高二数学正弦定理3
- 格式:pdf
- 大小:458.82 KB
- 文档页数:12
高二数学公式总结大全高二数学公式总结大全 1高中数学常用公式乘法与因式分a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)高中数学常用公式三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/a x1_x2=c/a注:韦达定理高中数学常用公式判别式b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac<0注:方程没有实根,有共轭复数根高中数学常用公式三角函数公式两角和公式sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)ctg(a+b)=(ctgactgb-1)/(ctgb+ctga) ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa))ctg(a/2)=√((1+cosa)/((1-cosa)) ctg(a/2)=-√((1+cosa)/((1-cosa))和差化积2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosbctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb高中数学常用公式某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角高二数学公式总结大全 1集合一、集合概念(1)集合中元素的特征:确定性,互异性,无序性。
编号1 正弦定理 导学案编者:栾卉凡 审核:丁秀芬【学习目标】 1. 理解正弦定理的推理过程;2. 熟练掌握正弦定理的内容及其变式的结构特征和作用;3. 能运用正弦定理解决一些简单的三角形问题。
【学习重点】正弦定理的内容及应用【学习难点】已知两边和其中一边对角,解三角形时,解的个数【课前自主预习】一.复习回顾 1.内角和定理:2.三角形中的三角公式:=+)sin(C B ______;=+)cos(C B ______;=+)tan(C B _____;=+)2sin(C B _____;=+)2cos(C B _____;=+)2tan(CB _____ 3.两角和与差的公式:=+)sin(βα_____________;=-)sin(βα_____________=+)cos(βα_____________;=-)cos(βα_____________4.降幂公式:=α2sin _____________;=α2cos _____________ 5. 面积公式:==∆C ab S sin 21_____________ = _____________=_____________ 二.自主预习1.把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素。
已知三角形的几个元素求其他元素的过程叫做___________.2. 正弦定理:在三角形中,________________________________________________________ 即____________=_____________=______________3. 正弦定理的几个变形(1)a =________ ,b=_________ ,c=_________ (2)sinA=_______, sinB=________ , sinC=_______ (3)a:b:c =____________________.4.在ABC ∆中,a,b 为B A,∠∠所对的边,则B A b a B A sin ____sin ___⇔>⇔【课内探究】一、正弦定理的推导(1)当ABC ∆为直角三角形时在Rt ABC ∆中,若 90C =︒,则sinA=_______, sinB=________, sinC=_______即: 对于任意三角形,这个结论还成立吗?(2)当ABC ∆为锐角三角形时(3)当ABC ∆为钝角三角形时探究一:(1)在ABC ∆中,A ∠的角平分线AD 与边BC 相交于D ,是否一定有ACABDC BD =?(2)在正弦定理中,设k CcB b A a ===sin sin sin ,那么k 与ABC ∆外接圆的半径R 有何关系?二、正弦定理的应用1:已知两角和任意一边,求其他两边和一角例1.已知:在B b a C A c ABC 和求中,,,30,45,1000===∆【练习】在ABC ∆中,已知45B =,60C =,12a =cm ,解三角形.思考:已知两角和一边,解三角形时,解的个数唯一吗?2.已知两边和其中一边对角,求另一边的对角,进而可求其他的边和角 例2. 在C A a c B b ABC ,,1,60,30和求中,===∆【练习】解下列三角形:(1)(2)∆ABC 中,3=a ,2=b ,oB 45=思考:已知两边和其中一边对角,解三角形时,解的个数唯一吗?3.应用正弦定理进行边角互化例3.已知在△ABC 中,(1)若5:3:1::=c b a ,求CA BA sin sin sin sin 2+-的值.(2)若045=A ,060=B ,求ba ba +-的值. (3)若C B A cos sin 2sin =且A C B 222sin sin sin =+,试判断三角形形状。
数学高二上册知识点归纳数学高二上册知识点归纳一:总体和样本①在统计学中,把研究对象的全体叫做总体。
②把每个研究对象叫做个体。
③把总体中个体的总数叫做总体容量。
④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,研究,我们称它为样本.其中个体的个数称为样本容量。
简单随机抽样也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随。
机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础,高三。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
数学高二上册知识点归纳二:简单随机抽样常用的方法①抽签法②随机数表法③计算机模拟法④使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
抽签法①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查。
数学高二上册知识点归纳三:函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;数学高二上册知识点归纳四:立体几何初步(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
高二数学正弦定理试题答案及解析1.在中,若,,则一定是A.钝角三角形B.正三角形C.等腰直角三角形D.非等腰三角形【答案】B【解析】由正弦定理得,,由于,得,整理得,由于,,所以三角形为等边三角形.【考点】判断三角形的形状.2.在锐角△ABC中,a、b、c分别为∠A、∠B、∠C所对的边,且a=2csinA.(1)确定∠C的大小;(2)若c=,求△ABC周长的取值范围.【答案】(1)∠C=60°;(2)(3+,3].【解析】(1)把已知的等式利用正弦定理化简,变形为: sinA=2sinCsinA,根据sinA不为0,可得出sinC的值,由三角形为锐角三角形,得出C为锐角,利用特殊角的三角函数值即可求出C的度数;(2)由c及sinC的值,利用正弦定理列出关系式,得到a=2sinA,b=2sinB,表示出三角形的周长,将表示出a,b及c的值代入,由C的度数,求出A+B的度数,用A表示出B,把B也代入表示出的周长,利用两角和与差的正弦函数公式及特殊角的三角函数值整理后,提取2再利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,根据A为锐角,得到A的范围,进而确定出这个角的范围,根据正弦函数的图象与性质求出此时正弦函数的值域,即可确定出周长的范围.试题解析:(1)已知a、b、c分别为∠A、∠B、∠C所对的边,由a=2csinA,得sinA=2sinCsinA,又sinA≠0,则sinC=,∴∠C=60°或∠C=120°,∵△ABC为锐角三角形,∴∠C=120°舍去。
∴∠C=60°.(2)∵c=,sinC=∴由正弦定理得:,即a=2sinA,b=2sinB,又A+B=π-C=,即B=-A,∴a+b+c=2(sinA+sinB)+=2[sinA+sin(-A)]+=2(sinA+sin cosA-cos sinA)+=3sinA+cosA+=2(sinAcos+cosAsin)+=2sin(A+)+,∵△ABC是锐角三角形,∴<∠A<,∴<sin(A+)≤1,则△ABC周长的取值范围是(3+,3].【考点】正弦定理;正弦函数的定义域和值域.3.已知:复数,,且,其中、为△ABC的内角,、、为角、、所对的边.(1)求角的大小;(2)若,求△ABC的面积.【答案】(1);(2).【解析】解题思路:(1)先利用复数相等得出三角形的边角关系,再利用正弦定理将边转化为角,利用三角关系求角B;(2)利用余弦定理求出有关的关系,再利用三角形的面积公式进行求解.规律总结:解三角形,要根据条件灵活选择正弦定理、余弦定理、面积公式,本题中已知两角与其中一角的对边,较容易想到先选择正弦定理.试题解析:(1),①,②;由①得③;在中,由正弦定理得∴∴,∵∴(2) ∵,由余弦定理得,--④由②得-⑤由④⑤得,∴=.【考点】1.复数相等的概念;2.正弦定理;3.余弦定理.4.设的内角的对边分别且,,若,求的值。
高二数学必修五 第一章解三角形一、本章知识结构:二、基础要点归纳1、三角形的性质: ①.A+B+C=π,222A B Cπ+=-⇒sin()sin A B C +=, cos()cos A B C +=-,sincos 22A B C+= ②.在ABC ∆中,a b +>c , a b -<c ; A >B ⇔sin A >sin B ,A >B ⇔cosA <cosB, a >b ⇔A >B③.假设ABC ∆为锐角∆,那么A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理: ①.正弦定理:2sin sin sin a b cR A B C === (2R 为ABC ∆外接圆的直径) 111sin sin sin 222ABCS ab C bc A ac B ∆=== ②.余弦定理:2222cos a b c bc A =+-222cos 2b c a A bc +-=2222cos b a c ac B =+-222cos 2a c b B ac+-=2222cos c a b ab C =+-222cos 2a b c C ab+-=〔必修五〕第二章、数列一、本章知识结构:二、本章要点归纳:1、数列的定义及数列的通项公式:①.()n a f n =,数列是定义域为N 的函数()f n ,当n 依次取1,2,⋅⋅⋅时的一列函数值。
②.n a 的求法:i.归纳法。
ii.11,1,2n n n S n a S S n -=⎧=⎨-≥⎩ 假设00S =,那么n a 不分段;假设00S ≠,那么n a 分段。
iii. 假设1n n a pa q +=+,那么可设1()n n a m p a m ++=+解得m,得等比数列{}n a m +。
iv. 假设()n n S f a =,那么先求1a ,再构造方程组:11()()n n n n S f a S f a ++=⎧⎨=⎩得到关于1n a +和n a 的递推关系式.2.等差数列:① 定义:1n n a a +-=d 〔常数〕,证明数列是等差数列的重要工具。