2020版高考数学总复习第七章不等式第2节基本不等式及其应用教案文(含解析)北师大版
- 格式:doc
- 大小:293.50 KB
- 文档页数:13
2020版高考数学大一轮复习第七章 不等式 §7.1 不等关系与不等式最新考纲1.通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系.2.了解不等式(组)的实际背景.1.两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b a -b =0⇔a =ba -b <0⇔a <b(a ,b ∈R )(2)作商法⎩⎪⎨⎪⎧ab>1⇔a >b ab =1⇔a =ba b <1⇔a <b(a ∈R ,b >0)2.不等式的基本性质概念方法微思考1.若a >b ,且a 与b 都不为0,则1a 与1b的大小关系确定吗?提示 不确定.若a >b ,ab >0,则1a <1b,即若a 与b 同号,则分子相同,分母大的反而小;若a >0>b ,则1a >1b,即正数大于负数.2.两个同向不等式可以相加和相乘吗?提示 可以相加但不一定能相乘,例如2>-1,-1>-3.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( √ ) (2)若a b>1,则a >b .( × )(3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( × ) (4)a >b >0,c >d >0⇒a d >b c.( √ ) (5)ab >0,a >b ⇔1a <1b.( √ )题组二 教材改编2.若a ,b 都是实数,则“a -b >0”是“a 2-b 2>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A 解析a -b >0⇒a >b ⇒a >b ⇒a 2>b 2,但由a 2-b 2>0⇏a -b >0.3.设b <a ,d <c ,则下列不等式中一定成立的是( ) A .a -c <b -d B .ac <bd C .a +c >b +dD .a +d >b +c答案 C解析 由同向不等式具有可加性可知C 正确. 题组三 易错自纠4.若a >b >0,c <d <0,则一定有( ) A.a c -b d >0 B.a c -b d <0 C.a d >b cD.a d <b c答案 D解析 ∵c <d <0,∴0<-d <-c , 又0<b <a ,∴-bd <-ac ,即bd >ac , 又∵cd >0,∴bd cd >ac cd ,即b c >ad. 5.设a ,b ∈R ,则“a >2且b >1”是“a +b >3且ab >2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 若a >2且b >1,则由不等式的同向可加性可得a +b >2+1=3,由不等式的同向同正可乘性可得ab >2×1=2.即“a >2且b >1”是“a +b >3且ab >2”的充分条件;反之,若“a +b >3且ab >2”,则“a >2且b >1”不一定成立,如a =6,b =12.所以“a >2且b >1”是“a +b >3且ab >2”的充分不必要条件.故选A.6.若-π2<α<β<π2,则α-β的取值范围是__________.答案 (-π,0)解析 由-π2<α<π2,-π2<-β<π2,α<β,得-π<α-β<0.题型一 比较两个数(式)的大小例1(1)若a <0,b <0,则p =b 2a +a 2b与q =a +b 的大小关系为( )A .p <qB .p ≤qC .p >qD .p ≥q答案 B解析 (作差法)p -q =b 2a +a 2b -a -b=b 2-a 2a +a 2-b 2b =(b 2-a 2)·⎝ ⎛⎭⎪⎫1a -1b=(b 2-a 2)(b -a )ab =(b -a )2(b +a )ab,因为a <0,b <0,所以a +b <0,ab >0. 若a =b ,则p -q =0,故p =q ; 若a ≠b ,则p -q <0,故p <q . 综上,p ≤q .故选B.(2)已知a >b >0,比较a a b b与a b b a的大小.解 ∵a a b b a b b a =a a -b b a -b =⎝ ⎛⎭⎪⎫a b a -b,又a >b >0,故ab>1,a -b >0,∴⎝ ⎛⎭⎪⎫a b a -b>1,即a a b ba b b a >1,又a b b a >0,∴a a b b >a b b a,∴a a b b 与a b b a 的大小关系为:a a b b >a b b a. 思维升华比较大小的常用方法(1)作差法:①作差;②变形;③定号;④结论.(2)作商法:①作商;②变形;③判断商与1的大小关系;④结论. (3)函数的单调性法.跟踪训练1(1)已知p ∈R ,M =(2p +1)(p -3),N =(p -6)(p +3)+10,则M ,N 的大小关系为________. 答案 M >N解析 因为M -N =(2p +1)(p -3)-[(p -6)(p +3)+10]=p 2-2p +5=(p -1)2+4>0,所以M >N .(2)若a >0,且a ≠7,则( )A .77a a <7a a 7B .77a a=7a a 7C .77a a >7a a 7D .77a a 与7a a 7的大小不确定 答案 C解析 77a a 7a a 7=77-a a a -7=⎝ ⎛⎭⎪⎫7a 7-a ,则当a >7时,0<7a<1,7-a <0,则⎝ ⎛⎭⎪⎫7a 7-a >1,∴77a a >7a a 7; 当0<a <7时,7a>1,7-a >0,则⎝ ⎛⎭⎪⎫7a 7-a >1,∴77a a >7a a 7. 综上,77a a>7a a 7. 题型二 不等式的性质例2(1)对于任意实数a ,b ,c ,d ,下列命题中正确的是( ) A .若a >b ,c ≠0,则ac >bc B .若a >b ,则ac 2>bc 2C .若ac 2>bc 2,则a >b D .若a >b ,则1a <1b答案 C解析 对于选项A ,当c <0时,不正确; 对于选项B ,当c =0时,不正确;对于选项C ,∵ac 2>bc 2,∴c ≠0,∴c 2>0,∴一定有a >b .故选项C 正确; 对于选项D ,当a >0,b <0时,不正确.(2)已知四个条件:①b >0>a ;②0>a >b ;③a >0>b ; ④a >b >0,能推出1a <1b的是________.(填序号)答案 ①②④解析 运用倒数法则,a >b ,ab >0⇒1a <1b,②④正确.又正数大于负数,所以①正确.思维升华常用方法:一是用性质逐个验证;二是用特殊值法排除.利用不等式的性质判断不等式是否成立时要特别注意前提条件.跟踪训练2(1)已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中一定成立的是( ) A .ab >ac B .c (b -a )<0 C .cb 2<ab 2D .ac (a -c )>0答案 A解析 由c <b <a 且ac <0,知c <0且a >0. 由b >c ,得ab >ac 一定成立. (2)若1a <1b<0,则下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④ab <b 2中,正确的不等式有________.(填序号) 答案 ①④解析 因为1a <1b<0,所以b <a <0,a +b <0,ab >0,所以a +b <ab ,|a |<|b |,在b <a 两边同时乘以b , 因为b <0,所以ab <b 2.因此正确的是①④. 题型三 不等式性质的应用命题点1 应用性质判断不等式是否成立 例3已知a >b >0,给出下列四个不等式: ①a 2>b 2;②2a >2b -1;③a -b >a -b ;④a 3+b 3>2a 2b .其中一定成立的不等式为( ) A .①②③ B .①②④ C .①③④ D .②③④答案 A解析 方法一 由a >b >0可得a 2>b 2,①成立;由a >b >0可得a >b -1,而函数f (x )=2x在R 上是增函数, ∴f (a )>f (b -1),即2a >2b -1,②成立;∵a >b >0,∴a >b , ∴(a -b )2-(a -b )2=2ab -2b =2b (a -b )>0, ∴a -b >a -b ,③成立;若a =3,b =2,则a 3+b 3=35,2a 2b =36,a 3+b 3<2a 2b ,④不成立.故选A.方法二 令a =3,b =2, 可以得到①a 2>b 2,②2a >2b -1,③a -b >a -b 均成立,而④a 3+b 3>2a 2b 不成立,故选A.命题点2 求代数式的取值范围例4已知-1<x <4,2<y <3,则x -y 的取值范围是________,3x +2y 的取值范围是________. 答案 (-4,2) (1,18)解析 ∵-1<x <4,2<y <3,∴-3<-y <-2, ∴-4<x -y <2.由-1<x <4,2<y <3,得-3<3x <12,4<2y <6, ∴1<3x +2y <18. 引申探究若将本例条件改为-1<x +y <4,2<x -y <3,求3x +2y 的取值范围. 解 设3x +2y =m (x +y )+n (x -y ),则⎩⎪⎨⎪⎧m +n =3,m -n =2,∴⎩⎪⎨⎪⎧m =52,n =12.即3x +2y =52(x +y )+12(x -y ),又∵-1<x +y <4,2<x -y <3, ∴-52<52(x +y )<10,1<12(x -y )<32,∴-32<52(x +y )+12(x -y )<232,即-32<3x +2y <232,∴3x +2y 的取值范围为⎝ ⎛⎭⎪⎫-32,232.思维升华 (1)判断不等式是否成立的方法 ①逐一给出推理判断或反例说明.②结合不等式的性质,对数函数、指数函数的性质进行判断. (2)求代数式的取值范围一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围.跟踪训练3(1)若a <b <0,则下列不等式一定成立的是( ) A.1a -b >1bB .a 2<ab C.|b ||a |<|b |+1|a |+1 D .a n>b n答案 C解析 (特值法)取a =-2,b =-1,逐个检验,可知A ,B ,D 项均不正确; C 项,|b ||a |<|b |+1|a |+1⇔|b |(|a |+1)<|a |(|b |+1)⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |, ∵a <b <0,∴|b |<|a |成立,故选C.(2)已知-1<x <y <3,则x -y 的取值范围是________. 答案 (-4,0)解析 ∵-1<x <3,-1<y <3, ∴-3<-y <1,∴-4<x -y <4. 又∵x <y ,∴x -y <0, ∴-4<x -y <0,故x -y 的取值范围为(-4,0).一、选择题1.下列命题中,正确的是( ) A .若a >b ,c >d ,则ac >bd B .若ac >bc ,则a >b C .若a c 2<b c2,则a <bD .若a >b ,c >d ,则a -c >b -d 答案 C解析 A 项,取a =2,b =1,c =-1,d =-2,可知A 错误; B 项,当c <0时,ac >bc ⇒a <b ,所以B 错误; C 项,因为a c 2<b c2,所以c ≠0,又c 2>0,所以a <b ,C 正确;D 项,取a =c =2,b =d =1,可知D 错误,故选C. 2.若1a <1b<0,则下列结论正确的是( )A .a 2>b 2B .1>⎝ ⎛⎭⎪⎫12b >⎝ ⎛⎭⎪⎫12aC.b a +a b<2 D .a e b>b e a答案 D解析 由题意知,b <a <0,则a 2<b 2,⎝ ⎛⎭⎪⎫12b >⎝ ⎛⎭⎪⎫12a >1,b a +a b >2,∵b <a <0,∴e a>e b>0,-b >-a >0 ∴-b e a>-a e b,∴a e b>b e a,故选D.3.若a >b >0,则下列不等式中一定成立的是( ) A .a +1b >b +1aB.b a >b +1a +1C .a -1b>b -1aD.2a +b a +2b >ab答案 A解析 取a =2,b =1,排除B 与D ;另外,函数f (x )=x -1x是(0,+∞)上的增函数,但函数g (x )=x +1x在(0,1]上单调递减,在[1,+∞)上单调递增,所以,当a >b >0时,f (a )>f (b )必定成立,即a -1a >b -1b ⇔a +1b >b +1a,但g (a )>g (b )未必成立,故选A.4.已知x >y >z ,x +y +z =0,则下列不等式成立的是( ) A .xy >yz B .xz >yz C .xy >xz D .x |y |>z |y |答案 C解析 ∵x >y >z 且x +y +z =0, ∴3x >x +y +z =0,3z <x +y +z =0, ∴x >0,z <0, 又y >z ,∴xy >xz .5.设x >0,P =2x+2-x,Q =(sin x +cos x )2,则( ) A .P >QB .P <QC .P ≤QD .P ≥Q答案 A解析 因为2x +2-x ≥22x ·2-x=2(当且仅当x =0时等号成立),而x >0,所以P >2; 又(sin x +cos x )2=1+sin2x ,而sin2x ≤1, 所以Q ≤2.于是P >Q .故选A.6.若α,β满足-π2<α<β<π2,则2α-β的取值范围是( )A .-π<2α-β<0B .-π<2α-β<πC .-3π2<2α-β<π2D .0<2α-β<π答案 C解析 ∵-π2<α<π2,∴-π<2α<π.∵-π2<β<π2,∴-π2<-β<π2,∴-3π2<2α-β<3π2.又α-β<0,α<π2,∴2α-β<π2.故-3π2<2α-β<π2.7.已知a +b >0,则a b2+b a2与1a +1b的大小关系是________.答案 a b 2+b a 2≥1a +1b解析a b 2+b a 2-⎝ ⎛⎭⎪⎫1a +1b =a -b b 2+b -a a2 =(a -b )·⎝ ⎛⎭⎪⎫1b 2-1a 2=(a +b )(a -b )2a 2b 2. ∵a +b >0,(a -b )2≥0,∴(a +b )(a -b )2a 2b 2≥0.∴a b 2+b a 2≥1a +1b. 8.已知有三个条件:①ac 2>bc 2;②a c >bc;③a 2>b 2,其中能成为a >b 的充分条件的是________. 答案 ①解析 由ac 2>bc 2可知c 2>0,即a >b ,故“ac 2>bc 2”是“a >b ”的充分条件;②当c <0时,a <b ;③当a <0,b <0时,a <b ,故②③不是a >b 的充分条件. 9.已知a ,b ,c ,d 均为实数,有下列命题:①若ab >0,bc -ad >0,则c a -d b>0; ②若ab >0,c a -d b>0,则bc -ad >0; ③若bc -ad >0,c a -d b>0,则ab >0. 其中正确的命题是________.(填序号) 答案 ①②③解析 ∵ab >0,bc -ad >0, ∴c a -d b =bc -adab>0,∴①正确;∵ab >0,又c a -db>0,即bc -adab>0, ∴bc -ad >0,∴②正确; ∵bc -ad >0,又c a -d b >0,即bc -adab>0, ∴ab >0,∴③正确.故①②③都正确.10.设α∈⎝ ⎛⎭⎪⎫0,12,T 1=cos(1+α),T 2=cos(1-α),则T 1与T 2的大小关系为________. 答案 T 1<T 2解析 T 1-T 2=(cos1cos α-sin1sin α)-(cos1cos α+sin1sin α)=-2sin1sin α<0.故T 1<T 2.11.(1)若bc -ad ≥0,bd >0,求证:a +b b ≤c +dd; (2)已知c >a >b >0,求证:ac -a >bc -b.证明 (1)∵bc ≥ad ,bd >0,∴c d ≥ab, ∴c d +1≥a b +1,∴a +b b ≤c +dd. (2)∵c >a >b >0,∴c -a >0,c -b >0.⎭⎪⎬⎪⎫由a >b >0⇒1a <1b ,c >0⇒c a <c b⇒⎭⎪⎬⎪⎫c -a a <c -b b ,c -a >0,c -b >0⇒a c -a >bc -b .12.已知1<a <4,2<b <8,试求a -b 与a b的取值范围. 解 因为1<a <4,2<b <8, 所以-8<-b <-2. 所以1-8<a -b <4-2, 即-7<a -b <2. 又因为18<1b <12,所以18<a b <42=2,即18<a b<2.13.设0<b <a <1,则下列不等式成立的是( ) A .ab <b 2<1 B .12log b <12log a <0C .2b <2a<2 D .a 2<ab <1答案 C解析 方法一 (特殊值法):取b =14,a =12.方法二 (单调性法): 0<b <a ⇒b 2<ab ,A 不对;y =12log x 在(0,+∞)上为减函数,∴12log b >12log a ,B 不对;a >b >0⇒a 2>ab ,D 不对,故选C.14.若a =ln33,b =ln44,c =ln55,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c答案 B解析 方法一 对于函数y =f (x )=ln x x (x >e),y ′=1-ln xx2, 易知当x >e 时,函数f (x )单调递减.因为e<3<4<5,所以f (3)>f (4)>f (5),即c <b <a .方法二 易知a ,b ,c 都是正数,b a =3ln44ln3=log 8164<1,所以a >b ;b c =5ln44ln5=log 6251024>1,所以b >c .即c <b <a .15.已知实数x ,y 满足a x >a y(0<a <1),则下列关系式恒成立的是( ) A .ln(x 2+1)>ln(y 2+1) B .sin x >sin y C .x 3<y 3 D.1x 2+1>1y 2+1答案 C解析 方法一 因为实数x ,y 满足a x >a y(0<a <1), 所以x <y .对于A ,取x =0,y =3,不成立; 对于B ,取x =-π,y =π,不成立;对于C ,由于f (x )=x 3在R 上单调递增,故x 3<y 3成立; 对于D ,取x =-2,y =1,不成立.故选C.方法二 根据指数函数的性质得x <y ,此时x 2,y 2的大小不确定,故选项A ,D 中的不等式不恒成立;根据三角函数的性质,选项B 中的不等式也不恒成立;根据不等式的性质知,选项C 中的不等式成立.16.设0<b <a <1,则下列不等式成立的是( ) A .a ln b >b ln a B .a ln b <b ln a C .a e b<b e aD .a e b=b e a答案 B解析 观察A ,B 两项,实际上是在比较ln b b 和ln a a 的大小,引入函数y =ln xx,0<x <1.则y ′=1-ln x x 2,可见函数y =ln x x 在(0,1)上单调递增.所以ln b b <ln a a,B 正确.对于C ,D 两项,引入函数f (x )=e x x ,0<x <1,则f ′(x )=x e x -e x x 2=(x -1)e x x 2<0,所以函数f (x )=e xx在(0,1)上单调递减,又因为0<b <a <1,所以f (a )<f (b ),即e a a <e bb,所以a e b >b e a,故选B.2020版高考数学大一轮复习第七章不等式§7.2一元二次不等式及其解法最新考纲1.经历从实际情境中抽象出一元二次不等式模型的过程.2.通过函数图象了解一元二次不等式与相应函数、方程的联系.3.会解一元二次不等式.一元二次不等式的解集概念方法微思考1.一元二次不等式ax2+bx+c>0(a>0)的解集与其对应的函数y=ax2+bx+c的图象有什么关系?提示ax2+bx+c>0(a>0)的解集就是其对应函数y=ax2+bx+c的图象在x轴上方的部分所对应的x 的取值范围.2.一元二次不等式ax 2+bx +c >0(<0)恒成立的条件是什么? 提示 显然a ≠0.ax 2+bx +c >0恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ<0;ax 2+bx +c <0恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( √ )(2)若不等式ax 2+bx +c >0的解集是(-∞,x 1)∪(x 2,+∞),则方程ax 2+bx +c =0的两个根是x 1和x 2.( √ )(3)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( × ) (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( × ) (5)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( √ )题组二 教材改编2.已知集合A ={x |x 2-x -6>0},则∁R A 等于( ) A .{x |-2<x <3} B .{x |-2≤x ≤3} C .{x |x <-2}∪{x |x >3} D .{x |x ≤-2}∪{x |x ≥3} 答案 B解析 ∵x 2-x -6>0,∴(x +2)(x -3)>0,∴x >3或x <-2,即A ={x |x >3或x <-2}.在数轴上表示出集合A ,如图所示.由图可得∁R A ={x |-2≤x ≤3}.故选B.3.y =log 2(3x 2-2x -2)的定义域是________________. 答案 ⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞解析 由题意,得3x 2-2x -2>0,令3x 2-2x -2=0,得x 1=1-73,x 2=1+73,∴3x 2-2x -2>0的解集为 ⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞.题组三 易错自纠4.不等式-x 2-3x +4>0的解集为________.(用区间表示) 答案 (-4,1)解析 由-x 2-3x +4>0可知,(x +4)(x -1)<0, 得-4<x <1.5.若关于x 的不等式ax 2+bx +2>0的解集是⎝ ⎛⎭⎪⎫-12,13,则a +b =________.答案 -14解析 ∵x 1=-12,x 2=13是方程ax 2+bx +2=0的两个根,∴⎩⎪⎨⎪⎧a 4-b2+2=0,a 9+b 3+2=0,解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14.6.不等式(a -2)x 2+2(a -2)x -4<0,对一切x ∈R 恒成立,则实数a 的取值范围是( ) A .(-∞,2] B .(-2,2] C .(-2,2) D .(-∞,2) 答案 B解析 ∵⎩⎪⎨⎪⎧a -2<0,Δ<0,∴-2<a <2,另a =2时,原式化为-4<0,不等式恒成立, ∴-2<a ≤2.故选B.题型一 一元二次不等式的求解 命题点1 不含参的不等式例1(2019·乌鲁木齐模拟)已知集合A ={x |x 2-x -2<0},B ={y |y =2x},则A ∩B 等于( ) A .(-1,2) B .(-2,1) C .(0,1) D .(0,2)答案 D解析 由题意得A ={x |x 2-x -2<0}={x |-1<x <2},B ={y |y =2x}={y |y >0}, ∴A ∩B ={x |0<x <2}=(0,2).故选D. 命题点2 含参不等式例2解关于x 的不等式ax 2-(a +1)x +1<0(a >0). 解 原不等式变为(ax -1)(x -1)<0,因为a >0,所以⎝⎛⎭⎪⎫x -1a (x -1)<0.所以当a >1时,解为1a<x <1; 当a =1时,解集为∅; 当0<a <1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a <x <1. 思维升华对含参的不等式,应对参数进行分类讨论 (1)根据二次项系数为正、负及零进行分类. (2)根据判别式Δ判断根的个数.(3)有两个根时,有时还需根据两根的大小进行讨论. 跟踪训练1解不等式12x 2-ax >a 2(a ∈R ). 解 原不等式可化为12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 解得x 1=-a 4,x 2=a3.当a >0时,不等式的解集为⎝ ⎛⎭⎪⎫-∞,-a 4∪⎝ ⎛⎭⎪⎫a3,+∞;当a =0时,不等式的解集为(-∞,0)∪(0,+∞);当a <0时,不等式的解集为⎝ ⎛⎭⎪⎫-∞,a 3∪⎝ ⎛⎭⎪⎫-a4,+∞. 题型二 一元二次不等式恒成立问题 命题点1 在R 上的恒成立问题例3已知函数f (x )=mx 2-mx -1.若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围. 解 当m =0时,f (x )=-1<0恒成立.当m ≠0时,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,即-4<m <0.综上,-4<m ≤0,故m 的取值范围是(-4,0]. 命题点2 在给定区间上的恒成立问题例4已知函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围.解 要使f (x )<-m +5在x ∈[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.有以下两种方法:方法一 令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3),即7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1),即m -6<0, 所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67. 方法二 因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 所以m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <67. 引申探究1.若将“f (x )<5-m 恒成立”改为“f (x )<5-m 无解”,如何求m 的取值范围? 解 若f (x )<5-m 无解,即f (x )≥5-m 恒成立, 即m ≥6x 2-x +1恒成立,又x ∈[1,3],得m ≥6,即m 的取值范围为[6,+∞).2.若将“f (x )<5-m 恒成立”改为“存在x ,使f (x )<5-m 成立”,如何求m 的取值范围? 解 由题意知f (x )<5-m 有解, 即m <6x 2-x +1有解,则m <⎝ ⎛⎭⎪⎫6x 2-x +1max,又x ∈[1,3],得m <6,即m 的取值范围为(-∞,6). 命题点3 给定参数范围的恒成立问题例5若mx 2-mx -1<0对于m ∈[1,2]恒成立,求实数x 的取值范围.解 设g (m )=mx 2-mx -1=(x 2-x )m -1,其图象是直线,当m ∈[1,2]时,图象为一条线段,则⎩⎪⎨⎪⎧g (1)<0,g (2)<0,即⎩⎪⎨⎪⎧x 2-x -1<0,2x 2-2x -1<0,解得1-32<x <1+32,故x 的取值范围为⎝⎛⎭⎪⎫1-32,1+32.思维升华解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数. 跟踪训练2函数f (x )=x 2+ax +3.(1)当x ∈R 时,f (x )≥a 恒成立,求实数a 的取值范围; (2)当x ∈[-2,2]时,f (x )≥a 恒成立,求实数a 的取值范围; (3)当a ∈[4,6]时,f (x )≥0恒成立,求实数x 的取值范围. 解 (1)∵当x ∈R 时,x 2+ax +3-a ≥0恒成立,需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, ∴实数a 的取值范围是[-6,2].(2)当x ∈[-2,2]时,设g (x )=x 2+ax +3-a ≥0,分如下三种情况讨论(如图所示): ①如图①,当g (x )的图象与x 轴不超过1个交点时, 有Δ=a 2-4(3-a )≤0,即-6≤a ≤2. ②如图②,g (x )的图象与x 轴有2个交点, 但当x ∈[-2,+∞)时,g (x )≥0,即⎩⎪⎨⎪⎧ Δ>0,x =-a2<-2,g (-2)≥0,即⎩⎪⎨⎪⎧a 2-4(3-a )>0,-a2<-2,4-2a +3-a ≥0,可得⎩⎪⎨⎪⎧a >2或a <-6,a >4,a ≤73,解得a ∈∅.③如图③,g (x )的图象与x 轴有2个交点, 但当x ∈(-∞,2]时,g (x )≥0.即⎩⎪⎨⎪⎧Δ>0,x =-a2>2,g (2)≥0,即⎩⎪⎨⎪⎧a 2-4(3-a )>0,-a2>2,7+a ≥0,可得⎩⎪⎨⎪⎧a >2或a <-6,a <-4,a ≥-7.∴-7≤a <-6,综上,实数a 的取值范围是[-7,2].(3)令h (a )=xa +x 2+3.当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧h (4)≥0,h (6)≥0,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6. ∴实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞).1.已知集合A ={x |x ≥0},B ={x |(x +1)(x -5)<0},则A ∩B 等于( ) A .[-1,4) B .[0,5)C .[1,4]D .[-4,-1)∪ [4,5)答案 B解析 由题意得B ={x |-1<x <5},故A ∩B ={x |x ≥0}∩{x |-1<x <5}=[0,5). 故选B.2.(2018·沈阳二十中联考)若不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a >0的解集为( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >12 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <12 C .{x |-2<x <1} D .{x |x <-2或x >1}答案 A解析 ∵不等式ax 2+bx +2>0的解集为{x |-1<x <2},∴ax 2+bx +2=0的两根为-1,2,且a <0,即-1+2=-b a,(-1)×2=2a,解得a =-1,b =1,则所求不等式可化为2x 2+x-1>0,解得x <-1或x >12,故选A.3.若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为( )A .(-3,0)B .[-3,0]C .[-3,0)D .(-3,0]答案 A解析 由题意可得⎩⎪⎨⎪⎧k <0,Δ=k 2-4×2k ×⎝ ⎛⎭⎪⎫-38<0,解得-3<k <0.4.若存在实数x ∈[2,4],使x 2-2x +5-m <0成立,则m 的取值范围为( ) A .(13,+∞) B .(5,+∞) C .(4,+∞) D .(-∞,13)答案 B解析 m >x 2-2x +5,设f (x )=x 2-2x +5=(x -1)2+4,x ∈[2,4],当x =2时f (x )min =5,∃x ∈[2,4]使x 2-2x +5-m <0成立,即m >f (x )min ,∴m >5.故选B.5.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( ) A .[-4,1] B .[-4,3] C .[1,3] D .[-1,3]答案 B解析 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a ,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3,综上可得-4≤a ≤3. 6.不等式x 2-2ax -3a 2<0(a >0)的解集为________. 答案 {x |-a <x <3a }解析 x 2-2ax -3a 2<0⇔(x -3a )(x +a )<0, ∵a >0,∴-a <3a ,不等式的解集为{x |-a <x <3a }. 7.(2018·烟台联考)不等式x >1x的解集为________.答案 (-1,0)∪(1,+∞)解析 当x >0时,原不等式等价于x 2>1,解得x >1;当x <0时,原不等式等价于x 2<1,解得-1<x <0.所以不等式x >1x的解集为(-1,0)∪(1,+∞).8.若关于x 的不等式x 2-ax -a >0的解集为R ,则实数a 的取值范围是________. 答案 (-4,0)解析 因为x 2-ax -a >0的解集为R ,所以Δ=(-a )2-4(-a )<0,解得-4<a <0,故实数a 的取值范围是(-4,0). 9.不等式xx +1≤0的解集为________.答案 (-1,0] 解析 由xx +1≤0得x (x +1)≤0(x ≠-1),解得-1<x ≤0.10.若不等式x 2+ax +4≥0对一切x ∈(0,1]恒成立,则a 的取值范围为________. 答案 [-5,+∞)解析 由题意,分离参数后得,a ≥-⎝⎛⎭⎪⎫x +4x .设f (x )=-⎝⎛⎭⎪⎫x +4x ,x ∈(0,1],则只要a ≥[f (x )]max 即可.由于函数f (x )在区间(0,1]上单调递增, 所以[f (x )]max =f (1)=-5,故a ≥-5. 11.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值. 解 (1)∵f (x )=-3x 2+a (6-a )x +6, ∴f (1)=-3+a (6-a )+6=-a 2+6a +3>0, 即a 2-6a -3<0,解得3-23<a <3+2 3. ∴原不等式的解集为{a |3-23<a <3+23}. (2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3,∴⎩⎪⎨⎪⎧-1+3=a (6-a )3,-1×3=-6-b3,解得⎩⎨⎧a =3±3,b =-3.12.已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5). (1)求f (x )的解析式;(2)若对于任意的x ∈[-1,1],不等式f (x )+t ≤2恒成立,求t 的取值范围.解 (1)f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5),即2x 2+bx +c <0的解集是(0,5),∴0和5是方程2x 2+bx +c =0的两个根, 由根与系数的关系知,-b 2=5,c2=0,∴b =-10,c =0,f (x )=2x 2-10x .(2)f (x )+t ≤2恒成立等价于2x 2-10x +t -2≤0恒成立, ∴2x 2-10x +t -2在x ∈[-1,1]上的最大值小于或等于0. 设g (x )=2x 2-10x +t -2,x ∈[-1,1],则由二次函数的图象可知g (x )=2x 2-10x +t -2在区间[-1,1]上为减函数, ∴g (x )max =g (-1)=10+t , ∴10+t ≤0,即t ≤-10.13.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-235,+∞B.⎣⎢⎡⎦⎥⎤-235,1C .(1,+∞) D.⎝⎛⎦⎥⎤-∞,-235答案 A解析 由Δ=a 2+8>0知方程恒有两个不等实根,又因为x 1x 2=-2<0,所以方程必有一正根,一负根,对应二次函数图象的示意图如图.所以不等式在区间[1,5]上有解的充要条件是f (5)>0,解得a >-235,故选A.14.已知对于任意的x ∈(-∞,1)∪(5,+∞),都有x 2-2(a -2)x +a >0,则实数a 的取值范围是________. 答案 (1,5]解析 设f (x )=x 2-2(a -2)x +a , 当Δ=4(a -2)2-4a <0时,即1<a <4时,f (x )>0对x ∈R 恒成立;当a =1时,f (-1)=0,不合题意; 当a =4时,f (2)=0符合题意; 当Δ>0时,由⎩⎪⎨⎪⎧Δ>0,1<a -2<5,f (1)≥0,f (5)≥0,即⎩⎪⎨⎪⎧a <1或a >4,3<a <7,a ≤5,a ≤5,即4<a ≤5.综上所述,实数a 的取值范围是(1,5].15.在关于x 的不等式x 2-(a +1)x +a <0的解集中至多包含1个整数,则a 的取值范围是( ) A .(-3,5) B .(-2,4) C .[-1,3] D .[-2,4]答案 C解析 因为关于x 的不等式x 2-(a +1)x +a <0可化为(x -1)(x -a )<0, 当a >1时,不等式的解集为{x |1<x <a }, 当a <1时,不等式的解集为{x |a <x <1}, 当a =1时,不等式的解集为∅,要使得解集中至多包含1个整数,则a =1或1<a ≤3或1>a ≥-1,所以实数a 的取值范围是a ∈[-1,3],故选C.16.设a <0,(4x 2+a )(2x +b )≥0在(a ,b )上恒成立,则b -a 的最大值为( ) A.12B.13C.14D.22 答案 C解析 当a <b <0时,∀x ∈(a ,b ),2x +b <0, 所以(4x 2+a )(2x +b )≥0在(a ,b )上恒成立, 可转化为∀x ∈(a ,b ),a ≤-4x 2, 所以a ≤-4a 2,所以-14≤a <0,所以0<b -a <14;当a <0<b 时,(4x 2+a )(2x +b )≥0在(a ,b )上恒成立,当x =0时,(4x 2+a )(2x +b )=ab <0,不符合题意; 当a <0=b 时,由题意知x ∈(a ,0),(4x 2+a )2x ≥0恒成立, 所以4x 2+a ≤0,所以-14≤a <0,所以b -a ≤14.综上所述,b -a 的最大值为14.2020版高考数学大一轮复习第七章 不等式 §7.3 基本不等式及其应用最新考纲1.探索并了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +a b≥2(a ,b 同号). (3)ab ≤⎝ ⎛⎭⎪⎫a +b 22 (a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大)概念方法微思考1.若两个正数的和为定值,则这两个正数的积一定有最大值吗?提示 不一定.若这两个正数能相等,则这两个数的积一定有最大值;若这两个正数不相等,则这两个正数的积无最大值. 2.函数y =x +1x的最小值是2吗?提示 不是.因为函数y =x +1x 的定义域是{x |x ≠0},当x <0时,y <0,所以函数y =x +1x无最小值.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数f (x )=cos x +4cos x ,x ∈⎝ ⎛⎭⎪⎫0,π2的最小值等于4.( × )(2)“x >0且y >0”是“x y +y x≥2”的充要条件.( × ) (3)(a +b )2≥4ab (a ,b ∈R ).( √ ) (4)若a >0,则a 3+1a2的最小值为2a .( × )(5)不等式a 2+b 2≥2ab 与a +b2≥ab 有相同的成立条件.( × )(6)两个正数的等差中项不小于它们的等比中项.( √ ) 题组二 教材改编2.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80B .77C .81D .82 答案 C解析 ∵x >0,y >0,∴x +y2≥xy ,即xy ≤⎝⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时,(xy )max=81.3.若把总长为20m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________m 2. 答案 25解析 设矩形的一边为x m ,面积为y m 2,则另一边为12×(20-2x )=(10-x )m ,其中0<x <10,∴y =x (10-x )≤⎣⎢⎡⎦⎥⎤x +(10-x )22=25,当且仅当x =10-x ,即x =5时,y max =25. 题组三 易错自纠4.“x >0”是“x +1x≥2成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 当x >0时,x +1x≥2x ·1x =2.因为x ,1x同号,所以若x +1x≥2,则x >0,1x>0,所以“x >0”是“x +1x≥2成立”的充要条件,故选C. 5.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A .1+2B .1+3C .3D .4 答案 C解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,故选C. 6.若正数x ,y 满足3x +y =5xy ,则4x +3y 的最小值是( ) A .2B .3C .4D .5 答案 D解析 由3x +y =5xy ,得3x +y xy =3y +1x=5,所以4x +3y =(4x +3y )·15⎝ ⎛⎭⎪⎫3y +1x=15⎝⎛⎭⎪⎫4+9+3y x +12x y≥15(4+9+236)=5, 当且仅当3y x =12xy,即y =2x 时,“=”成立,故4x +3y 的最小值为5.故选D.题型一 利用基本不等式求最值 命题点1 配凑法例1(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________. 答案 23解析 x (4-3x )=13·(3x )(4-3x )≤13·⎣⎢⎡⎦⎥⎤3x +(4-3x )22=43, 当且仅当3x =4-3x ,即x =23时,取等号.(2)函数y =x 2+2x -1(x >1)的最小值为________.答案 23+2解析 ∵x >1,∴x -1>0,∴y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2. 当且仅当x -1=3x -1,即x =3+1时,等号成立. 命题点2 常数代换法例2(2019·大连模拟)已知首项与公比相等的等比数列{a n }中,满足a m a 2n =a 24(m ,n ∈N *),则2m +1n的最小值为( )A .1B.32C .2D.92答案 A解析 由题意可得,a 1=q , ∵a m a 2n =a 24, ∴a 1·qm -1·(a 1·qn -1)2=(a 1·q 3)2,即q m·q 2n=q 8, 即m +2n =8.∴2m +1n =(m +2n )⎝ ⎛⎭⎪⎫2m +1n ×18=⎝ ⎛⎭⎪⎫2+m n +4n m +2×18≥()4+24×18=1.当且仅当m =2n 时,即m =4,n =2时,等号成立. 命题点3 消元法例3已知正实数a ,b 满足a 2-b +4≤0,则u =2a +3b a +b ( )A .有最大值145B .有最小值145C .有最小值3D .有最大值3答案 B解析 ∵a 2-b +4≤0,∴b ≥a 2+4, ∴a +b ≥a 2+a +4. 又∵a ,b >0,∴aa +b ≤aa 2+a +4,∴-aa +b≥-aa 2+a +4,∴u =2a +3b a +b =3-a a +b ≥3-a a 2+a +4=3-1a +4a+1≥3-12a ·4a+1=145, 当且仅当a =2,b =8时取等号.故选B.思维升华 (1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. (3)条件最值的求解通常有三种方法:一是消元法;二是将条件灵活变形,利用常数“1”代换的方法;三是配凑法.跟踪训练1(1)(2019·四平质检)设x >0,y >0,若x lg2,lg 2,y lg2成等差数列,则1x +9y的最小值为( )A .8B .9C .12D .16 答案 D解析 ∵x lg2,lg 2,y lg2成等差数列, ∴2lg 2=(x +y )lg2,∴x +y =1. ∴1x +9y=(x +y )⎝ ⎛⎭⎪⎫1x +9y ≥10+2y x ·9xy=10+6=16, 当且仅当x =14,y =34时取等号,故1x +9y的最小值为16.故选D.(2)若a ,b ,c 都是正数,且a +b +c =2,则4a +1+1b +c的最小值是( ) A .2B .3C .4D .6 答案 B解析 ∵a ,b ,c 都是正数,且a +b +c =2, ∴a +b +c +1=3, 且a +1>0,b +c >0. ∴4a +1+1b +c =13·(a +1+b +c )·⎝ ⎛⎭⎪⎫4a +1+1b +c =13⎣⎢⎡⎦⎥⎤5+4(b +c )a +1+a +1b +c ≥13(5+4)=3. 当且仅当a +1=2(b +c ),即a =1,b +c =1时,等号成立.故选B. 题型二 基本不等式的综合应用命题点1 基本不等式与其他知识交汇的最值问题例4(2018·重庆诊断)已知圆O 的方程为x 2+y 2=1,过第一象限内圆O 外的点P (a ,b )作圆O 的两条切线PA ,PB ,切点分别为A ,B ,若PO →·PA →=8,则a +b 的最大值为( )A .3B .3 2C .4 2D .6答案 B解析 根据题意,结合向量数量积的定义式, 可求得PO →·PA →=|PA →|2=8,所以可求得|PO |2=9, 即a 2+b 2=9,结合基本不等式, 可得a +b ≤2(a 2+b 2)=32,当且仅当a =b =322时取等号,故选B.命题点2 求参数值或取值范围例5(2018·中山模拟)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a的最小值为( ) A .2 B .4 C .6 D .8答案 B解析 已知不等式(x +y )⎝⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,只要求(x +y )⎝⎛⎭⎪⎫1x +a y的最小值大于或等于9, ∵1+a +y x +axy≥a +2a +1, 当且仅当y =ax 时,等号成立, ∴a +2a +1≥9,∴a ≥2或a ≤-4(舍去),∴a ≥4, 即正实数a 的最小值为4,故选B.思维升华求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.跟踪训练2(1)在△ABC 中,A =π6,△ABC 的面积为2,则2sin C sin C +2sin B +sin Bsin C 的最小值为( )A.32B.334C.32D.53答案 C解析 由△ABC 的面积为2,所以S =12bc sin A =12bc sin π6=2,得bc =8,在△ABC 中,由正弦定理得 2sin C sin C +2sin B +sin B sin C =2c c +2b +bc=2cb b (c +2b )+b 2bc=168+2b 2+b 28=84+b 2+b 2+48-12。
§7.4 基本不等式及其应用 考情考向分析 主要考查利用基本不等式求最值.常与函数、解析几何、不等式相结合考查,作为求最值的方法,常在函数、解析几何、不等式的解答题中考查,难度为中档.1.基本不等式:ab ≤a +b 2(a ≥0,b ≥0)(1)基本不等式成立的条件:a ≥0,b ≥0.(2)等号成立的条件:当且仅当a =b 时取等号.2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +a b ≥2(a ,b 同号).(3)ab ≤⎝⎛⎭⎪⎫a +b 22 (a ,b ∈R ). (4)a 2+b 22≥⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b .3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大) 概念方法微思考1.若两个正数的和为定值,则这两个正数的积一定有最大值吗?提示 不一定.若这两个正数能相等,则这两个数的积一定有最大值;若这两个正数不相等,则这两个正数的积无最大值.2.函数y =x +1x的最小值是2吗? 提示 不是.因为函数y =x +1x 的定义域是{x |x ≠0},当x <0时,y <0,所以函数y =x +1x无最小值.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数f (x )=cos x +4cos x ,x ∈⎝⎛⎭⎪⎫0,π2的最小值等于4.( × ) (2)“x >0且y >0”是“x y +y x ≥2”的充要条件.( × )(3)若a >0,则a 3+1a 2的最小值为2a .( × ) (4)不等式a 2+b 2≥2ab 与a +b 2≥ab 有相同的成立条件.( × )(5)两个正数的等差中项不小于它们的等比中项.( √ )题组二 教材改编2.[P88T4]设x >0,y >0,且x +y =18,则xy 的最大值为________.答案 81解析 ∵x >0,y >0,∴x +y 2≥xy , 即xy ≤⎝ ⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时,(xy )max =81. 3.[P89例1]若把总长为20m 的篱笆围成一个矩形场地,则矩形场地的最大面积是_______m 2.答案 25解析 设矩形的一边为x m ,则另一边为12×(20-2x )=(10-x )m , ∴y =x (10-x )≤⎣⎢⎡⎦⎥⎤x +(10-x )22=25, 当且仅当x =10-x ,即x =5时,y max =25.题组三 易错自纠4.“x >0”是“x +1x≥2成立”的________条件.(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)答案 充要解析 当x >0时,x +1x ≥2x ·1x=2(当且仅当x =1时等号成立). 因为x ,1x同号,所以若x +1x ≥2,则x >0,1x >0,所以“x >0”是“x +1x ≥2成立”的充要条件. 5.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =________. 答案 3 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 6.若正数x ,y 满足3x +y =5xy ,则4x +3y 的最小值是________.答案 5解析 由3x +y =5xy ,得3x +y xy =3y +1x=5, 所以4x +3y =(4x +3y )·15⎝ ⎛⎭⎪⎫3y +1x =15⎝⎛⎭⎪⎫4+9+3y x +12x y ≥15(4+9+236)=5, 当且仅当3y x =12x y,即y =2x =1时,“=”成立, 故4x +3y 的最小值为5.题型一 利用基本不等式求最值命题点1 配凑法例1(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________.答案 23解析 x (4-3x )=13·(3x )(4-3x )≤13·⎣⎢⎡⎦⎥⎤3x +(4-3x )22=43, 当且仅当3x =4-3x ,即x =23时,取等号. (2)函数y =x 2+2x -1(x >1)的最小值为________. 答案 23+2解析 ∵x >1,∴x -1>0,∴y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2. 当且仅当x -1=3x -1,即x =3+1时,等号成立. (3)函数y =x -1x +3+x -1的最大值为________. 答案 15解析 y =x -1x -1+4+x -1,当x -1=0时,y =0,当x -1>0时,y =1x -1+4x -1+1≤14+1=15, ∴当且仅当x -1=4x -1等号成立, 即x =5时,y max =15. 命题点2 常数代换法例2(1)(2018·江苏省盐城市东台中学质检)已知x >0,y >0,且1x +2y=1,则x +y 的最小值为________.答案 3+2 2解析 由x >0,y >0,得(x +y )⎝ ⎛⎭⎪⎫1x +2y =3+y x +2x y≥3+22, 当且仅当y =2x 时等号成立,又1x +2y=1,则x +y ≥3+22, 所以x +y 的最小值为3+2 2.(2)已知正数x ,y 满足x +y =1,则4x +2+1y +1的最小值为________. 答案 94解析 正数x ,y 满足(x +2)+(y +1)=4,∴4x +2+1y +1=14[(x +2)+(y +1)]⎝ ⎛⎭⎪⎫4x +2+1y +1 =14⎣⎢⎡⎦⎥⎤5+x +2y +1+4(y +1)x +2 ≥14⎣⎢⎡⎦⎥⎤5+2x +2y +1·4(y +1)x +2=94, 当且仅当x =2y =23时,⎝ ⎛⎭⎪⎫4x +2+1y +1min =94. 命题点3 消元法例3已知正实数a ,b 满足a 2-b +4≤0,则u =2a +3b a +b的最小值为________. 答案 145解析 ∵a 2-b +4≤0,∴b ≥a 2+4,∴a +b ≥a 2+a +4.又∵a ,b >0,∴a a +b ≤a a 2+a +4, ∴-aa +b ≥-a a 2+a +4, ∴u =2a +3b a +b =3-a a +b ≥3-a a 2+a +4 =3-1a +4a +1≥3-12 a ·4a+1=145, 当且仅当a =2,b =8时,两等号同时成立,即取得最小值.思维升华 (1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有两种方法:一是消元法;二是将条件灵活变形,利用常数“1”代换的方法.跟踪训练1(1)若a ,b ,c 都是正数,且a +b +c =2,则4a +1+1b +c的最小值是________. 答案 3解析 ∵a ,b ,c 都是正数,且a +b +c =2,∴a +b +c +1=3,且a +1>0,b +c >0.∴4a +1+1b +c =13·(a +1+b +c )·⎝ ⎛⎭⎪⎫4a +1+1b +c =13⎣⎢⎡⎦⎥⎤5+4(b +c )a +1+a +1b +c ≥13(5+4)=3. 当且仅当a +1=2(b +c ),即a =1,b +c =1时,等号成立.(2)(2018·苏北四市考试)已知实数x ,y 满足x 2+y 2=3,|x |≠|y |,则1(2x +y )2+4(x -2y )2的最小值是________.答案 35解析 由已知可得(2x +y )2+(x -2y )215=1, ∴1(2x +y )2+4(x -2y )2 =(2x +y )2+(x -2y )215×⎣⎢⎡⎦⎥⎤1(2x +y )2+4(x -2y )2 =115⎣⎢⎡⎦⎥⎤5+(x -2y )2(2x +y )2+4(2x +y )2(x -2y )2≥115(5+4)=35, 当且仅当|x -2y |=2|2x +y |时取等号.(3)若实数x ,y 满足xy +3x =3⎝⎛⎭⎪⎫0<x <12,则3x +1y -3的最小值为________. 答案 8解析 由已知得,x =3y +3, 又0<x <12,可得y >3, ∴3x +1y -3=y +3+1y -3=y -3+1y -3+6 ≥2(y -3)·1y -3+6=8, 当且仅当y =4⎝ ⎛⎭⎪⎫x =37时,⎝ ⎛⎭⎪⎫3x +1y -3min =8.题型二 基本不等式的实际应用例4某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10000x-1450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?解 (1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.05×1000x 万元,依题意得当0<x <80时,L (x )=1000x ×0.05-⎝ ⎛⎭⎪⎫13x 2+10x -250 =-13x 2+40x -250; 当x ≥80时, L (x )=1000x ×0.05-⎝ ⎛⎭⎪⎫51x +10000x -1450-250 =1200-⎝ ⎛⎭⎪⎫x +10000x . ∴L (x )=⎩⎪⎨⎪⎧ -13x 2+40x -250,0<x <80,1200-⎝ ⎛⎭⎪⎫x +10000x ,x ≥80.(2)当0<x <80时,L (x )=-13(x -60)2+950. 对称轴为x =60,即当x =60时,L (x )max =950万元;当x ≥80时,L (x )=1200-⎝ ⎛⎭⎪⎫x +10000x ≤1200-210000=1000(万元),当且仅当x =100时,L (x )max =1000万元,综上所述,当年产量为100千件时,年获利润最大.思维升华(1)设变量时一般要把求最大值或最小值的变量定义为函数.(2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值.(3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解. 跟踪训练2(2017·江苏)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x 的值是_______. 答案 30解析 一年的总运费为6×600x =3600x(万元). 一年的总存储费用为4x 万元.总运费与总存储费用的和为⎝⎛⎭⎪⎫3600x +4x 万元. 因为3600x +4x ≥23600x·4x =240, 当且仅当3600x=4x ,即x =30时取得等号, 所以当x =30时,一年的总运费与总存储费用之和最小.题型三 基本不等式的综合应用命题点1 基本不等式与其他知识交汇的最值问题例5在△ABC 中,点P 满足BP →=2PC →,过点P 的直线与AB ,AC 所在直线分别交于点M ,N ,若AM→=mAB →,AN →=nAC →(m >0,n >0),则m +2n 的最小值为________.答案 3解析 ∵AP →=AB →+BP →=AB →+23()AC →-AB → =13AB →+23AC →=13m AM →+23nAN →, ∵M ,P ,N 三点共线,∴13m +23n=1, ∴m +2n =(m +2n )⎝ ⎛⎭⎪⎫13m +23n =13+43+2n 3m +2m 3n ≥53+22n 3m ×2m 3n=53+43=3, 当且仅当m =n =1时等号成立.命题点2 求参数值或取值范围例6已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为________. 答案 4解析 已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,只要求(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值大于或等于9,∵1+a +y x +ax y≥a +2a +1, 当且仅当y =ax 时,等号成立,∴a +2a +1≥9, ∴a ≥2或a ≤-4(舍去),∴a ≥4,即正实数a 的最小值为4.思维升华求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.跟踪训练3(1)在△ABC 中,A =π6,△ABC 的面积为2,则2sin C sin C +2sin B +sin B sin C的最小值为____. 答案 32解析 由△ABC 的面积为2,所以S =12bc sin A =12bc sin π6=2,得bc =8, 在△ABC 中,由正弦定理得2sin C sin C +2sin B +sin B sin C =2c c +2b +b c=2cb b (c +2b )+b 2bc=168+2b 2+b 28=84+b 2+b 2+48-12≥284+b 2·b 2+48-12=2-12=32, 当且仅当b =2,c =4时,等号成立.(2)已知函数f (x )=ax 2+bx (a >0,b >0)的图象在点(1,f (1))处的切线的斜率为2,则8a +b ab的最小值是________.答案 9解析 由函数f (x )=ax 2+bx ,得f ′(x )=2ax +b ,因为函数f (x )的图象在点(1,f (1))处的切线斜率为2,所以f ′(1)=2a +b =2,所以8a +b ab =1a +8b =12⎝ ⎛⎭⎪⎫1a +8b (2a +b ) =12⎝⎛⎭⎪⎫10+b a +16a b ≥12⎝ ⎛⎭⎪⎫10+2b a ·16a b =12(10+8)=9, 当且仅当b a =16a b ,即a =13,b =43时等号成立, 所以8a +b ab的最小值为9.利用基本不等式求解实际问题数学建模是对现实问题进行数学抽象,用数学的语言表达问题,用数学的方法构建模型解决问题.过程主要包括:在实际情景中从数学的视角发现问题、提出问题、分析问题、建立模型、确定参数、计算求解、检验结果、改进模型,最终解决实际问题.例某厂家拟在2019年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2019年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2019年该产品的利润y 万元表示为年促销费用m 万元的函数;(2)该厂家2019年的促销费用投入多少万元时,厂家的利润最大?解 (1)由题意知,当m =0时,x =1,∴1=3-k ,即k =2,∴x =3-2m +1, 每万件产品的销售价格为1.5×8+16x x(万元), ∴2019年的利润y =1.5x ×8+16x x -8-16x -m =4+8x -m =4+8⎝ ⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29(m ≥0).(2)∵m≥0时,16m+1+(m+1)≥216=8,∴y≤-8+29=21,当且仅当16m+1=m+1,即m=3(万元)时,y max=21(万元).故该厂家2019年的促销费用投入3万元时,厂家的利润最大为21万元.素养提升利用基本不等式求解实际问题时根据实际问题抽象出目标函数的表达式,建立数学模型,再利用基本不等式求得函数的最值.1.函数f (x )=x 2+4|x |的最小值为________.答案 4解析 f (x )=x 2+4|x |=|x |+4|x |≥24=4,当且仅当x =±2时,等号成立.2.已知正数a ,b 满足a +b =1,则4a +1b的最小值为________.答案 9解析 由题意知,正数a ,b 满足a +b =1, 则4a +1b =⎝ ⎛⎭⎪⎫4a +1b (a +b )=4+1+4b a+ab≥5+24b a ·ab=9,当且仅当4b a =a b ,即a =23,b =13时等号成立,所以4a +1b的最小值为9.3.若a >0,b >0,lg a +lg b =lg(a +b ),则a +b 的最小值为________. 答案 4解析 由lg a +lg b =lg(a +b ),得lg(ab )=lg(a +b ),即ab =a +b ,则有1a +1b=1,所以a+b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +a b≥2+2b a ·ab=4,当且仅当a =b =2时等号成立,所以a +b 的最小值为4.4.(2018·扬州模拟)已知正实数x ,y 满足x +y =xy ,则3x x -1+2y y -1的最小值为________. 答案 5+2 6解析 ∵正实数x ,y 满足x +y =xy ,即1x +1y=1,∴1-1x +1-1y=1,又3x x -1+2y y -1=31-1x +21-1y,∴3x x -1+2yy -1=⎝⎛⎭⎪⎪⎫31-1x+21-1y ⎝ ⎛⎭⎪⎫1-1x +1-1y =5+3⎝ ⎛⎭⎪⎫1-1y 1-1x+2⎝ ⎛⎭⎪⎫1-1x 1-1y≥5+26,等号成立的条件为3⎝⎛⎭⎪⎫1-1y 2=2⎝ ⎛⎭⎪⎫1-1x 2.5.(2018·江苏省无锡市第一中学期末)在等差数列{a n }中,a n >0,a 4=5,则1a 2+9a 6的最小值为____. 答案 85解析 由题意得a 2+a 6=2a 4=10, 所以1a 2+9a 6=⎝ ⎛⎭⎪⎫1a 2+9a 6(a 2+a 6)×110=110⎝ ⎛⎭⎪⎫10+a 6a 2+9a 2a 6≥110(10+29)=85.当且仅当a 6=3a 2=152时等号成立.故1a 2+9a 6的最小值为85. 6.已知函数f (x )=e x 在点(0,f (0))处的切线为l ,动点(a ,b )在直线l 上,则2a +2-b的最小值是________. 答案2解析 由题意得f ′(x )=e x,f (0)=e 0=1,k =f ′(0)=e 0=1.所以切线方程为y -1=x -0,即x -y +1=0,∴a -b +1=0,∴a -b =-1,∴2a+2-b≥22a ·2-b =22a -b=22-1= 2⎝ ⎛⎭⎪⎫当且仅当a =-12,b =12时取等号. 7.设x ,y 均为正数,且xy +x -y -10=0,则x +y 的最小值是________. 答案 6解析 由xy +x -y -10=0,得x =y +10y +1=9y +1+1, ∴x +y =9y +1+1+y ≥29y +1·(1+y )=6, 当且仅当9y +1=1+y ,即y =2时,等号成立.8.已知△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,且△ABC 的面积为334,则a 的最小值为________. 答案3解析 由题意得b 2+c 2-a 2=bc , ∴2bc cos A =bc ,∴cos A =12,又A ∈(0,π),∴A =π3.∵△ABC 的面积为334,∴12bc sin A =343,∴bc =3. ∵a 2=b 2+c 2-bc ,∴a 2≥2bc -bc =bc =3(当且仅当b =c 时,等号成立), ∴a ≥ 3.9.(2018·扬州模拟)已知正实数x ,y 满足5x 2+4xy -y 2=1,则12x 2+8xy -y 2的最小值为_______. 答案 73解析 方法一 因为5x 2+4xy -y 2=1,所以y 2-5x 2+1=4xy ≤x 2+4y 2(当且仅当x =2y 时,取“=”), 即6x 2+3y 2≥1, 所以2x 2+y 2≥13,所以12x 2+8xy -y 2=12x 2+2(y 2-5x 2+1)-y 2=2x 2+y 2+2≥13+2=73.方法二 因为5x 2+4xy -y 2=1, 则12x 2+8xy -y 2=12x 2+8xy -y25x 2+4xy -y2=12⎝ ⎛⎭⎪⎫x y 2+8·xy -15⎝ ⎛⎭⎪⎫x y 2+4·x y-1.令t =x y,则t ∈(0,+∞),设f (t )=12t 2+8t -15t 2+4t -1=2+2t 2+15t 2+4t -1,则f ′(t )=8t 2-14t -4(5t 2+4t -1)2=2(4t +1)(t -2)(5t 2+4t -1)2,令f ′(t )=0,得t =2,则f (t )在(0,2)上单调递减,在(2,+∞)上单调递增, 所以f (t )min =f (2)=73.10.已知a ,b 为正实数,且(a -b )2=4(ab )3,则1a +1b的最小值为________.答案 2 2解析 由题意得(a -b )2=(a +b )2-4ab , 代入已知得(a +b )2=4(ab )3+4ab ,两边同除以(ab )2得⎝ ⎛⎭⎪⎫a +b ab 2=4(ab )3a 2b 2+4ab a 2b 2=4⎝ ⎛⎭⎪⎫ab +1ab ≥4·2ab ·1ab=8,当且仅当ab =1时取等号. 所以1a +1b≥22,即1a +1b的最小值为2 2.11.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y的最小值.解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy . ∵2x +5y =20,∴210xy ≤20,xy ≤10, 当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1. (2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20 =120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝ ⎛⎭⎪⎫7+25y x·2x y=7+21020,当且仅当5y x =2xy时,等号成立. 由⎩⎪⎨⎪⎧2x +5y =20,5y x =2xy,解得⎩⎪⎨⎪⎧x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020. 12.某人准备在一块占地面积为1800平方米的矩形地块中间建三个矩形温室大棚,大棚周围均是宽为1米的小路(如图所示),大棚占地面积为S 平方米,其中a ∶b =1∶2.(1)试用x ,y 表示S ;(2)若要使S 的值最大,则x ,y 的值各为多少? 解 (1)由题意可得xy =1800,b =2a , 则y =a +b +3=3a +3,所以S =(x -2)a +(x -3)b =(3x -8)a =(3x -8)y -33=1808-3x -83y (x >3,y >3). (2)方法一 S =1808-3x -83×1800x=1808-⎝ ⎛⎭⎪⎫3x +4800x ≤1808-23x ×4800x=1808-240=1568,当且仅当3x =4800x ,即x =40时等号成立,S 取得最大值,此时y =1800x=45,所以当x =40,y =45时,S 取得最大值. 方法二 设S =f (x )=1808-⎝ ⎛⎭⎪⎫3x +4800x (x >3),则f ′(x )=4800x 2-3=3(40-x )(40+x )x2, 令f ′(x )=0,则x =40, 当0<x <40时,f ′(x )>0; 当x >40时,f ′(x )<0.所以当x =40时,S 取得最大值,此时y =45.13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2a -c b =cos C cos B ,b =4,则△ABC 面积的最大值为________. 答案 4 3解析 ∵2a -c b =cos Ccos B ,∴(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B =sin C cos B +sin B cos C =sin(B +C )=sin A . 又sin A ≠0,∴cos B =12.∵0<B <π,∴B =π3.由余弦定理得b 2=16=a 2+c 2-2ac cos π3=a 2+c 2-ac ≥2ac -ac =ac ,∴ac ≤16,当且仅当a =c 时等号成立. ∴S △ABC =12ac sin π3≤12×16×32=4 3.故△ABC 面积的最大值为4 3.14.已知P 为椭圆x 24+y 23=1上一个动点,过点P 作圆(x +1)2+y 2=1的两条切线,切点分别是A ,B ,则PA →·PB →的取值范围为________. 答案 ⎣⎢⎡⎦⎥⎤22-3,569解析 如图,由题意设∠APB =2θ,则PA =PB =1tan θ,∴PA →·PB →=|PA →||PB →|cos2θ =1tan 2θ·cos2θ =1+cos2θ1-cos2θ·cos2θ,设cos2θ=t ,则t <1,1-t >0, ∴PA →·PB →=t (1+t )1-t =(1-t )+21-t -3≥2(1-t )·21-t-3=22-3,当且仅当1-t =21-t ,即t =1-2时等号成立,此时cos2θ=1- 2.又当点P 在椭圆的右顶点时,sin θ=13,∴cos2θ=1-2sin 2θ=79,此时PA →·PB →最大,且最大值为1+791-79×79=569.∴PA →·PB →的取值范围是⎣⎢⎡⎦⎥⎤22-3,569.15.已知曲线C :y 2=2x +a 在点P n (n ,2n +a )(a >0,n ∈N )处的切线l n 的斜率为k n ,直线l n 交x 轴、y 轴分别于点A n (x n,0),B n (0,y n ),且|x 0|=|y 0|.给出以下结论: ①a =1;②当n ∈N *时,y n 的最小值为233;③当n ∈N *时,k n >2sin12n +1; ④当n ∈N *时,记数列{}k n 的前n 项和为S n ,则S n <2(n +1-1). 其中,正确的结论有________.(写出所有正确结论的序号) 答案 ①②④ 解析 令y =12(2)x a +,所以y ′=1212(2)x a -+×2=12(2)x a -+,k n =12(2)x a -+,所以l n :y -2n +a =12(2)x a -+(x -n ),所以x 0=-a ,y 0=a ,∴a =a ∴a =1,①对; 令t =2n +1≥3,所以y n =2n +1-n 2n +1=t -t 2-12t =12t +12t ,所以y n ≥123+123=233,②对;令f (x )=x -2sin x ⎝ ⎛⎭⎪⎫x ∈⎝⎛⎦⎥⎤0,13,所以f ′(x )=1-2cos x <0, 所以f (x )<f (0)=0,即12n +1<2sin12n +1,③错;因为k n =12n +1<2n +1+n=2(n +1-n ),所以S n =k 1+k 2+…+k n <2(2-1)+2(3-2)+…+2(n +1-n )=2(n +1-1),④对.16.已知正三棱柱ABC -A 1B 1C 1,侧面BCC 1B 1的面积为46,求该正三棱柱外接球表面积的最小值.解 设BC =a ,CC 1=b ,则ab =46, 底面三角形外接圆的半径为r , 则asin60°=2r ,∴r =33a .所以R 2=⎝ ⎛⎭⎪⎫b 22+⎝ ⎛⎭⎪⎫33a 2=b 24+a 23≥2b24·a23=29612=42,当且仅当a=32b时,等号成立.所以该正三棱柱外接球表面积的最小值为4π×42=162π.。
§7.3 基本不等式及其应用最新考纲 1.探索并了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.1.基本不等式:ab ≤a +b 2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎫a +b 22 (a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大)概念方法微思考1.若两个正数的和为定值,则这两个正数的积一定有最大值吗?提示 不一定.若这两个正数能相等,则这两个数的积一定有最大值;若这两个正数不相等,则这两个正数的积无最大值.2.函数y =x +1x的最小值是2吗?提示 不是.因为函数y =x +1x 的定义域是{x |x ≠0},当x <0时,y <0,所以函数y =x +1x 无最小值.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数f (x )=cos x +4cos x,x ∈⎝⎛⎭⎫0,π2的最小值等于4.( × ) (2)“x >0且y >0”是“x y +yx ≥2”的充要条件.( × )(3)(a +b )2≥4ab (a ,b ∈R ).( √ )(4)若a >0,则a 3+1a2的最小值为2a .( × )(5)不等式a 2+b 2≥2ab 与a +b2≥ab 有相同的成立条件.( × )(6)两个正数的等差中项不小于它们的等比中项.( √ ) 题组二 教材改编2.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82 答案 C解析 ∵x >0,y >0,∴x +y2≥xy ,即xy ≤⎝⎛⎭⎫x +y 22=81,当且仅当x =y =9时,(xy )max =81.3.若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 答案 25解析 设矩形的一边为x m ,面积为y m 2, 则另一边为12×(20-2x )=(10-x )m ,其中0<x <10,∴y =x (10-x )≤⎣⎡⎦⎤x +(10-x )22=25,当且仅当x =10-x ,即x =5时,y max =25. 题组三 易错自纠4.“x >0”是“x +1x ≥2成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 当x >0时,x +1x≥2x ·1x=2. 因为x ,1x 同号,所以若x +1x ≥2,则x >0,1x >0,所以“x >0”是“x +1x ≥2成立”的充要条件,故选C.5.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( )A .1+ 2B .1+ 3C .3D .4 答案 C解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,故选C. 6.若正数x ,y 满足3x +y =5xy ,则4x +3y 的最小值是( ) A .2 B .3 C .4 D .5 答案 D解析 由3x +y =5xy ,得3x +y xy =3y +1x =5,所以4x +3y =(4x +3y )·15⎝⎛⎭⎫3y +1x =15⎝⎛⎭⎫4+9+3y x +12x y ≥15(4+9+236)=5, 当且仅当3y x =12xy ,即y =2x 时,“=”成立,故4x +3y 的最小值为5.故选D.题型一 利用基本不等式求最值 命题点1 配凑法例1 (1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________. 答案 23解析 x (4-3x )=13·(3x )(4-3x )≤13·⎣⎡⎦⎤3x +(4-3x )22=43, 当且仅当3x =4-3x ,即x =23时,取等号.(2)函数y =x 2+2x -1(x >1)的最小值为________.答案 23+2解析 ∵x >1,∴x -1>0,∴y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,等号成立.命题点2 常数代换法例2 (2019·大连模拟)已知首项与公比相等的等比数列{a n }中,满足a m a 2n =a 24(m ,n ∈N *),则2m +1n的最小值为( ) A .1 B.32 C .2 D.92答案 A解析 由题意可得,a 1=q ,∵a m a 2n =a 24,∴a 1·q m -1·(a 1·q n -1)2=(a 1·q 3)2,即q m ·q 2n =q 8, 即m +2n =8.∴2m +1n=(m +2n )⎝⎛⎭⎫2m +1n ×18 =⎝⎛⎭⎫2+m n +4n m +2×18≥()4+24×18=1. 当且仅当m =2n 时,即m =4,n =2时,等号成立. 命题点3 消元法例3 已知正实数a ,b 满足a 2-b +4≤0,则u =2a +3b a +b ( )A .有最大值145B .有最小值145C .有最小值3D .有最大值3答案 B解析 ∵a 2-b +4≤0,∴b ≥a 2+4, ∴a +b ≥a 2+a +4.又∵a ,b >0,∴a a +b ≤aa 2+a +4,∴-a a +b ≥-a a 2+a +4,∴u =2a +3b a +b =3-a a +b ≥3-a a 2+a +4=3-1a +4a+1≥3-12a ·4a +1=145, 当且仅当a =2,b =8时取等号.故选B.思维升华 (1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. (3)条件最值的求解通常有三种方法:一是消元法;二是将条件灵活变形,利用常数“1”代换的方法;三是配凑法.跟踪训练1 (1)(2019·四平质检)设x >0,y >0,若x lg 2,lg 2,y lg 2成等差数列,则1x +9y 的最小值为( )A .8B .9C .12D .16 答案 D解析 ∵x lg 2,lg 2,y lg 2成等差数列, ∴2lg 2=(x +y )lg 2,∴x +y =1. ∴1x +9y=(x +y )⎝⎛⎭⎫1x +9y ≥10+2y x ·9xy=10+6=16, 当且仅当x =14,y =34时取等号,故1x +9y的最小值为16.故选D. (2)若a ,b ,c 都是正数,且a +b +c =2,则4a +1+1b +c 的最小值是( )A .2B .3C .4D .6 答案 B解析 ∵a ,b ,c 都是正数,且a +b +c =2, ∴a +b +c +1=3, 且a +1>0,b +c >0.∴4a +1+1b +c =13·(a +1+b +c )·⎝⎛⎭⎫4a +1+1b +c =13⎣⎢⎡⎦⎥⎤5+4(b +c )a +1+a +1b +c ≥13(5+4)=3.当且仅当a +1=2(b +c ),即a =1,b +c =1时,等号成立.故选B. 题型二 基本不等式的综合应用命题点1 基本不等式与其他知识交汇的最值问题例4 (2018·重庆诊断)已知圆O 的方程为x 2+y 2=1,过第一象限内圆O 外的点P (a ,b )作圆O 的两条切线P A ,PB ,切点分别为A ,B ,若PO →·P A →=8,则a +b 的最大值为( ) A .3 B .3 2 C .4 2 D .6答案 B解析 根据题意,结合向量数量积的定义式, 可求得PO →·P A →=|P A →|2=8,所以可求得|PO |2=9, 即a 2+b 2=9,结合基本不等式, 可得a +b ≤2(a 2+b 2)=32, 当且仅当a =b =322时取等号,故选B.命题点2 求参数值或取值范围例5 (2018·中山模拟)已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A .2 B .4 C .6 D .8 答案 B解析 已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,只要求(x +y )⎝⎛⎭⎫1x +a y 的最小值大于或等于9,∵1+a +y x +axy ≥a +2a +1,当且仅当y =ax 时,等号成立, ∴a +2a +1≥9,∴a ≥2或a ≤-4(舍去),∴a ≥4, 即正实数a 的最小值为4,故选B.思维升华 求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.跟踪训练2 (1)在△ABC 中,A =π6,△ABC 的面积为2,则2sin C sin C +2sin B +sin Bsin C 的最小值为( ) A.32B.334C.32D.53答案 C解析 由△ABC 的面积为2,所以S =12bc sin A =12bc sin π6=2,得bc =8,在△ABC 中,由正弦定理得 2sin C sin C +2sin B +sin B sin C =2c c +2b +bc=2cb b (c +2b )+b 2bc=168+2b 2+b 28=84+b 2+b 2+48-12≥284+b2·b 2+48-12=2-12=32, 当且仅当b =2,c =4时,等号成立,故选C.(2)已知函数f (x )=ax 2+bx (a >0,b >0)的图象在点(1,f (1))处的切线的斜率为2,则8a +bab的最小值是( ) A .10 B .9 C .8 D .3 2答案 B解析 由函数f (x )=ax 2+bx ,得f ′(x )=2ax +b , 由函数f (x )的图象在点(1,f (1))处的切线斜率为2, 所以f ′(1)=2a +b =2,所以8a +b ab =1a +8b =12⎝⎛⎭⎫1a +8b (2a +b )=12⎝⎛⎭⎫10+b a +16a b ≥12⎝⎛⎭⎫10+2b a ·16a b =12(10+8)=9,当且仅当b a =16a b ,即a =13,b =43时等号成立,所以8a +bab的最小值为9,故选B.利用基本不等式求解实际问题数学建模是对现实问题进行数学抽象,用数学的语言表达问题,用数学的方法构建模型解决问题.过程主要包括:在实际情景中从数学的视角发现问题、提出问题、分析问题、建立模型、确定参数、计算求解、检验结果、改进模型,最终解决实际问题.例 某厂家拟在2019年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-k m +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2019年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2019年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2019年的促销费用投入多少万元时,厂家的利润最大? 解 (1)由题意知,当m =0时,x =1, ∴1=3-k ⇒k =2, ∴x =3-2m +1,每万件产品的销售价格为1.5×8+16xx (万元),∴2019年的利润y =1.5x ×8+16xx -8-16x -m=4+8x -m =4+8⎝⎛⎭⎫3-2m +1-m=-⎣⎡⎦⎤16m +1+(m +1)+29(m ≥0).(2)∵m ≥0时,16m +1+(m +1)≥216=8, ∴y ≤-8+29=21,当且仅当16m +1=m +1⇒m =3(万元)时,y max =21(万元).故该厂家2019年的促销费用投入3万元时,厂家的利润最大为21万元.素养提升 利用基本不等式求解实际问题时根据实际问题抽象出目标函数的表达式,建立数学模型,再利用基本不等式求得函数的最值.1.函数f (x )=x 2+4|x |的最小值为( )A .3B .4C .6D .8答案 B解析 f (x )=x 2+4|x |=|x |+4|x |≥24=4,当且仅当x =±2时,等号成立,故选B.2.若x >0,y >0,则“x +2y =22xy ”的一个充分不必要条件是( ) A .x =y B .x =2y C .x =2且y =1 D .x =y 或y =1 答案 C解析 ∵x >0,y >0,∴x +2y ≥22xy ,当且仅当x =2y 时取等号.故“x =2且y =1 ”是“x +2y =22xy ”的充分不必要条件.故选C. 3.(2018·潍坊模拟)已知正数a ,b 满足a +b =1,则4a +1b 的最小值为( )A.53 B .3 C .5 D .9 答案 D解析 由题意知,正数a ,b 满足a +b =1, 则4a +1b =⎝⎛⎭⎫4a +1b (a +b ) =4+1+4b a +ab≥5+24b a ·ab=9, 当且仅当4b a =a b ,即a =23,b =13时等号成立,所以4a +1b的最小值为9,故选D.4.若a >0,b >0,lg a +lg b =lg(a +b ),则a +b 的最小值为( ) A .8B .6C .4D .2答案 C解析 由lg a +lg b =lg(a +b ),得lg(ab )=lg(a +b ),即ab =a +b ,则有1a +1b =1,所以a +b=⎝⎛⎭⎫1a +1b (a +b )=2+b a +ab ≥2+2b a ·ab=4,当且仅当a =b =2时等号成立,所以a +b 的最小值为4,故选C.5.已知函数f (x )=e x 在点(0,f (0))处的切线为l ,动点(a ,b )在直线l 上,则2a +2-b的最小值是( ) A .4 B .2 C .2 2 D. 2答案 D解析 由题意得f ′(x )=e x ,f (0)=e 0=1,k =f ′(0)=e 0=1.所以切线方程为y -1=x -0,即x -y +1=0,∴a -b +1=0,∴a -b =-1,∴2a +2-b ≥22a ·2-b =22a -b =22-1= 2⎝⎛⎭⎫当且仅当a =-12,b =12时取等号,故选D.6.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b2≥ab (a >0,b >0)B .a 2+b 2≥2ab (a >0,b >0) C.2ab a +b ≤ab (a >0,b >0) D.a +b 2≤a 2+b 22(a >0,b >0) 答案 D解析 由AC =a ,BC =b ,可得圆O 的半径r =a +b2,又OC =OB -BC =a +b 2-b =a -b2,则FC 2=OC 2+OF 2=(a -b )24+(a +b )24=a 2+b 22,再根据题图知FO ≤FC ,即a +b 2≤ a 2+b 22,当且仅当a =b 时取等号.故选D. 7.设x ,y 均为正数,且xy +x -y -10=0,则x +y 的最小值是________.答案 6解析 由xy +x -y -10=0,得x =y +10y +1=9y +1+1, ∴x +y =9y +1+1+y ≥29y +1·(1+y )=6, 当且仅当9y +1=1+y ,即y =2时,等号成立. 8.(2019·吉林梅河口二中模拟)设正项等比数列{a n }的前n 项和为S n ,若S 7-S 5=3(a 4+a 5),则4a 3+9a 7的最小值为________. 答案 4解析 设正项等比数列{a n }的公比为q (q >0),∵S 7-S 5=a 7+a 6=3(a 4+a 5),∴a 7+a 6a 5+a 4=q 2=3. ∴4a 3+9a 7=4a 3+9a 3q 4=4a 3+1a 3≥24a 3·1a 3=4, 当且仅当4a 3=1a 3,即a 3=12时等号成立. ∴4a 3+9a 7的最小值为4. 9.(2018·肇庆模拟)已知△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,且△ABC 的面积为334,则a 的最小值为________. 答案 3解析 由题意得b 2+c 2-a 2=bc ,∴2bc cos A =bc ,∴cos A =12,∴A =π3. ∵△ABC 的面积为334, ∴12bc sin A =343,∴bc =3. ∵a 2=b 2+c 2-bc ,∴a 2≥2bc -bc =bc =3(当且仅当b =c 时,等号成立),∴a ≥ 3.10.已知a ,b 为正实数,且(a -b )2=4(ab )3,则1a +1b的最小值为________. 答案 2 2解析 由题意得(a -b )2=(a +b )2-4ab ,代入已知得(a +b )2=4(ab )3+4ab ,两边同除以(ab )2得⎝⎛⎭⎫a +b ab 2=4(ab )3a 2b 2+4ab a 2b 2 =4⎝⎛⎭⎫ab +1ab ≥4·2ab ·1ab=8, 当且仅当ab =1时取等号.所以1a +1b≥22, 即1a +1b的最小值为2 2. 11.已知x >0,y >0,且2x +5y =20.(1)求u =lg x +lg y 的最大值; (2)求1x +1y的最小值. 解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧ 2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2, 此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝⎛⎭⎫1x +1y ·2x +5y 20=120⎝⎛⎭⎫7+5y x +2x y ≥120⎝⎛⎭⎫7+25y x ·2x y =7+21020,当且仅当5y x =2x y时,等号成立. 由⎩⎪⎨⎪⎧ 2x +5y =20,5y x =2x y ,解得⎩⎪⎨⎪⎧ x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020. 12.某人准备在一块占地面积为1 800平方米的矩形地块中间建三个矩形温室大棚,大棚周围均是宽为1米的小路(如图所示),大棚占地面积为S 平方米,其中a ∶b =1∶2.(1)试用x ,y 表示S ;(2)若要使S 的值最大,则x ,y 的值各为多少?解 (1)由题意可得xy =1 800,b =2a ,则y =a +b +3=3a +3,所以S =(x -2)a +(x -3)b =(3x -8)a=(3x -8)y -33=1 808-3x -83y (x >3,y >3). (2)方法一 S =1 808-3x -83×1 800x=1 808-⎝⎛⎭⎫3x +4 800x ≤1 808-23x ×4 800x=1 808-240=1 568,当且仅当3x =4 800x, 即x =40时等号成立,S 取得最大值,此时y =1 800x=45, 所以当x =40,y =45时,S 取得最大值.方法二 设S =f (x )=1 808-⎝⎛⎭⎫3x +4 800x (x >3), 则f ′(x )=4 800x 2-3=3(40-x )(40+x )x 2, 令f ′(x )=0,则x =40,当0<x <40时,f ′(x )>0;当x >40时,f ′(x )<0.所以当x =40时,S 取得最大值,此时y =45.13.(2018·郑州模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2a -c b =cos C cos B,b =4,则△ABC 面积的最大值为( )A .4 3B .2 3C .3 3 D. 3答案 A解析 ∵2a -c b =cos C cos B, ∴(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C ,∴2sin A cos B =sin C cos B +sin B cos C=sin(B +C )=sin A .又sin A ≠0,∴cos B =12. ∵0<B <π,∴B =π3. 由余弦定理得b 2=16=a 2+c 2-2ac cos π3=a 2+c 2-ac ≥2ac -ac =ac ,∴ac ≤16,当且仅当a =c 时等号成立.∴S △ABC =12ac sin π3≤12×16×32=4 3. 故△ABC 面积的最大值为4 3.故选A.14.如图,在△ABC 中,点D ,E 是线段BC 上两个动点,且AD →+AE → =xAB →+yAC →,则1x +4y 的最小值为( )A .32B .2C .52D .92答案 D解析 设AD →=mAB →+nAC →,AE →=λAB →+μAC →,∵B ,D ,E ,C 共线,∴m +n =1,λ+μ=1,∵AD →+AE →=xAB →+yAC →=()m +λAB →+()n +μAC →,则x +y =m +n +λ+μ=2,∴1x +4y =12⎝⎛⎭⎫1x +4y ()x +y =12⎝⎛⎭⎫5+y x +4x y ≥12⎝⎛⎭⎫5+2y x ·4x y =92,当且仅当x =23,y =43时,等号成立. 故1x +4y 的最小值为92,故选D.15.设S n 为数列{a n }的前n 项和,已知a 1=2,对任意p ,q ∈N *,都有a p +q =a p ·a q ,则f (n )=S n -1·(S n -1+2)+256a n的最小值为_______. 答案 30解析 当q =1时,a p +1=a p ·a 1=2a p ,∴数列{a n }是首项为2,公比为2的等比数列,∴a n =2n ,S n =2(2n -1)2-1=2n +1-2, ∴S n -1=2n -2,S n -1·(S n -1+2)=(2n -2)·2n ,∴f (n )=(2n -2)2n +2562n =2n -2+2562n ≥2256-2=30,当且仅当2n =16,即n =4时,等号成立,f (n )min =30.16.已知正三棱柱ABC -A 1B 1C 1,侧面BCC 1B 1的面积为46, 求该正三棱柱外接球表面积的最小值.解 设BC =a ,CC 1=b ,则ab =46,底面三角形外接圆的半径为r ,则a sin 60°=2r ,∴r =33a . 所以R 2=⎝⎛⎭⎫b 22+⎝⎛⎭⎫33a 2=b 24+a 23≥2 b 24·a 23=29612=42, 当且仅当a =32b 时,等号成立. 所以该正三棱柱外接球表面积的最小值为4π×42=162π.。
7.3基本不等式及不等式的应用挖命题【考情探究】分析解读本节主要考查利用基本不等式求最值、证明不等式、求参数的取值范围等,常与函数结合命题,解题时要注意应用基本不等式的三个前提条件.考查学生的数学运算能力、逻辑推理能力.本节在高考中主要以选择题或填空题的形式进行考查,分值5分.破考点【考点集训】考点基本不等式及其应用1.(2018山西第一次模拟,5)若P为圆x2+y2=1上的一个动点,且A(-1,0),B(1,0),则|PA|+|PB|的最大值为()A.2B.2C.4D.4答案B2.(2018山东高三天成第二次联考,7)若a>0,b>0且2a+b=4,则的最小值为()A.2B.C.4D.答案B3.(2017河南平顶山一模,6)若对于任意的x>0,不等式≤a恒成立,则实数a的取值范围为()A.a≥B.a>C.a<D.a≤答案A4.(2017安徽六安中学月考,14)某种汽车购车时的费用为10万元,每年保险、养路费、汽油费共1.5万元,如果汽车的维修费第1年0.1万元,从第2年起,每年比上一年多0.2万元,这种汽车最多使用年报废最合算(即平均每年费用最少).答案10炼技法【方法集训】方法利用基本不等式求最值的方法1.下列结论正确的是()A.当x>0且x≠1时,lg x+≥2B.当x∈时,sin x+的最小值为4C.当x>0时,+≥2D.当0<x≤2时,x-无最大值答案C2.(2018江西吉安一中、九江一中等八所重点中学4月联考,5)已知正项等比数列{a n}的公比为3,若a m a n=9,则+的最小值等于()A.1B.C.D.答案C3.(2018福建厦门外国语中学模拟,10)已知实数a>0,b>0,+=1,则a+2b的最小值是()A.3B.2C.3D.2答案B过专题【五年高考】自主命题·省(区、市)卷题组考点一基本不等式1.(2015陕西,9,5分)设f(x)=ln x,0<a<b,若p=f(),q=f,r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<pB.q=r>pC.p=r<qD.p=r>q答案C2.(2018天津,13,5分)已知a,b∈R,且a-3b+6=0,则2a+的最小值为.答案3.(2017天津,12,5分)若a,b∈R,ab>0,则的最小值为.答案44.(2017江苏,10,5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是. 答案30考点二不等式的综合应用(2017天津,8,5分)已知函数f(x)=-设a∈R,若关于x的不等式f(x)≥在R上恒成立,则a的取值范围是()A.-B.-C.[-2,2]D.-答案A教师专用题组1.(2014辽宁,12,5分)当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是()A.[-5,-3]B.--C.[-6,-2]D.[-4,-3]答案C2.(2016江苏,14,5分)在锐角三角形ABC中,若sin A=2sin Bsin C,则tan Atan Btan C的最小值是.答案83.(2014上海,5,4分)若实数x,y满足xy=1,则x2+2y2的最小值为.答案24.(2014湖北,16,5分)某项研究表明:在考虑行车安全的情况下,某路段车流量F(单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v(假设车辆以相同速度v行驶,单位:米/秒)、平均车长l(单位:米)的值有关,其公式为F=.(1)如果不限定车型,l=6.05,则最大车流量为辆/小时;(2)如果限定车型,l=5,则最大车流量比(1)中的最大车流量增加辆/小时.答案(1)1900(2)100【三年模拟】一、选择题(每小题5分,共25分)1.(2019届广东汕头达濠华侨中学、东厦中学第三次联考,10)已知点A,B是函数y=2x图象上的相异两点,若点A,B到直线y=的距离相等,则点A,B的横坐标之和的取值范围是()A.(-∞,-1)B.(-∞,-2)C.(-1,+∞)D.(-2,+∞)答案B2.(2019届广东化州高三一模,10)若正数x,y满足x+3y=5xy,当3x+4y取得最小值时,x+2y的值为()A. B.2 C. D.5答案B3.(2019届福建福州高三期中,7)已知一次函数y=2x+1的图象过点P(a,b)(其中a>0,b>0),则的最小值是()A.1B.8C.9D.16答案B4.(2018江西师范大学附属中学4月月考,11)若向量m=(a-1,2),n=(4,b),且m⊥n,a>0,b>0,则lo a+log3有()A.最大值log3B.最小值log32C.最大值-loD.最小值0答案B5.(2018山西太原一模,12)定义在R上的函数f(x)满足f(-x)=f(x),且当x≥0时,f(x)=--若对任意的x∈[m,m+1],不等式f(1-x)≤f(x+m)恒成立,则实数m的最大值是()A.-1B.-C.-D.答案C二、填空题(每小题5分,共30分)6.(2019届安徽黄山八校联考,16)不等式(acos2x-3)sin x≥-3对任意x∈R恒成立,则实数a的取值范围是.答案-7.(2019届福建三明第一中学期中,16)设a+2b=4,b>0,则+的最小值为.答案8.(2018河南洛阳一模,13)若实数a,b满足+=,则ab的最小值为.答案29.(2018河南中原名校3月联考,14)已知直线ax-2by=2(a>0,b>0)过圆x2+y2-4x+2y+1=0的圆心,则+的最小值为.答案10.(2018河南八校第一次测评,15)已知等差数列{a n}中,a3=7,a9=19,S n为数列{a n}的前n项和,则的最小值为.答案311.(2018天津十二所重点中学毕业班联考,13)已知a,b∈R,且a是2-b与-3b的等差中项,则的最大值为.答案。
第2节 基本不等式及其应用最新考纲 1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题.知 识 梳 理1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b a ,b 的几何平均数.2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号.3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).[微点提醒]1.b a +a b≥2(a ,b 同号),当且仅当a =b 时取等号.2.ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22. 3.21a +1b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0).基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.( )(2)函数y =x +1x的最小值是2.( )(3)函数f (x )=sin x +4sin x 的最小值为4.( )(4)x >0且y >0是x y +y x≥2的充要条件.( ) 解析 (1)不等式a 2+b 2≥2ab 成立的条件是a ,b ∈R ; 不等式a +b2≥ab 成立的条件是a ≥0,b ≥0.(2)函数y =x +1x的值域是(-∞,-2]∪[2,+∞),没有最小值.(3)函数f (x )=sin x +4sin x 没有最小值.(4)x >0且y >0是x y +y x≥2的充分不必要条件. 答案 (1)× (2)× (3)× (4)×2.(必修5P92练习1T1改编)若x >0,y >0,且x +y =18,则xy 的最大值为( ) A.9B.18C.36D.81解析 因为x +y =18,所以xy ≤x +y2=9,当且仅当x =y =9时,等号成立.答案 A3.(必修5P91例3改编)若x <0,则x +1x( )A.有最小值,且最小值为2B.有最大值,且最大值为2C.有最小值,且最小值为-2D.有最大值,且最大值为-2解析 因为x <0,所以-x >0,-x +1-x ≥21=2,当且仅当x =-1时,等号成立,所以x+1x≤-2.答案 D4.(2019·合肥一中月考)已知f (x )=x 2-2x +1x ,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( )A.12B.43C.-1D.0解析 f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x,即x =1时取等号.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为0.答案 D5.(2018·济宁一中月考)一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长18 m ,则这个矩形的长为________m ,宽为________m 时菜园面积最大. 解析 设矩形的长为x m ,宽为y m.则x +2y =30, 所以S =xy =12x ·(2y )≤12⎝ ⎛⎭⎪⎫x +2y 22=2252,当且仅当x =2y ,即x =15,y =152时取等号.答案 151526.(2018·天津卷)已知a ,b ∈R ,且a -3b +6=0,则2a+18b 的最小值为________.解析 由题设知a -3b =-6,又2a>0,8b>0,所以2a+18b ≥22a·18b =2·2a -3b2=14,当且仅当2a =18b ,即a =-3,b =1时取等号.故2a+18b 的最小值为14.答案 14考点一 利用基本不等式求最值 多维探究角度1 通过配凑法求最值【例1-1】 (2019·乐山一中月考)设0<x <32,则函数y =4x (3-2x )的最大值为________.解析 y =4x (3-2x )=2[2x (3-2x )]≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92, 当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈⎝ ⎛⎭⎪⎫0,32,∴函数y =4x (3-2x )⎝ ⎛⎭⎪⎫0<x <32的最大值为92. 答案 92角度2 通过常数代换法求最值【例1-2】若直线x a +y b=1(a >0,b >0)过点(1,2),则2a +b 的最小值为________. 解析 由题设可得1a +2b=1,∵a >0,b >0,∴2a +b =(2a +b )⎝ ⎛⎭⎪⎫1a +2b=2+b a +4a b+2≥4+2b a ·4a b=8 ⎝ ⎛⎭⎪⎫当且仅当b a =4a b ,即b =2a 时,等号成立. 故2a +b 的最小值为8. 答案 8规律方法 在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,主要有两种思路:(1)对条件使用基本不等式,建立所求目标函数的不等式求解.常用的方法有:折项法、变系数法、凑因子法、换元法、整体代换法等. (2)条件变形,进行“1”的代换求目标函数最值.【训练1】 (1)(2019·济南联考)若a >0,b >0且2a +b =4,则1ab的最小值为( )A.2B.12C.4D.14(2)已知x <54,则f (x )=4x -2+14x -5的最大值为______.解析 (1)因为a >0,b >0,故2a +b ≥22ab (当且仅当2a =b 时取等号). 又因为2a +b =4, ∴22ab ≤4⇒0<ab ≤2,∴1ab ≥12,故1ab 的最小值为12(当且仅当a =1,b =2时等号成立). (2)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-⎝ ⎛⎭⎪⎫5-4x +15-4x +3 ≤-2(5-4x )·15-4x+3=-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.答案 (1)B (2)1考点二 基本不等式在实际问题中的应用【例2】 运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 解 (1)设所用时间为t =130x(h),y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100](或y =2 340x +1318x ,x ∈[50,100]).(2)y =130×18x +2×130360x ≥2610,当且仅当130×18x =2×130360x ,即x =1810时等号成立.故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元. 规律方法 1.设变量时一般要把求最大值或最小值的变量定义为函数. 2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. 3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解. 【训练2】 网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2019年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x 万件与投入实体店体验安装的费用t 万元之间满足函数关系式x =3-2t +1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和, 则该公司最大月利润是________万元. 解析 由题意知t =23-x -1(1<x <3),设该公司的月利润为y 万元,则y =⎝⎛⎭⎪⎫48+t 2x x -32x -3-t =16x -t 2-3=16x -13-x +12-3=45.5-⎣⎢⎡⎦⎥⎤16(3-x )+13-x ≤45.5-216=37.5,当且仅当x =114时取等号,即最大月利润为37.5万元.答案 37.5考点三 基本不等式的综合应用【例3】 (1)(2019·河南八校测评)已知等差数列{a n }中,a 3=7,a 9=19,S n 为数列{a n }的前n 项和,则S n +10a n +1的最小值为________. (2)(一题多解)(2018·江苏卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________. 解析 (1)∵a 3=7,a 9=19, ∴d =a 9-a 39-3=19-76=2,∴a n =a 3+(n -3)d =7+2(n -3)=2n +1, ∴S n =n (3+2n +1)2=n (n +2),因此S n +10a n +1=n (n +2)+102n +2=12⎣⎢⎡⎦⎥⎤(n +1)+9n +1≥12×2(n +1)·9n +1=3, 当且仅当n =2时取等号.故S n +10a n +1的最小值为3. (2)法一 依题意画出图形,如图所示.易知S △ABD +S △BCD =S △ABC ,即12c sin 60°+12a sin 60°=12ac sin 120°, ∴a +c =ac ,∴1a +1c=1,∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c≥9,当且仅当c a =4a c ,即a =32,c =3时取“=”. 法二 以B 为原点,BD 所在直线为x 轴建立如图所示的平面直角坐标系,则D (1,0),∵AB =c ,BC =a , ∴A ⎝ ⎛⎭⎪⎫c 2,32c ,C ⎝ ⎛⎭⎪⎫a2,-32a .∵A ,D ,C 三点共线,∴AD →∥DC →. ∴⎝ ⎛⎭⎪⎫1-c 2⎝ ⎛⎭⎪⎫-32a +32c ⎝ ⎛⎭⎪⎫a 2-1=0,∴ac =a +c ,∴1a +1c=1,∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c=5+c a +4a c≥9,当且仅当c a =4a c , 即a =32,c =3时取“=”. 答案 (1)3 (2)9规律方法 基本不等式的应用非常广泛,它可以和数学的其他知识交汇考查,解决这类问题的策略是:1.先根据所交汇的知识进行变形,通过换元、配凑、巧换“1”等手段把最值问题转化为用基本不等式求解,这是难点.2.要有利用基本不等式求最值的意识,善于把条件转化为能利用基本不等式的形式.3.检验等号是否成立,完成后续问题.【训练3】 (1)(2019·厦门模拟)已知f (x )=32x-(k +1)3x+2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( ) A.(-∞,-1)B.(-∞,22-1)C.(-1,22-1)D.(-22-1,22-1)(2)在各项都为正数的等比数列{a n }中,若a 2 018=22,则1a 2 017+2a 2 019的最小值为________. 解析 (1)由f (x )>0得32x -(k +1)3x +2>0,解得k +1<3x+23x .又3x +23x ≥22(当且仅当3x=23x ,即x =log 3 2时,等号成立).所以k +1<22,即k <22-1.(2)∵{a n }为等比数列,∴a 2 017·a 2 019=a 22 018=12.∴1a 2 017+2a 2 019≥22a 2 017·a 2 019=24=4.当且仅当1a 2 017=2a 2 019,即a 2 019=2a 2 017时,取得等号.∴1a 2 017+2a 2 019的最小值为4.答案 (1)B (2)4[思维升华]1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.2.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,同时还要注意不等式成立的条件和等号成立的条件.3.对使用基本不等式时等号取不到的情况,可考虑使用函数y =x +mx(m >0)的单调性. [易错防范]1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.连续使用基本不等式求最值要求每次等号成立的条件一致.基础巩固题组 (建议用时:35分钟)一、选择题1.(2019·孝感调研)“a >b >0”是“ab <a 2+b 22”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析 由a >b >0,可知a 2+b 2>2ab ,充分性成立,由ab <a 2+b 22,可知a ≠b ,a ,b ∈R ,故必要性不成立. 答案 A2.下列结论正确的是( ) A.当x >0且x ≠1,lg x +1lg x ≥2B.1x 2+1<1(x ∈R )C.当x >0时,x +1x ≥2D.当0<x ≤2时,x -1x无最大值解析 对于A ,当0<x <1时,lg x <0,不等式不成立; 对于B ,当x =0时,有1x 2+1=1,不等式不成立; 对于C ,当x >0时,x +1x≥2x ·1x=2,当且仅当x =1时等号成立;对于D ,当0<x ≤2时,y =x -1x 单调递增,所以当x =2时,取得最大值,最大值为32.答案 C3.(2018·绵阳诊断)已知x >1,y >1,且lg x ,2,lg y 成等差数列,则x +y 有( ) A.最小值20 B.最小值200 C.最大值20 D.最大值200解析 由题意得2×2=lg x +lg y =lg (xy ),所以xy =10 000,则x +y ≥2xy =200,当且仅当x =y =100时,等号成立,所以x +y 有最小值200. 答案 B4.设a >0,若关于x 的不等式x +ax -1≥5在(1,+∞)上恒成立,则a 的最小值为( )A.16B.9C.4D.2解析 在(1,+∞)上,x +a x -1=(x -1)+ax -1+1 ≥2(x -1)×a(x -1)+1=2a +1(当且仅当x =1+a 时取等号).由题意知2a +1≥5.所以a ≥4. 答案 C5.(2019·九江模拟)若P 为圆x 2+y 2=1上的一个动点,且A (-1,0),B (1,0),则|PA |+|PB |的最大值为( ) A.2B.2 2C.4D.4 2解析 由题意知∠APB =90°,∴|PA |2+|PB |2=4,∴⎝ ⎛⎭⎪⎫|PA |+|PB |22≤|PA |2+|PB |22=2(当且仅当|PA |=|PB |时取等号), ∴|PA |+|PB |≤22,∴|PA |+|PB |的最大值为2 2.答案 B6.某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A.60件 B.80件 C.100件D.120件解析 设每批生产产品x 件,则每件产品的生产准备费用是800x 元,仓储费用是x8元,总的费用是⎝⎛⎭⎪⎫800x +x 8元,由基本不等式得800x +x 8≥2800x +x 8=20,当且仅当800x =x8,即x =80时取等号. 答案 B7.若实数a ,b 满足1a +2b=ab ,则ab 的最小值为( )A. 2B.2C.2 2D.4解析 依题意知a >0,b >0,则1a +2b ≥22ab=22ab,当且仅当1a =2b,即b =2a 时,“=”成立.因为1a +2b=ab ,所以ab ≥22ab,即ab ≥22(当且仅当a =214,b =254时等号成立), 所以ab 的最小值为2 2. 答案 C8.(2019·衡水中学质检)正数a ,b 满足1a +9b=1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是( ) A.[3,+∞) B.(-∞,3] C.(-∞,6]D.[6,+∞)解析 因为a >0,b >0,1a +9b=1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+b a +9a b≥16,当且仅当b a =9a b,即a =4,b =12时取等号. 依题意,16≥-x 2+4x +18-m ,即x 2-4x -2≥-m 对任意实数x 恒成立.又x 2-4x -2=(x -2)2-6,所以x 2-4x -2的最小值为-6,所以-6≥-m ,即m ≥6.答案 D二、填空题9.正数a ,b 满足ab =a +b +3,则ab 的取值范围是________.解析 ∵a ,b 是正数,∴ab =a +b +3≥2ab +3(当且仅当a =b =3时等号成立),解得ab ≥3,即ab ≥9.答案 [9,+∞)10.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N +),则每台机器为该公司创造的年平均利润的最大值是________万元. 解析 每台机器运转x 年的年平均利润为y x =18-⎝ ⎛⎭⎪⎫x +25x ,而x >0,故y x≤18-225=8,当且仅当x =5时等号成立,此时每台机器为该公司创造的年平均利润最大,最大值为8万元. 答案 811.(2019·合肥调研)设x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x +1,y ≥2x -1,x ≥0,y ≥0,若目标函数z =abx +y (a >0,b >0)的最大值为35,则a +b 的最小值为________.解析 可行域如图所示,当直线abx +y =z (a >0,b >0)过点B (2,3)时,z 取最大值2ab +3.于是有2ab +3=35,ab =16.所以a +b ≥2ab =8,当且仅当a =b =4时等号成立,所以(a +b )min =8.答案 812.已知直线mx +ny -2=0经过函数g (x )=log a x +1(a >0且a ≠1)的定点,其中mn >0,则1m +1n的最小值为________. 解析 因为函数g (x )=log a x +1(a >0且a ≠1)的定点(1,1)在直线mx +ny -2=0上, 所以m +n -2=0,即m 2+n 2=1. 所以1m +1n =⎝ ⎛⎭⎪⎫1m +1n ⎝ ⎛⎭⎪⎫m 2+n 2=1+n 2m +m 2n ≥1+2n 2m ·m 2n=2, 当且仅当n 2m =m 2n ,即m =n =1时取等号, 所以1m +1n的最小值为2. 答案 2能力提升题组(建议用时:15分钟)13.(2018·江西师范大学附属中学月考)若向量m =(a -1,2),n =(4,b ),且m ⊥n ,a >0,b >0,则log 13a +log 3 1b 有( ) A.最大值log 3 12B.最小值log 32C.最大值log 13 12D.最小值0 解析 由m ⊥n ,得m ·n =0,即4(a -1)+2b =0,∴2a +b =2,∴2≥22ab ,∴ab ≤12(当且仅当2a =b 时,等号成立). 又log 13 a +log 3 1b =log 13 a +log 13 b =log 13 ab ≥log 13 12=log 3 2, 故log 13 a +log 3 1b有最小值为log 3 2.答案 B14.(2019·湖南师大附中模拟)已知△ABC 的面积为1,内切圆半径也为1,若△ABC 的三边长分别为a ,b ,c ,则4a +b +a +b c 的最小值为( ) A.2 B.2+ 2 C.4 D.2+2 2解析 因为△ABC 的面积为1,内切圆半径也为1,所以12(a +b +c )×1=1,所以a +b +c =2,所以4a +b +a +b c =2(a +b +c )a +b +a +b c =2+2c a +b +a +b c≥2+22, 当且仅当a +b =2c ,即c =22-2时,等号成立,所以4a +b +a +b c的最小值为2+2 2. 答案 D15.若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________. 解析 ∵a ,b ∈R ,ab >0,∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab =4, 当且仅当⎩⎪⎨⎪⎧a 2=2b 2,4ab =1ab ,即⎩⎪⎨⎪⎧a 2=22,b 2=24时取得等号. 答案 416.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N +,f (x )≥3恒成立,则a 的取值范围是________.解析 对任意x ∈N +,f (x )≥3,即x 2+ax +11x +1 ≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3. 设g (x )=x +8x ,x ∈N *,则g (x )=x +8x≥42, 当x =22时等号成立,又g (2)=6,g (3)=173, ∵g (2)>g (3),∴g (x )min =173.∴-⎝ ⎛⎭⎪⎫x +8x +3≤-83, ∴a ≥-83,故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞. 答案 ⎣⎢⎡⎭⎪⎫-83,+∞。