ;(2)记ABC θ∠=,当θ为何值时,BCD ∆的面积有最小值?求出最小值.【解析】(1)在四边形ABCD 中,因为AD AB ⊥,120BCD ∠=,15ABC ︒∠=所以135ADC ︒∠= ,在ACD ∆中,可得906030CAD ︒︒︒∠=-=,135ADC ︒∠=,2AC =由正弦定理得:sin sin CD AC CAD ADC=∠∠,解得:2CD = . (2)因为60CAB ∠=,AD AB ⊥可得30CAD ∠=,四边形内角和360得150ADC θ∠=-,∴在ADC ∆中,()()21sin 30sin 150sin 150DCDC θθ=⇒=--. 在ABC ∆中,2sin 60sin sin BC BC θθ=⇒=, ()131sin12024sin 150sin BCDS DC BC θθ∆∴=⋅⋅=⨯- 334422444==)34360=+, 当75θ=时,S 取最小值6-.。
高二数学必修五复习导学案课题:正弦定理 备课:高二数学备课组 NO :fx5101班级: 姓名:一、知识回顾(1)正弦定理:=R 2 = = .(R 为三角形外接圆的半径)变形形式有:a = ,b= , c=b aB A=sin sin sin sin A C = bc =(2)三角形中的边角关系①角角间的互补与互余:如: )sin(sin C B A C B A +=⇒=++π等)sin (sin b a B A B A >⇔>⇔>②边角间的对应关系——等边对等角;大边对大角③边边间的不等式关系——任两边之和大于第三边任两边之差小于第三边(3)利用正弦定理,可以解决以下两类斜三角形问题(1)已知两角和任一边,求其它两边和另一角(2)已知两国边和其中一边的对角,求另一边的对角及其它边、角对(1)而言三角形的形状唯一确定,所以仅有 解。
对(2)而言三角形的形状不唯一确定,因此会出现 解、一解、两解的情况。
二、例题分析例题1、在三角形ABC 中,已知006,45,75,c A C a ===求例题2、在三角形ABC 中解下列三角形(1)06,2,120;a b B === (2)06,45;a b A == (3)045;a b B ==三、随堂练习1、在三角形ABC 中,已知006,45,75,b A B a ===求2、在三角形ABC 中解下列三角形(1)07,8,105;a b A === (2)010,60;b c C === (3)06,30;a b A ===四、课后作业1、在△ABC 中,已知a =52,c =10,A =30°,则B =( )A .105°B .60°C .15°D .105°或15°2、在ABC ∆中,a =4,A =45°,B =60°,求边b 等于__________.3、以下关于正弦定理的叙述或变形错误的是( )A .在△ABC 中,a ∶b ∶c =sin A ∶sinB ∶sin CB .在△ABC 中,若sin 2A =sin 2B ,则a =bC .在△ABC 中,若sin A >sin B ,则A >B ;若A >B ,则sin A >sin B 都成立D .在△ABC 中,a sin A =b +csin B +sin C4、若sin A a =cos B b =cosC c ,则△ABC 是( )A .等边三角形B .直角三角形,且有一个角是30°C .等腰直角三角形D .等腰三角形,且有一个角是30°5、在ABC ∆中,若b Ba Acos sin =,则B 的值为( )A . 30B . 45C . 60D . 906、在ABC ∆中,已知 45=A ,6=AB ,2=BC ,解此三角形.。
高二数学《正弦定理》教案一、教材正弦定理是高中新教材人教A版必修五第一章1.1.1的内容,是学生在已有知识的基础上,通过对三角形边角关系的研究,发现并掌握三角形的边长与角度之间的数量关系。
提出两个实际问题,并指出解决问题的关键在于研究三角形的边、角关系,从而引导学生产生探索愿望,激发学生的学习兴趣。
在教学过程中,要引导学生自主探究三角形的边角关系,先由特殊情况发现结论,再对一般三角形进行推导,并引导学生分析正弦定理可以解决两类关于解三角形的问题:已知两角和一边,解三角形;已知两边和其中一边的对角,解三角形。
二、学情本节授课对象是高二学生,是在学生学习了必修四基本初等函数和三角恒等变换的基础上,由实际问题出发探索研究三角形边角关系,得出正弦定理。
高二学生对生产生活问题比较感兴趣,由实际问题出发可以激发学生的学习兴趣,使学生产生探索研究的愿望。
三、教学目标【知识与技能目标】能准确写出正弦定理的符号表达式,能够运用正弦定理理解三角形、初步解决某些测量和几何计算有关的简单的实际问题。
【过程与方法目标】通过对定理的证明和应用,锻炼独立解决问题的能力和体会分类讨论和数形结合的思想方法。
【情感态度价值观目标】通过对三角形边角关系的探究学习,经历数学探究活动的过程,体会由特殊到一般再由一般到特殊的认识事物规律,培养探索精神和创新意识。
四、教学重难点【重点】正弦定理及其推导。
【难点】正弦定理的推导与正弦定理的运用。
五、教学方法运用“发现问题——自主探究——尝试指导——合作交流”的教学方式,整堂课围绕“一切为了学生发展”的教学原则,突出:师生互动、共同探索,教师指导、循序渐进。
新课引入——提出问题,激发学生的求知欲。
掌握正弦定理的推导证明——分类讨论,数形结合动脑思考,由一般到特殊,组织学生自主探索,获得正弦定理及证明过程。
例题处理——始终由问题出发,层层设疑,让他们在探索中得到知识。
巩固练习——深化对正弦定理的理解。