= 50,
解得
= 100 2,
2
2
所以双曲线的方程是2 500 − 20 000=1.
题组三 连线高考
8.(2023·
北京,12)已知双曲线C的焦点为(-2,0)和(2,0),离心率为
2 ,则C的方
2
2
− =1
程为__________.
2
2
解析 令双曲线 C 的实半轴长、虚半轴长分别为 a,b,显然双曲线 C 的中心为
( C )
A.
3
2
B.
6
2
2 2
解析 双曲线 -x =1 的焦点在
3
2
2 3
所以离心率为 = =
.
3
3
2 3
C. 3
y 轴上,a= 3,b=1,c= 3 + 1=2,
6.(人教 A 版选择性必修第一册 3.2.1 节练习第 3
y2
=1
+1
解析
2 6
D. 3
2
题改编)已知方程 +2
−
(-∞,-2)∪(-1,+∞)
圆C2:(x-3)2+y2=1的圆心为C2(3,0),半径r2=1.
由于动圆E与圆C1,C2都外切,
设动圆E的半径为r,则|EC1|=r+3,|EC2|=r+1,
所以|EC1|-|EC2|=3-1=2<|C1C2|,
所以点E的轨迹是以C1,C2为焦点的双曲线的右支.
2
设双曲线的方程为 2
−
所以 E 的轨迹方程为
平面内与两个定点F1,F2的____________________等于非零常数(小于