当前位置:文档之家› 谐波分析

谐波分析

谐波分析
谐波分析

一二三

谐波分析谐波分析定义

《电力名词》第二版定义:谐波分析是指将非正弦周期信号按傅里叶级数展成一系列谐波,以考察信号中各次谐波的幅值与相角等参量。

非正弦波里含有大量的谐波,不同的波形里含有不同的谐波成份。在倍频器、变频器、乐器、音响、放大器……分柝各次谐波的分布;任何关于时间的周期信号都能展开成傅立叶级数,即无限多个正弦函数和余弦函数的和表示,这就是谐波分析的过程。

奇次谐波,指频率为基波频率的3、5、7……倍的谐波;

偶次谐波,指频率是基波频率的2、4、6……倍的谐波。

对f(t)=-f(t+T/2) 的函数(T为函数周期),偶次谐波及直流分量为0;对f(t)=f(t+T/2) 的函数,奇次谐波为0。

谐波危害

1、谐波使公用电网中的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的效率,大量的3次谐波流过中性线时会使线路过热甚至发生火灾。

2、谐波影响各种电气设备的正常工作。谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪声和过电压,使变压器局部严重过热。谐波使电容器、电缆等设备过热、绝缘老化、寿命缩短,以至损坏。

3、谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,这就使上述1和2的危害大大增加,甚至引起严重事故。

4、谐波会导致继电保护和自动装置的误动作,并会使电气测量仪表计量不准确。

5、谐波会对邻近的通信系统产生干扰,轻者产生噪声,降低通信质量;重者导致住处丢失,使通信系统无法正常工作。

分析方法

满足一定条件(Dirichlet条件)的、以T为周期的时间的周期函数f(t),在连续点处,可用下述的三角函数的线性组合(傅里叶级数)来表示:

上式称为f(t)的傅里叶级数,其中,ω=2π/T。

n为整数,n>=0。

n为整数,n>=1。

四 在间断点处,下式成立:

a 0/2为信号f(t)的直流分量。令

c 1为基波幅值,c n 为n次谐波的幅值。c1有时也称1次谐波的幅值。a 0/2有时也称0次谐波的幅值。

谐波测量方法 谐波分析是信号处理的一种基本手段。在电力系统的谐波分析中,主要采用各种谐波分析仪分析电网电压、电流信号的谐波,该类仪表的谐波分析次数一般在40次以下。

对于富含谐波的变频器输出的PWM波,其谐波主要集中在载波频率的整数倍附近,当载波频率高于基波频率40倍时,采用上述谐波分析设备,其谐波含量近似等于零,不能满足谐波分析的需要。

上述场合,当载波频率固定时,谐波的频率范围相对固定,而所需分析的谐波次数,与基波频率密切相关,基波频率越低,需要分析的谐波次数越高。一般宜采用宽频带的,运算能力较强、存储容量较大的变频功率分析仪,根据需要,其谐波分析的次数可达数百甚至数千次。例如,当载波频率为2kHz,基波频率为50Hz时,其40次左右的谐波含量最大;当基波频率为5Hz时,其400次左右的谐波含量最大,需要分析的谐波次数一般至少应达到2000次。 同时,选择仪表的同时,还应选择合适带宽的传感器,因为传感器的带宽将限制进入二次仪表的信号的有效带宽。一般用选择宽频带的电压、电流传感器,如:变频功率传感器。

HANS时间序列谐波分析法

HANTS(the Harmonic analysis of time series)——时间序列谐波 分析法 时间序列谐波分析法(Harmonic Analysis of Time Series,HANTS)是平滑和滤波两种方法的综合,它能够充分利用遥感图像存在时间性和空间性的特点,将其空间上的分布规律和时间上的变化规律联系起来。时间序列谐波分解法进行影像重构时充分考虑了植被生长周期性和数据本身的双重特点,能够用代表不同生长周期的植被频率曲线重新构建时序NDVI影像,真实反映植被的周期性变化规律。时间序列谐波分析法是对快速傅立叶变换的改进,它不仅可以去除云污染点,而且对时序图像的要求不象快速傅立叶变换(FFT)那么严格,它可以是不等时间间隔的影像。因此同快速傅立叶变换相比,HANTS在频率和时间系列长度的选择上具有更大的灵活性。时间序列谐波分析法进行时序影像的重构也是基于云对NDVI的负值影响,但是它与最大值去除云污染的影响是两个完全不同的方法。它是首先通过傅立叶变换得到非零频率的振幅和相位,然后将所有的点进行最小二次方拟合。通过观测资料与拟合曲线的比较,对于那些明显低于拟合曲线的点被作为云污染点通过把它们的权重赋为零而拒绝参与曲线的拟合。建立在剩余点上进行新的曲线拟合,通过这种反复进行的迭代过程实现图像的重构。 HANTS的核心算法是最小二乘法和傅立叶变换,通过最小二乘法的迭代拟合去除时序NDVI值中受云污染影响较大的点,借助于傅立叶在时间域和频率域的正反变换实现曲线的分解和重构,从而达到时序遥感影像去云重构的目的。 采用时间序列谐波分析法(HANTS)可以对时间谱数据进行平滑。其核心算法是傅立

电路分析基础谐波分析法

电路分析基础谐波分析法 本章实训谐波分析法的验证 实训任务引入和介绍 在电路分析的应用过程中~遇到非正弦周期电流电路的情况并不少见。有时候~电流波形非常简单,如矩形波、三角波等,~可以通过简单的计算得出其有效值、平均值及平均功率,但有时候非正弦周期电流的波形非常复杂~那么通过谐波分析法来进行电路分析就显得尤为重要。本次实训我们就以一个简单的电路为基础~通过简单的理论计算和实际测量的结合来验证谐波分析法。 实训目的 1.掌握非正弦周期电流电路的测量方法, 2.理解谐波分析法的基本原理, 3.学会用谐波分析法进行简单的电路分析。 实训条件 100V直流电源、150V/50Hz交流电源、100V/100Hz交流电源、功率计、 R=10Ω、L=1H、 3C=1.11*10uF、电压表、电流表。 操作步骤 (1)连接电路。 如图5-12所示,将在直流、交流电源串联,根据叠加定理,可以知道电路中的电流为非正弦周期电流,且该信号可以分解为100V直流、150V/50Hz交流、100V/100Hz电源给出的信号。

图5-12 实训电路 (2)理论计算。 已知: U,100,150sin,t,100sin(2,t,90:)V s R,10, 1X,,90,, c,C X,,L,10, L ? 直流分量作用于电路时,电感相当于短路,电容相当于开路。故有: I,0,U,0,P,0000 ? 一次谐波作用于电路时,有: 150 U,,0:Vs12 150,0:U2s1 I,,,1.32,82.9:A1R,j(X,X)10,j(10,90)L1C1 U,1.31,82.9:(10,j10),18.5,127.9:V1 ? 二次谐波作用于电路时,有: 100,,90:U2s2 I,,,2.63,,21.8:A2R,j(X,X)10,j(20,45)L2C2 U,2.63,,21.8:(10,j20),58.8,41.6:V2

整流器件的谐波抑制仿真

整流器件的谐波抑制仿真 :The use of nonlinear loads in power system make harmonic pollution ,in order to solve the harmonic pollution ,active power filter is used. This paper introduces the basic principles of active filter ,and establishs a Matlab / Simulink simulation model and analysis. The results show that the active filter has good compensation characteristic. 0 引言随着电力电子技术的迅速发展和电力电子装置的应用越来越广泛,电磁环境受到严重的污染,电网谐波污染问题成为一个非常严峻问题。此外电网中使用的异步电动机、变压器和电弧炉等负荷消耗大量的无功功率,若得不到及时补偿将致使电网电压波动、供电设备容量增加、损耗增加。因此,谐波补偿成为当前的一个非常严峻的问题。 谐波抑制的手段主要包括无源滤波和有源滤波。无源滤波器是由电容器和电抗器串联而组成的,并且调谐在某种特定的谐波频率,对它所调谐的谐波具有一个低阻抗作用;有源滤波器是产生与其所测得的畸变的谐波电流的相位相反的一组谐波电流,谐波电流因此被抵消并且最终变成一个没有畸变的正弦波。本文中 主要介绍并联型有源滤波器的原理,并进行MATLAE仿真和分析。

1并联有源滤波器的工作原理 系统的主要组成包括:指令电流运算电路、电流跟踪控制电路、驱动电路和主电路。Is 为电网提供的电流,il 为负载电流,ic 为有源滤波器的输出电流。基本原理为当需要对非线性负载所产生谐波电流进行补偿时,由检测电路测量出补偿对象负载电流il 中的谐波电流成分iLh ,将它相位相反后当作要补偿电流的指令信号,因此由补偿电流发生电路产生的补偿电流ic 和负载电流中的谐波信号iLh 等大、反相,补偿电流与电网中的谐波和无功电流相消,因此电网的电流和负载的基波电流相等,使的电源电流变为正弦波。 2有源滤波器的Matlab 仿真研究 2.1谐波检测谐波电流检测法有很多,包含用模拟带通滤波器,傅立叶变换谐波检测分析,瞬时无功功率谐波检测等等。本文采用的办法是基于瞬时无功功率的谐波检测法,其基本原理如图2 所示。 图2 中: C=sin s t -cos s tcos s t sin 3 t , =■ 1 -1/2 -1/20 ■ 12 -■/2 其中 ia 、ib 、ic 分别为谐波补偿之前 a、b、c 的三相电流,输入电流ia、ib、ic通过C32坐标变换后使其再经过滤波器(LPF),然后再经过一次C32反变换后就可以得到基波电流分量

谐波分析产生原因,危害,解决方法

谐波分析 一、谐波的相关概述 谐波是指电流中所含有的频率为基波的整数倍的电量,一般来说是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量,其实谐波是一个正弦波分量。 谐波产生的根本原因是非线性负载造成电网中的谐波污染、三相电压的不对称性。由于非线性负荷的存在,使得电力系统中的供电电压即便是正弦波形,其电流波形也将偏离正弦波形而发生畸变。当非正弦波形的电流在供电系统中传输时,将迫使沿途电压下降,其电压波形也将受其影响而产生不同程度的畸变,这种电能质量的下降会给电力系统和用电设备带来严重的危害。 电力系统中的谐波源主要有以下几类:(1)电源自身产生的谐波。因为发电机制造的问题,使得电枢表面的磁感应强度分布偏离正弦波,所产生的电流偏离正弦电流。(2)非线性负载,如各种变流器、整流设备、PWM变频器、交直流换流设备等电力电子设备。(3)非线性设备的谐波源,如交流电弧炉、日光灯、铁磁谐振设备和变压器等。 二、谐波的危害 谐波对电力系统的危害主要表现在:(1)谐波使公用电网中的元件产生附加的谐波损耗,降低发电、输电及用电设备的效率。(2)谐波影响各种电气设备的正常工作。(3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,引发严重事故。(4)谐波会导致继电保护和自动装置误动作,并使电气测量仪表计量不准确。(5)谐波对临近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。 三、谐波的分析 由于谐波导致的各种各样的事故和故障的几率一直在升高,谐波已成为电力系统的一大公害。我国对于谐波相关工作的研究大致起源于20世纪80年代。我国国家技术监督局于93年颁布了国家标准《电能质量——公用电网谐波》(GB/T 14549-1993)。该标准对公用电网中各个等级的电压的限用值、电流的允许值等都做了相应的规定,并以附录的形式给出了测量谐波的方法和数据处理及测量仪器都作了相应的规定。这个规定给我国相关人员进行谐波检测分析、谐波污染的抑制提供了理论依据和大致思路。

基于小波变换的图像分割的研究

摘要 近年来,对图像分割的研究一直是图像技术研究的焦点。图像分割是一种很重要的图像分析技术,它的目的是把图像分为具有各种特性的区域并把感兴趣的部分提取出来。它融合了多个学科的成果,并且成功应用于工业、农业、医学、军事等领域,得到了广泛的应用。 图像分割是一个经典的问题,实现方法有很多种,但是至今仍没有一种通用的解决方法。经过研究发现,区分真正的噪声和边缘是图像分割的难题之一,然而小波变换则可以解决这一问题,小波变换是一种时--频两域的分析工具。本文则基于小波变换对图像分割技术进行研究,主要介绍了小波阈值分割方法。文中通过直方图、建立模型等手段对这两种方法做出具体的讨论,并利用Matlab分别对两种方法进行仿真,并得到了有效的结果。根据仿真结果我们可以看出不同分割方法的不同分割效果,从而更好地理解这些方法。 关键词:图像分割;小波变换;阈值;

Abstract In recent years, the study of image segmentation has been the focus of imaging technology. Image segmentation is an important image analysis, its purpose is to take the various characteristics part out of the image. It combines the results of multiple disciplines, and successfully applied to such fields as industry, agriculture, medicine, military, and a wide range of applications. There are many ways to achieve image segmentation, but could not find a common solution. After the study found that the distinction between real noise and the edge of one of the difficult problem of image segmentation, wavelet transform can solve this problem, wavelet transform is a time - frequency domain analysis tools. In this paper, image segmentation technique based on wavelet transform to study the two wavelet segmentation method, the wavelet thresholding segmentation method. Histogram, the establishment of model and other means to make a specific discussion of these two approaches, and use the Matlab simulation, and the effective results of the two methods, respectively. According to the results of the simulation we can see the different segmentation results of different segmentation methods, in order to better understand these methods. Key words:Image; Wavelet transform; Threshold

一文教你读懂谐波测量方法

一文教你读懂谐波测量方法 来源:仪商网 在很多人认识里,只有使用同步采样才能进行精确的谐波分析,其实采用非同步采样同样能进行谐波分析,而且在许多情况下甚至比同步采样法更优秀。PA功率分析仪提供了常规谐波、谐波和IEC谐波三种谐波测量模式,支持同步和非同步的谐波分析,将两种分析方式互补使用可提高谐波的分析能力。下面通过其计算方法的简单,结合实例讨论三种谐波模式的使用。 谐波测量基本原理 目前最常用的谐波分析方法是使用傅里叶变换,将时域的离散信号进行傅里叶级数展开,得到离散的频谱,从离散的频谱中挑选出各次谐波对应的谱线,计算得出谐波各项参数。 在实际实现时,由于离散傅里叶变换存在“栅栏效应”,采样频率不为基波的整数倍时,部分谐波可能不在离散傅里叶变换后的离散频率点上,需要使用特殊的手段将栅栏空隙对准我们关心的谐波频率点。其中同步采样法和频率重心法使用最为广泛。 同步采样法 顾名思义,就是使采样频率与基波频率同步改变。该方法从源头上保证数据的采样频率为基波频率的整数倍,如IEC 61000-4-7标准就规定50Hz使用10倍基波采样率,采样数据经离散傅里叶变换即可得到各次谐波分量。同步采样常用硬件PLL实现,需要实时调

整采样频率,频率的锁定需要时间,受限于滤波器及相关器件,很难做到很宽的频域,也很难保证频谱特别丰富时的准确性。 频率重心法 使用足够高的采样频率(一般大于4倍基波频率)即可满足直接对信号进行采样,将信号的频谱间隔拉开,并且使用更多周期的数据点做离散傅里叶变换,降低频谱泄露的影响。最后根据窗函数的功率谱分布特性,通过频谱的谱峰和次谱峰,找到真正的谱峰频点——即离散频谱的谱峰和次谱峰的重心。通过频率重心法消除了栅栏效应的影响,对各次谐波使用重心法,还得到一个偏离系数,使用该系数配合窗函数功率谱,可求解得到对应频点的相位和幅值等信息。至此,非同步采样法同样得到了各次谐波。受限于窗函数的频谱特性,该法需要用足够高采样率来保证各频率成分的频谱互相影响足够小;而且截断造成的泄漏也不能太大,否则产生的假频率叠加到真实频谱里,导致结果误差更大。 简单对比 基于以上实现原理可知,同步采样法精度取决于PLL的准确度,而后期计算简单。PLL 中用到的滤波器限制了支持的基波频率上限,因此在基波频率较高时,同步采样法一般无法支持;同样是滤波器原因,无法很好滤除低偶次谐波,所以低偶次谐波幅值较大时,PLL 就无法同步基波采样,谐波分析结果也就完全错误。 频率重心法不需要额外滤波器,采样器件可工作在支持的最高采样频率,使有效谱线拉开的同时提高了支持的谐波频率范围,而为了消除泄漏的影响,需要使用更多的数据进行傅里叶变换。所以频率重心法引入了数倍于同步采样法的计算量。另外,重心法需要使用至少两根谱线,而且受窗函数主瓣宽度限制,频率重心法所能支持的频率下限只能达到频率分辨率的三倍以上。由于频率重心法没有反馈过程,不依赖于信号,模拟电路实现简单,理论上只要采样率和使用的数据点足够,就能得到正确的结果。 特别地,因为同步采样需要硬件电路,受限与成本与体积,大部分测量仪器只支持一到两个PLL源,而频率重心法无此限制,甚至可任意定义基波源(对应于PLL源,用于确定基波)。 应用实例

谐波分析方法对比

谐波分析方法对比 随着用电设备的多样化和复杂化,线路中谐波的成分也变得越来越丰富,谐波污染的治理问题也变得越来越棘手,许多仪器也相应推出了谐波测量功能,我们该如何区分这些谐波的测量方法并正确地使用他们进行谐波测量呢?本文将进行“深究”。 在很多人认识里,只有使用同步采样才能进行精确的谐波分析,其实采用非同步采样同样能进行谐波分析,而且在许多情况下甚至比同步采样法更优秀。PA功率分析仪提供了常规谐波、谐波和IEC谐波三种谐波测量模式,支持同步和非同步的谐波分析,将两种分析方式互补使用可提高谐波的分析能力。下面通过其计算方法的简单,结合实例讨论三种谐波模式的使用。 谐波测量基本原理 目前最常用的谐波分析方法是使用傅里叶变换,将时域的离散信号进行傅里叶级数展开,得到离散的频谱,从离散的频谱中挑选出各次谐波对应的谱线,计算得出谐波各项参数。 在实际实现时,由于离散傅里叶变换存在“栅栏效应”,采样频率不为基波的整数倍时,部分谐波可能不在离散傅里叶变换后的离散频率点上,需要使用特殊的手段将栅栏空隙对准我们关心的谐波频率点。其中同步采样法和频率重心法使用最为广泛。 同步采样法 顾名思义,就是使采样频率与基波频率同步改变。该方法从源头上保证数据的采样频率为基波频率的整数倍,如IEC 61000-4-7标准就规定50Hz使用10倍基波采样率,采样数据经离散傅里叶变换即可得到各次谐波分量。同步采样常用硬件PLL实现,需要实时调整采样频率,频率的锁定需要时间,受限于滤波器及相关器件,很难做到很宽的频域,也很难保证频谱特别丰富时的准确性。 频率重心法 使用足够高的采样频率(一般大于4倍基波频率)即可满足直接对信号进行采样,将信号的频谱间隔拉开,并且使用更多周期的数据点做离散傅里叶变换,降低频谱泄露的影响。最后根据窗函数的功率谱分布特性,通过频谱的谱峰和次谱峰,找到真正的谱峰频点——即离散频谱的谱峰和次谱峰的重心。通过频率重心法消除了栅栏效应的影响,对各次谐波使用重心法,还得到一个偏离系数,使用该系数配合窗函数功率谱,可求解得到对应频点的相位和幅值等信息。至此,非同步采样法同样得到了各次谐波。受限于窗函数的频谱特性,该法

基于小波分析的机械故障诊断

绪 论 机械故障诊断技术作为一门新兴的科学,自从二十世纪六七十年代以来已经取得了突飞猛进的发展,尤其是计算机技术的应用,使其达到了智能化阶段。现在,机械故障诊断技术在工业生产中起着越来越重要的作用,生产实践已经证明开展故障诊断与状态预测技术研究具有重要的现实意义。 我国的故障诊断技术在理论研究方面,紧跟国外发展的脚步,在实践应用上还是基本落后于国外的发展。在我国,故障诊断的研究与生产实际联系不是很紧密,研究人员往往缺乏现场故障诊断的经验,研制的系统与实际情况相差甚远,往往是从高等院校和科研部门开始,再进行到个别行业,而国外的发展则是从现场发现问题进而反映到高等院校或科研部门,使得研究有的放矢[1]。 要求机械设备不出故障是不现实的,因为不存在绝对安全可靠的机械设备。因此,为了预防故障和减少损失,必须对设备的运行状态进行监测,及时发现设备的异常状况,并对其发展趋势进行跟踪:对己经形成的或正在形成的故障进行分析诊断,判断故障的部位和产生的原因,并及早采取有效的措施,这样才能做到防患于未然。因此,设各状态监测与故障诊断先进技术的研究对于保证复杂机械设备的安全运行具有重要意义。 关键词:小波分析,故障诊断,小波基选取,奇异性 基于小波分析的机械故障检测 小波奇异性理论用于机械故障检测的基本原理 信号的奇异性与小波变换的模极大值之间有如下的关系: 设)(x g 为一光滑函数,且满足条件0g(x) lim ,1x)dx ( g x ==∞→+∞ ∞-?,不妨设)(x g 为高斯函数,即σσπ2221)(x e x g -= ,令 d x,/x)( dg x)(=ψ由于?+∞ ∞-=0x)dx (ψ,因此,可取函数x)(ψ

基于小波变换的图像处理.

基于小波变换的数字图像处理 摘要:本文先介绍了小波分析的基本理论,为图像处理模型的构建奠定了基础,在此基础上提出了小波分析在图像压缩,图像去噪,图像融合,图像增强等图像处理方面的应用,最后在MATLAB环境下进行仿真,验证了小波变化在图像处理方面的优势。 关键词:小波分析;图像压缩;图像去噪;图像融合;图像增强 引言 数字图像处理是利用计算机对科学研究和生产中出现的数字化可视化图像 信息进行处理,作为信息技术的一个重要领域受到了高度广泛的重视。数字化图像处理的今天,人们为图像建立数学模型并对图像特征给出各种描述,设计算子,优化处理等。迄今为止,研究数字图像处理应用中数学问题的理论越来越多,包括概率统计、调和分析、线性系统和偏微分方程等。 小波分析,作为一种新的数学分析工具,是泛函分析、傅立叶分析、样条分析、调和分析以及数值分析理论的完美结合,所以小波分析具有良好性质和实际应用背景,被广泛应用于计算机视觉、图像处理以及目标检测等领域,并在理论和方法上取得了重大进展,小波分析在图像处理及其相关领域所发挥的作用也越来越大。在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。但短时傅立叶分析只能在一个分辨率上进行,所以对很多应用来说不够精确,存在很大的缺陷。而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整。 本文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,然后研究了小波分析在图像处理中的应用,包括图像压缩,图像去噪,图像融合,图像增强等,本文重点在图像去噪,最后用Matlab进行了仿真[1]。

什么是间谐波

什么是间谐波?什么是电压谐波? 问:什么是间谐波? 答:间谐波是指不是工频频率整数倍的谐波。间谐波往往由较大的电压波动或冲击性非线性负荷所引起,所有非线性的波动负荷如电弧炉、电焊机,各种变频调速装置,同步串级调速装置及感应电动机等均为间谐波源,电力载波信号也认为是一种间谐波。间谐波源的特点是放大电压闪变和对音频干扰,影响电视机画面及增大收音机的噪声,造成感应电动机振动及异常。对于采用电容、电感和电阻构成的无源滤波器电路,间谐波可能会被放大,严重时会使滤波器因谐波过载而不能投运,甚至造成损坏。间谐波的影响和危害等同整数次谐波电压的影响和危害已成共识,IEC 61000-3-6对间谐波的发射水平作出了明确的说明,如间谐波电压水平应低于邻近谐波水平,并规定为(0.5%~1%)UN。我国目前还没有制定相应的 国家标准给出限制规定。 问:什么是电压谐波? 答:电压谐波是指电力系统各公共连接点的电压谐波含有率允许值。国际电工委员会文件IEC61000-3-6 《中、高压电力系统畸变负荷发射限制的评估》提出了决定畸变负荷接入电网时所作评估的一些基本原则和评估程序。其目的是将电网的谐波电压限制到对所有用电设备不致造成有害影响的水平(兼容水平),保证对接入电网的用户都有合适的供电质量,并提出了电网谐波的兼容水平、规划水平和发射水平三个方面的标准。我国目前执行的电压谐波标志是GB/T 14549-1993 《公用电网谐波》,标准中对电网0.38,6,10,35,66,110kV 电压等级公共连接点的电压谐波含有率允许值做了明确的规定。 问:什么是电压波动和闪变? 答:电压波动和闪变是指电压幅值在一定范围内有规则变动时,电压最大值与最小值之差相对额定电压的百分比,或电压幅值不超过0.9p.u.~1.1p.u.(标幺值)的一系列随即变化。这种电压变化被称为闪变,以表达电压波动对照明灯的视觉影响。因此,闪变是说明对不同频率电压波动引起灯闪的敏感度及引起闪变刺激性程度的电压波动值,是人眼对灯闪的一种主观感觉。对用户负荷引起的闪变限制,是根据用户负荷的大小、协议用电容量占供电容量的比例及系统电压等级规定的。电力系统公共供电点由冲击负荷产生的电压波动允许值的百分数,分三级作不同的规范和限制。 (1)10kV及以下为2.5 (2)35~110kV为2.0 (3)220kV及以上为1.6 GB 12326-2000《电压允许波动和闪变》特别规定了各级电压下的闪变限制值,它适用于由波动负荷引起的公共连接点电压的快速变动及由此可能造成人对灯闪 明显感觉的场合。 问:什么是三相电压不平衡度? 答:三相电压不平衡度是指三相系统中三相电压的不平衡度程度,用电压或电流负序分量与正序分量的均方根百分比表示。三相电压不平衡(即存在负序分量)会引起继电保护误动、电机附加振动力矩和发热。额定转矩的电动机,如长期在负序电压含量4%的状态下运行,由于发热,电动机绝缘的寿命将会降低一半,若某相电压高于额定电压,其运行寿命的

三相整流电路网侧谐波分析

LC滤波的三相桥式整流电路网侧谐波分析 裴云庆姜桂宾王兆安 2006-02-20 17:06:19 西安交通大学(西安 710049) Analyze of line harmonic current of three phase rectifier with LC filter Abstract: For the 3 phase capacitive rectifier, which was widely used in the power electronics equipment, LC filter in DC is an effective structure to improve the power factor and reduce the input harmonic current. A theory equation was derived in this paper, which show the relationship between the input characteristics and the circuit parameter. It was proved by the simulation and the experiment. Key words: 3 phase rectifier harmonic power factor 1 概述 随着电力电子技术的飞速发展,其应用已经深入到电力、冶金、化工、通讯、铁路电气以及家电等各个领域,在电力电子装置中,整流器作为装置与电网的接口占有相当大的比重,采用电容滤波、二极管构成的三相不可控整流电路随着变频器、开关电源及UPS等装置的广泛应用,其所占比例越来越高。同时这种整流电路对电网的不利影响,如输入电流谐波等,也受到了广泛的重视。虽然目前可以采用PFC装置、有源滤波器等方案解决其带来的各种不利影响,但采用接入电抗器仍为最为简单和常用的一种提高功率因数、抑制谐波的方法。目前对采用电抗器改善整流器输入谐波及功率因数的分析主要采用计算机仿真,文献[1]~[3]对不同结构的整流器进行了分析,得出了一些有价值的数据及图表,但采用仿真的方法难以建立各项指标与电路参数间的理论公式。文献[4]提出了采用整流器开关函数、基于频域的分析方法,对同时含有直流侧及交流侧滤波元件的情况得到了很好求解公式,但公式形式十分

基于小波变换的边缘检测技术(完整)

第一章图像边缘的定义 引言 在实际的图像处理问题中,图像的边缘作为图像的一种基本特征,被经常用于到较高层次的特征描述,图像识别。图像分割,图像增强以及图像压缩等的图像处理和分析中,从而可以对图像进行进一步的分析和理解。 由于信号的奇异点或突变点往往表现为相邻像素点处的灰度值发生了剧烈的变化,我们可以通过相邻像素灰度分布的梯度来反映这种变化。根据这一特点,人们提出了多种边缘检测算子:Roberts算子Prewitt算子Laplace算子等。 经典的边缘检测方法是构造出像素灰度级阶跃变化敏感的微分算子。这些算子毫无例外地对噪声较为敏感。由于原始图像往往含有噪声、而边缘和噪声在空间域表现为灰度有大的起落,在频域则反映为同是主频分量,这就给真正的边缘检测到来困难。于是发展了多尺度分析的边缘检测方法。小波分析与多尺度分析有着密切的联系,而且在小波变换这一统一理论框架下,可以更深刻地研究多尺度分析的边缘检测方法,Mallat S提出了一小波变换多尺度分析为基础的局部极大模方法进行边缘检测。 小波变换有良好的时频局部转化及多尺度分析能力,因此比其他的边缘检测方法更实用和准确。小波边缘检测算子的基本思想是取小波函数作为平滑函数的一阶导数或二阶导数。利用信号的小波变换的模值在信号突变点处取局部极大值或过零点的性质来提取信号的边缘点。常用的小波算子有Marr 算子Canny算子和Mallat算子等。

§1.1信号边缘特征 人类的视觉研究表明,信号知觉不是信号各部分简单的相加,而是各部分有机组成的。人类的信号识别(这里讨论二维信号即图像)具有以下几个特点:边缘与纹理背景的对比鲜明时,图像知觉比较稳定;图像在空间上比较接近的部分容易形成一个整体;在一个按一定顺序组成的图像中,如果有新的成份加入,则这些新的成份容易被看作是原来图像的继续;在视觉的初级阶段,视觉系统首先会把图像边缘与纹理背景分离出来,然后才能知觉到图像的细节,辨认出图像的轮廓,也就是说,首先识别的是图像的大轮廓;知觉的过程中并不只是被动地接受外界刺激,同时也主动地认识外界事物,复杂图像的识别需要人的先验知识作指导;图像的空间位置、方向角度影响知觉的效果。从以上这几点,可以总结出待识别的图像边缘点应具有下列特征即要素:具有较强的灰度突变,也就是与背景的对比度鲜明;边缘点之间可以形成有意义的线形关系,即相邻边缘点之间存在一种有序性;具有方向特征;在图像中的空间相对位置;边缘的类型,即边缘是脉冲型、阶跃型、斜坡型、屋脊型中哪一种。 §1.2图像边缘的定义 边缘检测是图像处理中的重要内容。而边缘是图像中最基本的特征,也是指周围像素灰度有变化的那些像素的集合。主要表现为图像局部特征的不连续性,也就是通常说的信号发生奇异变化的地方。奇异信号沿边缘走向的灰度变化剧烈,通常分为阶跃边缘和屋顶边缘两种类型。阶跃边缘在阶跃的两边的灰度值有明显的变化;屋顶边缘则位于灰度增加与减少的交界处。我们可以利用灰度的导数来刻画边缘点的变化,分别求阶跃边缘和屋顶边缘的一阶,二阶导数。如图可见,对于边缘点A,阶跃边缘的一阶导数在A点到最大值,二阶导数在A点过零点;屋顶边缘的一阶导数在A点过零点,二阶导数在A点有最大值。

电力系统谐波分析

海南大学 课程论文 题目:电力系统谐波分析 学号: B0736039 姓名:陈肖前 年级: 07电气1班 学院:机电与工程学院 系别:电气系 专业:电气工程及其自动化 指导教师:王海英 完成日期: 2010 年 06月 15 日

摘要 谐波对电力系统和用电设备产生了严重的危害及影响,而小波变换为电力系统谐波信号分析提供了有力的分析工具。与Fourier变换相比,小波变换是时间频率的局部化分析,它通过伸缩平移运算对信号逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 本设计探讨了小波变换的基本原理之后,就如何应用小波工具箱对系统的谐波信号进行了分析。主要内容如下: 首先,采用小波变换进行谐波检测的方法进行了系统仿真,通过仿真验证了小波分析具有时域和频域的双重分辨率,能够较好的解决傅立叶分析所不能解决的问题。 其次,在谐波分析中,采用小波分析算法,不仅能正确的得到各次谐波,而且对用傅立叶分析没法解决的有关信号的暂态分量的提取,暂态分量时间的定位,电压、电流波形的间断、突起、凹陷和瞬态分量的检测都具有较好的效果。 最后MATLAB仿真的结果验证了本文的分析方法的正确性和有效性。基本达到了实验目的。 关键词:谐波分析小波理论MATLAB

Abstract Harmonics have a serious danger and affect in the power system and electrical equipment, but wavelet transform can provides a powerful analytical tool for harmonics signal analysis. Compared with the Fourier transform, wavelet transform is the localized analysis of time frequency, which refines the signal multi-scale by scalabling and shifting operation step-by-step. Finally it meets the requirement of high-frequency time and low-frequency frequency subdivided, and of automatically adapting to time-frequency signal analysis. It can focus on arbitrary particulars of signal , solving the difficult problems of the Fourier transform. It is a major breakthrough in science method since the Fourier transform. Someone praised wavelet transform as the “mathematical microscope”. After discussing the basic principles of wavelet transform, this Design discussed how to use the wavelet toolbox to analy the harmonic signals. They are as follows: Firstly, the Harmonic Detection method was simulated by Wavelet Transform, and the simulation shows that the Wavelet Transform has double resolutions in both time and frequency domains, which can solve the problem that the Fourier Transform can't do well. Secondly, we could not only correctly get various orders of harmonics, but also effectively solve how to draw the transient component of the signal ,and how to locate the time of transient component of the signal ,and solve the problem of intermittent and Processes and depression of the voltage and current wave, and solve how to detect transient component,and the Fourie are not available. Finally,MATLAB simulation results verify the correctness and effectiveness of the analytical methods. It achieves the basic purpose of the experiment. Key words: Harmonic measurement Wavelet theory MATLAB

整流器件的谐波抑制仿真-精选资料

整流器件的谐波抑制仿真 : The use of nonlinear loads in power system make harmonic pollution , in order to solve the harmonic pollution , active power filter is used. This paper introduces the basic principles of active filter establishs a Matlab / Simulink simulation model and analysis. The results show that the active filter compensation characteristic. 0 引言 随着电力电子技术的迅速发展和电力电子装置的应用越来 越广泛, 电磁环境受到严重的污染, 电网谐波污染问题成为一个 非常严峻问题。 此外电网中使用的异步电动机、 变压器和电弧炉 等负荷消耗大量的无功功率, 若得不到及时补偿将致使电网电压 波动、供电设备容量增加、损耗增加。因此,谐波补偿成为当前 的一个非常严峻的问题。 谐波抑制的手段主要包括无源滤波和有源滤波。 无源滤波器 是由电容器和电抗器串联而组成的, 并且调谐在某种特定的谐波 频率,对它所调谐的谐波具有一个低阻抗作用; 有源滤波器是产 生与其所测得的畸变的谐波电流的相位相反的一组谐波电流, 波电流因此被抵消并且最终变成一个没有畸变的正弦波。 本文中 主要介绍并联型有源滤波器的原理,并进行MATLAE 仿真和分析。 , and has good

晶闸管整流装置的谐波

1 晶闸管整流装置的谐波分析 谐波电流注入电网,使供电系统各处电压产生谐波分量,有可能和供电系统形成并联谐振或串联谐振,所在供电系统接入大功率的整流装置之前,应进行谐波分析,预测谐波量的大小及产生的危害,并提出相应的抑制措施。 整流装置所产生的谐波,有特征谐波和非特征谐波之分。特征谐波是指整流装置运行在正常条件下所产生的谐波,所谓正常条件是指:(1)网侧电压各相对称且为正弦波;(2)变压器、整流臂(阀)的参数和整流延迟角也对称;(3)直流侧电流为理想恒定值。特征谐波具有离散性的幅值频谱,可利用数学方法进行比较准确的计算。下面以中国铝业河南分公司水电厂(以下简称:河电)整流直降工程中的整流装置为例来分析晶闸管整流产生的高次谐波的特征。 1.1 晶闸管整流设备的概况 河电整流所现装备4组整流直降机组,4台整流变压器参数如下: A I kVA S V kV U ZHSFP N N N )142802/(74.249:49588:1005/115:?型号: 接线方式:N d n I I U d d Y %23.0%;84.10;/115==Φ 移相角分别为: 5.22,5.7,5.7,5.22++-- 4台整流柜参数如下: 输入电压:V 1000~3 AC 接线方式:同相逆并联 额定输出:40.25MW 输出电压:1120V DC 输出电流:35000A DC 其接线方式如图1 所示

每台整流变阀侧共有两组(共6相)交流绕组,以# 1变为例,即分别输出111111c b a 、、和121212c b a 、、两组三相对称交流电压,同相之间互差 180电角度,与网侧绕组分别组成11/d Y n 和5/d Y n 的接线组别,考虑到4台整流变相邻之间有 15的移相角(即从 5.22~5.7~5.7~5.22--++)则整流变阀侧电压相序如图2所示。 整流柜采用同相逆并联的接线方式,组成两组三相桥式全控整流电路,其整流柜接线如图3(以整流柜接线为例,每个桥臂上有四个晶闸管并联使用,图中只画出一个)所示。 从图1~图3的分析可知:河电直降整流系统,在4台整流机组同时运行时,对于110kV 的网侧来说,等效于一个整流相数为24相,整流脉波数P=48的整流线路。则该整流系统在网侧所产生的高次谐波的谐波次数n 由下式决定: 1±=kp n 式中: 整流脉波数 ; 、、自然数,取谐波次数; ------p k n (321)

HVDC谐波分析

基于新型换流变压器HVDC谐波分析与仿真计算 李季,罗隆福,许加柱,李勇,刘福生 (湖南大学电气与信息工程学院,湖南长沙410082) 摘要:在构成高压直流输电系统一系列关键技术中,滤波装置占据十分重要的地位。本文提出了一种具有内部三角形绕组新颖的自耦补偿与谐波屏蔽换流变压器,将传统交流滤波装置移至绕组内部即在换流变压器副方公共绕组串接5、7、11、13次滤波支路的接线方案,让谐波源无法流窜到高压网络中,有效的抑制了直流输电系统中的谐波成分。最后以新型换流变压器及相关的直流系统技术参数为依据,结合滤波装置为新型换流变压器的自补滤波提供谐波通道及满足换流器无功需求的特点,对基于新型换流变压器的直流输电系统中绕组及滤波支路谐波电流进行了详细的分析和仿真计算,仿真结果表明,本文提出的新兴换流变压器原理正确,参数选择合理,滤波效果好,总谐波含量低,具有良好的应用前景。 关键词:高压直流输电;换流变压器;滤波装置;谐波屏蔽;自耦补偿 1引言 在高压直流输电系统(HVDC)中,由于换流器的非线性特征,在交流系统和直流系统中不可避免的产生大量的谐波电压和谐波电流,对系统本身和用户都会造成影响和危害。对于交流系统的滤波来说,传统的滤波方式一般是在换流变压器网侧的母线上并联滤波器装置,兼作无功补偿设备。该种方式虽能较好的解决交流系统的谐波抑制和无功补偿问题,但并未克服通过换流变压器的无功和谐波对变压器本身所带来的影响;并且在现有的直流输电工程运行中仍然大量出现交直流侧谐波超标的现象,因此有必要采取更加有效的滤波设计[1-2]。 自耦补偿与谐波屏蔽换流变压器通过特有的绕组连接方式,辅之以必要的滤波装置,不仅能满足交流系统的滤波及无功需求,而且能解决上述传统换流变压器以及直流输电系统中存在的问题,较之传统换流变压器及无源滤波装置有诸多优点。本文以新型换流变压器原理机及相关换流直流系统的技术参数为依据,对基新型换流变压器的HVDC 交流侧的滤波装置进行分析设计,各次谐波泄露量均能达到谐波国家标准,从而达到理想的综合补偿效果。2新型换流变压器工作机理 2.1接线方案 与传统换流变压器相比,新型换流变压器副边绕组有抽头引出接辅助滤波装置,这势必改变绕组间的电磁关系。图1所示为用于12脉动HVDC的新型换流变压器绕组接线与辅助滤波兼无功补偿设备布置图。由图可知,新型换流变压器副方采用延边三角形连接,中间引出抽头接辅助滤波装置,这在接线方式上相当于将传统变压器原方网侧的无源滤波装置移到副方绕组的中部,以利发挥自补滤波的作用,改善与消除传统滤波与无功补偿的不足]3[。 新型换流变压器要满足12脉波换相要求时,I 桥和II桥相电压分别左移15 ,右移15 。设变压器网侧,阀侧线电压比为1。原边匝数为1p.u;参考电压相量图2所示,根据正弦定理,可计算求得 8966 .0 1 2= = W W k c (1) 5176 .0 1 3= = W W k e (2) 其中, 1 W、 2 W和 3 W分别为变压器网侧绕组,延 边绕组和公共绕组的匝数; c k和 e k分别为延边绕组与网侧绕组、公共绕组与网侧绕组之间的匝比。 f f 图1新型换流变压器接线方案

相关主题
文本预览
相关文档 最新文档