207-2【小节测试】一次函数图象性质
- 格式:doc
- 大小:861.83 KB
- 文档页数:12
完整版)一次函数图像与性质练习题授课目的与考点分析:本文主要介绍了一次函数图像与系数的关系,包括直线的平移和位置关系,以及k、b对图像和性质的影响等内容。
文章还提供了一些例题,帮助读者更好地理解和掌握相关知识点。
一、一次函数图像与系数的关系1.函数y=kx+b(k、b为常数,且k≠0)的图像是一条直线:当b>0时,直线y=kx+b是由直线y=kx向上平移b个单位长度得到的;当b<0时,直线y=kx+b是由直线y=kx向下平移|b|个单位长度得到的。
2.一次函数y=kx+b(k、b为常数,且k≠0)的图像与性质:正比例函数的图像是经过原点(0,0)和点(1,k)的一条直线;一次函数y=kx+b(k≠0)图像和性质如下:3.k、b对一次函数y=kx+b的图像和性质的影响:k决定直线y=kx+b从左向右的趋势,b决定它与y轴交点的位置,k、b一起决定直线y=kx+b经过的象限。
4.两条直线l1:y=k1x+b1和l2:y=k2x+b2的位置关系可由其系数确定:1)k1≠k2,即斜率不相等,l1与l2相交;2)k1=k2,且b1≠b2,即斜率相等但截距不等,l1与l2平行;例题:1.若b<0,则直线y=kx+b一定通过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限2.若直线y=kx+b(k≠0)不经过第一象限,则k、b的取值范围是()A.k>0,b0,b≤0 XXX<0,b<0 D.k<0,b≤03.已知直线y=kx+b,若k+b=-5,kb=6,那么该直线不经过第象限。
4.若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图像可能是()A. B. C. D.5.已知点(k,b)为第四象限内的点,则一次函数y=kx+b的图像大致是()A. B. C. D.6.如果函数y=3x+m的图像一定经过第二象限,那么m的取值范围是()A.m>0 B.m≥0 C.m<0 D.m≤07.一次函数y=kx+k(k<0)的图像大致是()A. B. C. D.8.函数y=kx+k(k≠0)在直角坐标系中的图像可能是().已知一次函数y=−mx+n−2的图象如下图所示,则m、n的取值范围是()。
一次函数的图象和性质重点:1.掌握正比例函数与一次函数的图象及其性质: ①正比例函数的定义:解析式形如y=kx(k ≠0)的函数称为正比例函数,其中k 称为斜率。
②正比例函数的图象及性质: (1)图象是一条过(0,0)、(a ,ak )点的直线(2)k>0时,图象位于一、三象限,y 随x 的增大而增大 k<0时,图象位于二、四象限,y 随x 的增大而减小。
③一次函数的定义:解析式形如:y=kx+b(k ≠0)的函数,称为一次函数,b 称为截距 特殊的,当b=0时,为正比例函数。
④一次函数的图象及性质。
(1)图象是一条过(0,b ))0(,k b -的一条直线,与y 轴的交点为(0,b )(2)k>0时,y 随x 的增大而增大 b>0时,图象位于一、二、三象限, b<0时,图象位于一、三、四象限 k<0时,y 随x 的增大而减小b>0时,图象位于一、二、四象限 b<0时,图象位于二、三、四象限2.会求正比例函数及一次函数解析式。
难点:正确认识函数解析式与图象之间的关系,由图象得性质,并利用图象求解析式。
【讲一讲】例1:判别下列函数图象过哪几个象限? (1)y=-3x -2(2)y=ax+b (a>0)(3)y=(cos α-1)x+sin α(α为锐角)分析:找到给出函数解析式中的k 与b 值。
就可以讨论它所在的象限了. 解:(1)∵k=-3<0, b=-2<0 ∴(1)图象过二、三、四象限 (2)∵a>0∴当b>0时,过一、二、三象限 当b=0时,一、三象限当b<0时,过一、三、四象限(3)∵α为锐角∴1>cos α>0,∴1>sin α>0, ∴cos α-1<0,sin α>0∴(3)图象过一、二、四象限例2:已知:正比例函数y=kx(k ≠0)的图象过一、三象限,且过点(1,-2m )和(m ,-3)。
考点三一次函数的图像与性质知识点整合一、正比例函数的概念一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做正比例系数.二、一次函数1.一次函数的定义一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数.特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时,y叫做x的正比例函数.2.一次函数的一般形式一次函数的一般形式为y=kx+b,其中k,b为常数,k≠0.一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数.3.注意(1)正比例函数是一次函数,但一次函数不一定是正比例函数.(2)一般情况下,一次函数的自变量的取值范围是全体实数.(3)如果一个函数是一次函数,则含有自变量x的式子是一次的,系数k不等于0,而b可以为任意实数.(4)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.(5)一次函数的一般形式可以转化为含x、y的二元一次方程.三、一次函数的图象及性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线.k的符号函数图象图象的位置性质k>0图象经过第一、三象限y随x的增大而增大k<0图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象一次函数y=kx+b(k≠0)的图象是经过点(0,b)和(-b k,0)的一条直线图象关系一次函数y=kx+b(k≠0)的图象可由正比例函数y=kx(k≠0)的图象平移得到;b>0,向上平移b个单位长度;b<0,向下平移|b|个单位长度图象确定因为一次函数的图象是一条直线,由两点确定一条直线可知画一次函数图象时,只要取两点即可(2)一次函数的性质函数字母取值图象经过的象限函数性质y=kx+b(k≠0)k>0,b>0一、二、三y随x的增大而增大k>0,b<0一、三、四y=kx+b(k≠0)k<0,b>0一、二、四y随x的增大而减小k<0,b<0二、三、四3.k,b的符号与直线y=kx+b(k≠0)的关系在直线y=kx+b(k≠0)中,令y=0,则x=-bk,即直线y=kx+b与x轴交于(–bk,0).①当–bk>0时,即k,b异号时,直线与x轴交于正半轴.②当–bk=0,即b=0时,直线经过原点.③当–bk<0,即k,b同号时,直线与x轴交于负半轴.4.两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2,b1≠b2,两直线平行;②当k1=k2,b1=b2,两直线重合;③当k1≠k2,b1=b2,两直线交于y轴上一点;④当k1·k2=–1时,两直线垂直.四、待定系数法1.定义:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法.2.待定系数法求正比例函数解析式的一般步骤(1)设含有待定系数的函数解析式为y=kx(k≠0).(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程.(3)解方程,求出待定系数k.(4)将求得的待定系数k的值代入解析式.3.待定系数法求一次函数解析式的一般步骤(1)设出含有待定系数k、b的函数解析式y=kx+b.(2)把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.(3)解二元一次方程组,求出k,b.(4)将求得的k,b的值代入解析式.五、一次函数与正比例函数的区别与联系正比例函数一次函数区别一般形式y=kx+b(k是常数,且k≠0)y=kx+b(k,b是常数,且k≠0)图象经过原点的一条直线一条直线k,b符号的作用k的符号决定其增减性,同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k,b的符号共同决定直线经过的象限求解析式的条件只需要一对x,y的对应值或一个点的坐标需要两对x,y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样,都是过两点画直线,但画一次函数的图象需取两个不同的点,而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y 轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时,y的值随x值的增大而增大;b.当k<0时,y的值随x值的增大而减小.六、一次函数与方程(组)、不等式1.一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k,b为常数,且k≠0)的形式.从函数的角度来看,解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑,解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.2.一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a,b为常数,且a≠0)的形式.从函数的角度看,解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.3.一次函数与二元一次方程组一般地,二元一次方程mx+ny=p(m,n,p是常数,且m≠0,n≠0)都能写成y=ax+b(a,b为常数,且a≠0)的形式.因此,一个二元一次方程对应一个一次函数,又因为一个一次函数对应一条直线,所以一个二元一次方程也对应一条直线.进一步可知,一个二元一次方程对应两个一次函数,因而也对应两条直线.从数的角度看,解二元一次方程组相当于考虑自变量为何值时,两个函数的值相等,以及这两个函数值是何值;从形的角度看,解二元一次方程组相当于确定两条直线的交点坐标,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.考向一一次函数和正比例函数的定义1.正比例函数是特殊的一次函数.2.正比例函数解析式y=kx(k≠0)的结构特征:①k≠0;②x的次数是1.典例引领二、填空题变式拓展6.已知y 与1x +成正比,当1x =时,2y =.考向二一次函数的图象及性质1.通常画正比例函数y=kx(k≠0)的图象时只需取一点(1,k),然后过原点和这一点画直线.2.当k>0时,函数y=kx(k≠0)的图象从左向右,呈上升趋势;当k<0时,函数y=kx(k≠0)的图象从左向右,呈下降趋势.3.正比例函数y=kx中,|k|越大,直线y=kx越靠近y轴;|k|越小,直线y=kx越靠近x轴.4.一次函数图象的位置和函数值y的增减性完全由b和比例系数k的符号决定.典例引领【答案】A【分析】本题考查的是一次函数的性质.根据一次函数的性质以及图像上点的坐标特征对各选项进行逐一判断即可.【详解】解:A 、当0x =时,2y =,图象必经过点()0,2,故本选项符合题意;B 、∵10k =-<,20b =>,∴图象经过第一、二、四象限,故本选项不符合题意;C 、∵10k =-<,∴y 随x 的增大而减小,故本选项不符合题意;D 、∵y 随x 的增大而减小,当2x =-时,0y =,∴当2x >时,0y <,故本选项不符合题意;故选:A .4.若一次函数21y x =-+的图象经过点()13,y -,()24,y ,则1y 与2y 的大小关系()A .12y y <B .12y y >C .12y y ≤D .12y y ≥【答案】B【分析】本题主要考查了比较一次函数值的大小,根据函数解析式得到y 随x 增大而减小,据此可得答案.【详解】解:∵一次函数解析式为21y x =-+,20-<,∴y 随x 增大而减小,∵一次函数21y x =-+的图象经过点()13,y -,()24,y ,34-<,∴12y y >,故选:B .5.已知一次函数(2)=-+y k x k ,且y 随x 的增大而减小,则k 的取值范围是()A .2k >B .0k <C .2k <D .2k ≤【答案】C【分析】此题主要考查一次函数的性质,根据一次函数的增减性即在y kx b =+中,k >0时y 随x 的增大而增大;k <0时,y 随x 的增大而减小即可求解.【详解】依题意得20k -<,解得2k <故选C .变式拓展三、解答题9.已知一次函数(2)312y k x k =--+.(1)k 为何值时,函数图象经过点(0,9)?(2)若一次函数(2)312y k x k =--+的函数值y 随x 的增大而减小,求k 的取值范围.【答案】(1)1(2)2k <【分析】(1)将点(0,9)代入一次函数(2)312y k x k =--+,可得关于k 的一元一次方程,求解即可获得答案;(2)根据该函数的增减性,可得20k -<,求解即可获得答案.【详解】(1)解:将点(0,9)代入一次函数(2)312y k x k =--+,可得3129k -+=,解得1k =,∴当1k =时,函数图象经过点(0,9);(2)若一次函数(2)312y k x k =--+的函数值y 随x 的增大而减小,则有20k -<,解得2k <,∴k 的取值范围为2k <.【点睛】本题主要考查了求一次函数解析式、根据一次函数的增减性求参数、解一元一次方程和解一元一次不等式等知识,熟练掌握一次函数的图象与性质是解题关键.10.已知2y -与x 成正比,且当2x =-时,8y =.(1)求y 与x 的函数关系式;(2)当x 取什么范围时,4y >-.【答案】(1)32y x =-+(2)2x <【分析】本题考查待定系数法求解析式,一次函数图象及性质.(1)设y 与x 的函数关系式为2y kx -=,再待定系数法求解即可;(2)利用一次函数图象及性质,代入4y =-后即可得到本题答案.【详解】(1)解:设y 与x 的函数关系式为2y kx -=,将当2x =-时,8y =代入2y kx -=中得:822k -=-,即:3k =-,∴32y x =-+;(2)解:∵32y x =-+,∴30k =-<,y 随x 增大而减小,当4y =-时,432x -=-+,即:2x =,∴4y >-时,2x <,综上所述:当2x <时,4y >-.考向三用待定系数法确定一次函数的解析式运用待定系数法求一次函数解析式的步骤可简单记为:一设,二代,三解,四回代.典例引领1.《国务院关于印发全民健身计划(2021-2025年)的通知》文件提出,加大全民健身场地设施供给,建立健全场馆运营管理机制,提升场馆使用效益.某健身中心为答谢新老顾客,举行大型回馈活动,特推出两种“冬季唤醒计划”活动方案.方案1:顾客不购买会员卡,每次健身收费30元.方案2:顾客花200元购买会员卡,每张会员卡仅限本人使用一年,每次健身收费10元.设王彬一年内来此健身中心健身的次数为x (次),选择方案1的费用为1y (元),选择方案2的费用为2y (元).(1)分别写出1y ,2y 与x 之间的函数关系式;(2)在如图的平面直角坐标系中分别画出它们的函数图象;(3)预计王彬一年内能来此健身中心12次,选择哪种方案比较合算?并说明理由.【答案】(1)130y x =,210200y x =+(2)见解析(3)他选择方案二比较合算,理由见解析【分析】(1)本题主要考查了列函数关系式,根据两种方案分别列出函数关系式即可,理解题意是解题的关键;(2)本题主要考查了画函数图像,分别确定两个函数图像上的两个点,然后连接即可;理解函数图像上的点满足函数解析式是解题的关键;(2)本题主要考查了不等式的应用,解不等式3010200x x <+,即可确定来此健身中心12次费用较小的方案.正确求解不等式是解题的关键.【详解】(1)解:根据题意得:130y x =,210200y x =+;所以12y y ,与x 之间的函数表达式分别为130y x =,210200y x =+.(2)解:当0x =时,10y =,2200y =;当4x =时,1120y =,2240y =.据此描点、连线画出函数图像如下:(3)解:王斌择方案二比较合算,理由如下:解不等式3010200x x >+,解得:10x >,所以当10x >时,方案二优惠,因为1210>,王斌择方案二比较合算.2.已知4y +与3x -成正比例,且1x =时,0y =(1)求y 与x 的函数表达式;(2)点(1,2)M m m +在该函数图象上,求点M 的坐标.【答案】(1)22y x =-+(2)点M 的坐标为(1,0)【分析】(1)利用正比例函数的定义,设4y +=(3)k x -,然后把已知的对应值代入求出k 即可;(2)把(1,2)M m m +代入(1)中的解析式得到关于m 的方程,然后解方程即可.【详解】(1)设y 与x 的表达式为4(3)y k x +=-,把1x =时,0y =代入4(3)y k x +=-得24k -=,解得2k =-,由题意,得52024x x ≥⎧⎨-≥⎩,解这个不等式组,得58x ≤≤,因为x 为整数,所以x 的值为5,6,7,8.所以安排方案有4种:方案一:装运食品5辆、药品10辆,生活用品5辆;方案二:装运食品6辆、药品8辆,生活用品6辆;方案三:装运食品7辆、药品6辆,生活用品7辆;方案四:装运食品8辆、药品4辆,生活用品8辆.【点睛】本题考查了列出实际问题中的函数关系式和一元一次不等式组的应用,正确理解题意、列出函数关系式和不等式组是解题的关键.5.习主席在二十大报告中提到“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对甲、乙两个水稻品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩,收获后甲、乙两个品种的售价均为2.8元/千克,且甲的平均亩产量比乙的平均亩产量低100千克,甲、乙两个品种全部售出后总收入为644000元.(1)请求出甲、乙两个品种去年平均亩产量分别是多少;(2)今年,科技小组加大了水稻种植的科研力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加20x 千克和10x 千克.由于甲品种深受市场的欢迎,预计售价将在去年的基础上每千克上涨0.05x 元,而乙品种的售价将在去年的基础上每千克下降0.1x 元.若甲、乙两个品种全部售出后总收入为y 元,请写出y 与x 的关系式;若今年甲、乙两个品种全部售出后总收入比去年增加9500元,水x 的值.【答案】(1)甲水稻品种去年平均亩产量是1100千克,乙水稻品种去年平均亩产量是1200千克(2)x 的值为5【分析】(1)设甲水稻品种去年平均亩产量是m 千克,乙水稻品种去年平均亩产量是n 千克,根据:甲的平均亩产量比乙的平均亩产量低100千克,甲、乙两个品种全部售出后总收入为644000元,即可求解;(2)根据总收入等于甲乙两个品种的收入之和即可列出y 与x 的关系式,进而得到关于x 的方程,解方程即得答案.【详解】(1)设甲水稻品种去年平均亩产量是m 千克,乙水稻品种去年平均亩产量是n 千克,根据题意得1002.8100 2.8100644000n m m n -=⎧⎨⨯+⨯=⎩,解得m 11001200n =⎧⎨=⎩.答:甲水稻品种去年平均亩产量是1100千克,乙水稻品种去年平均亩产量是1200千克.(2)根据题意得:()()()()2.80.0510******* 2.80.1100120010y x x x x =+⨯++-⨯+,整理得1900644000y x =+,∴y 与x 的关系式1900644000y x =+.∵今年甲、乙两个品种全部售出后总收入比去年增加9500元,可得6440095001900644000x +=+,解得5x =.答:x 的值为5.【点睛】本题考查了二元一次方程组的应用,列出实际问题中的函数关系式,正确理解题意、找准相等关系是解题的关键.变式拓展c<时,如图2.②当0综上所述,d的取值范围是t≥时:当x t=时,①当0之间的关系如图所示.(1)求出图中a 、b 、c 的值;(2)在乙出发多少秒后,甲、乙两人相距60米?【答案】(1)8a =,92b =,123c =;(2)乙出发68秒或者108秒后,甲、乙两人相距60米.【分析】(1)由函数图象可以分别求出甲的速度为4米/秒,乙的速度为5米/秒,就可以求出乙追上甲的时间a 的值,b 表示甲跑完全程时甲、乙之间的距离,c 表示乙出发后多少时间,甲走完全程就用甲走完全程的时间−2就可以得出结论;(2)分别求出8秒到100秒和100秒到123秒的解析式,再把60y =代入即可解出x 值.【详解】(1)解:由题意及函数图象可以得出:甲的速度为:824÷=(米/秒),乙的速度为:500÷100=5(米/秒),8548a ÷-=()=(秒);500410292b -⨯==(米),50042123c ÷-==(秒),所以8,92,123a b c ===.(2)设8~100秒和100~123秒的解析式分别为11y k x b =+和22y k x b =+,把()()8010092,、,代入11y k x b =+得11110892100k b k b =+⎧⎨=+⎩解得1118k b =⎧⎨=-⎩,把()()123010092,、,代入22y k x b =+得2222012392100k b k b =+⎧⎨=+⎩解得224492k b =-⎧⎨=⎩,8~100秒解析式:8y x =-,100~123秒的解析式4492y x =-+,当60y =时,则68108x =或者,所以在乙出发68秒或者108秒后,甲、乙两人相距60米∵0<x ≤1000,∴860≤x ≤1000.故答案为:y 1=0.5x ;y 2=0.3x +40;0<x ≤200;200≤x ≤860;860≤x ≤1000.(2)根据题意可得,推出优惠活动后,y 1=0.5a +0.25(x ﹣a )=0.25x +0.25a ,则有,0.257000.250.3700400.258600.250.386040a a ⎧⨯+≥⨯+⎨⨯+≤⨯+⎩解得300≤a ≤332.∴此时a 的取值范围为:300≤a ≤332.【点睛】本题主要考查了一元一次不等式组的应用,明确题意,列出不等式组是解题的关键.考向四一次函数与方程、不等式1.方程ax +b =k (a ≠0)的解⇔函数y =ax +b (a ≠0)中,y =k 时x 的值.2.方程ax +b =k (a ≠0)的解⇔函数y =ax +b (a ≠0)的图象与直线y =k 的交点的横坐标.3.一次函数y =ax +b (a ≠0)与一元一次不等式ax +b >0(或ax +b <0)的关系:ax +b >0的解集⇔y =ax +b 中,y >0时x 的取值范围,即直线y =ax +b 在x 轴上方部分图象对应的x 的取值范围;4.ax +b <0的解集⇔y =ax +b 中,y <0时x 的取值范围,即直线y =ax +b 在x 轴下方部分图象对应的x 的取值范围.5.二元一次方程kx -y +b =0(k ≠0)的解与一次函数y =kx +b (k ≠0)的图象上的点的坐标是一一对应的.6.两个一次函数图象的交点坐标,就是相应二元一次方程组的解,体现了数形结合的思想方法.典例引领1.直线1l :1y kx b =+过点()0,4A 和()1,3D ,直线2l :225y x =-和y 轴交于点B 和直线1l 交于C 点.(1)求两条直线交点C 的坐标及ABC 的面积;(2)x 取何值时,120y y >>.∵()0,4A ,()0,5B -,()3,1C ,∴9AB =,3CN =,∴112793222ABC S AB CN =⋅=⨯⨯= .(2)∵14y x =-+,225y x =-,∴当120y y >>时,4250x x -+>->,解得:532x <<.2.已知直线443y x =-+与x 轴,y 轴分别交于点且把AOB 分成两部分.(1)若AOB 被分成的两部分面积相等,求k 与b ;⎩3.如图,在平面直角坐标系中,直线轴于点C和点D,两条直线交于点(1)求点A的坐标;(2)在直线CD上求点M【答案】(1)点A的坐标为(2)点M的坐标为44⎛∵3ABC MAB S S = ,∴23MBC ABC S S =△△,∵12ABC A S BC y =⋅△,121∵3ABC MAB S S = ,∴43MBC ABC S S =△△,(1)求点C的坐标;(2)求AOB的面积;(3)点D在直线122y x =+求点D的坐标.变式拓展(1)求点A,B,C的坐标.(2)若点P在直线1l上,且(3)根据图象,直接写出当【答案】(1)48, A⎛-(1)直接写出点A的坐标为。
一次函数的图像与性质【典型例析】【例1】画出121+-=x y ,利用图象(1)求3121=+-x 的解 (2)求31≤≤-y 时,相应x 的值在什么范围【解析】观察图象可得3121=+-x 的解为4-=x . 31≤≤-y 时,相应x 的值范围为44≤≤-x .【疑点】如何求一次函数b kx y +=与坐标轴交点.【释疑】求一次函数b kx y +=与x 轴的交点是令0=y ,将一次函数转化为0=+b kx ,求得k b x -=,得交点⎪⎭⎫ ⎝⎛-0,k b ;令0=x ,则b y =,求得一次函数b kx y +=与y 轴交点为()b ,0 【疑点】一次函数图象是直线,但直线都是一次函数吗?是否在实际问题中所有一次函数都是直线呢?【释疑】形如),,0(为常数b k k b kx y ≠+=是一次函数,对于这个函数因为自变量x 取值范围为是一切实数,则一次函数图象是直线,但在实际问题中,由于自变量取值范围往往受到限制,其图象是直线的一部分,故不能说是直线;有些直线的解析式并不是一次函数,如0=y 是表示该直线上所有点的纵坐标为0,其图象是x 轴,并不是一次函数.【例2】某同学离学校有2km ,他每小时4千米的速度步行到学校,则离家x 小时后,学校的距离()km y(1)写出y 与x 之间的函数关系;(2)作出函数图象.【解析】x y 42-=当,2,0==y x 时 当5.0,0==x y 时【警示误区】因为)5.00(42,5.0,0≤≤-=≤≥x x y x y 故故是一条线段.【例3】某市开展“科技下乡”活动中,引导库区移民养鱼,下图为某库区在相同条件下,养殖同种鱼的产量y (千克)与时间x (月)的一次函数关系(如图),其中用甲移民养殖,乙由科技小分队养殖(1)分别求出甲.乙产量与时间函数关系式.(2)乙开始养鱼几个月后,就达到比甲产量至少多200千克.【分析】(1)观察图象甲产量y (千克)与x (月) 通过待定系数法可得1003100+=x y 同理,乙的产量y (千克)与时间x (月)之间的函数关系式为100100+=x y .(2)问题转化为200)1003100()100100(≥+--x x . 6≥x 故乙养鱼5个月后,就达到比甲产量多200千克.【例4】某移动公司开设两种业务。
一次函数的图像及其性质● 知识点一 一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.● 知识点二 一次函数的图象及其画法 ⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线. ⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可. ①如果这个函数是正比例函数,通常取()00,,()1k ,两点;②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0bk⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点. ⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+.● 知识点三 一次函数的性质 ⑴ 当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大; ⑵ 当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小.● 知识点四 一次函数y kx b =+的图象、性质与k 、b 的符号⑵一次函数y kx b =+中,当0k >时,其图象一定经过一、三象限;当0k <时,其图象一定经过二、四象限.当0b >时,图象与y 轴交点在x 轴上方,所以其图象一定经过一、二象限;当0b <时,图象与y 轴交点在x 轴下方,所以其图象一定经过三、四象限.反之,由一次函数y kx b =+的图象的位置也可以确定其系数k 、b 的符号.知识点五 用待定系数法求一次函数的解析式 ⑴ 定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法. ⑵ 用待定系数法求函数解析式的一般步骤: ① 根据已知条件写出含有待定系数的解析式; ② 将x y ,的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组; ③ 解方程(组),得到待定系数的值; ④ 将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.一、基本识图问题1.如图,图像(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是( )A 、第3分时汽车的速度是40千米/时B 、第12分时汽车的速度是0千米/时C 、从第3分到第6分,汽车行驶了120千米例题精讲D、从第9分到第12分,汽车的速度从60千米/时减少到0千米/时二、行程问题1.小明外出散步,从家走了20分钟后到达了一个离家900米的报亭,看了10分钟的报纸然后用了15分钟返回到家.则下列图像能表示小明离家距离与时间关系的是()A、B、C、D、2.如图,一只蚂蚁以均匀的速度沿台阶A1-A2-A3-A4-A5爬行,那么蚂蚁爬行的高度h随时间t变化的图像大致是()A、B、C、D、三、行走路线问题1. 图1是韩老师早晨出门散步时,离家的距离(y)与时间(x)之间的函数图像。
一次函数的图像和性质测试题一、选择题(每小题3分,共30分) 1.下列各有序实数对表示的点不在函数图象上的是( ) A.(0,1) B.(1,-1) C.D.(-1,3)2.已知一次函数,当增加3时,减少2,则的值是( )A.32-B.23- C.32D.233.已知一次函数随着的增大而减小,且,则在直角坐标系内它的大致图象是( )4.已知正比例函数的图象过点(,5),则的值为( )A.95-B.37C.35D.32 5.若一次函数的图象交轴于正半轴,且的值随值的增大而减小,则( ) A. B.C. D.6.若函数是一次函数,则应满足的条件是( ) A.且 B.且 C.且D.且7.一次函数的图象交轴于(2,0),交轴于(0,3),当函数值大于0时,的取值范围是( ) A.B.C.D.C8.已知正比例函数的图象上两点,当时,有,那么的取值范围是( )A.21B.21C. D.9.若函数和有相等的函数值,则的值为( )A.21B.25C.1D.25 10.某一次函数的图象经过点(,2),且函数的值随自变量的增大而减小,则下列函数符合条件的是( ) A.B.C.D.二、填空题(每小题3分,共24分) 11.如图,直线为一次函数的图象,则,.12.一次函数的图象与轴的交点坐标是,与轴的交点坐标是 .13.已知地在地正南方3千米处,甲乙两人同时分别从、两地向正北方向匀速直行,他们与地的距离(千米)与所行的时间(时)之间的函数图象如图所示,当行走3时后,他们之间的距离为 千米. 14.若一次函数与一次函数的图象的交点坐标为(,8),则_________. 15.已知点都在一次函数为常数)的图象上,则与的大小关系是________;若,则___________.16.已知点(,4)在连接点(0,8)和点(,0)的线段上,则______.17.已知一次函数与的图象交于轴上原点外的一点,则=+ba a________. 18.已知一次函数与两个坐标轴围成的三角形面积为4,则________.三、解答题 19.已知一次函数的图象经过点(,),且与正比例函数的图象相交于点(4,),求:(1)的值;(2)、的值;(3)求出这两个函数的图象与轴相交得到的三角形的面积.20、若一次函数的图象与轴交点的纵坐标为-2,且与两坐标轴围成的直角三角形面积为1,试确定此一次函数的表达式.21、为保护学生视力,课桌椅的高度都是按一定的关系配套设计的,研究表明:假设课桌的高度为 cm ,椅子的高度为 cm ,则应是的一次函数,下表列出两套符合条件的课桌椅的高度: (1)请确定与的函数关系式.(2)现有一把高39 cm 的椅子和一张高78.2 cm 的课桌,它们是否配套?为什么?22、某车间有甲、乙两条生产线.在甲生产线已生产了200吨成品后,乙生产线开始投入生产,甲、乙两条生产线每天分别生产20吨和30吨成品. (1)分别求出甲、乙两条生产线各自总产量(吨)与从乙开始投产以来所用时间(天)之间的函数关系式.(2)作出上述两个函数在如图所示的直角坐标系中的图象,观察图象,分别指出第10天和第30天结束时,哪条生产线的总产量高?。
一次函数的图象与性质考点·方法·破译1.一次函数及图象:⑴形如y =kx +b (k ,b 为常数,且k ≠0),则y 叫做x 的一次函数,当b =0,k ≠0时,y 叫做x 的正比例函数.⑵正比例函数y =kx (k ≠0)的图象是经过(0,0),(1,k )两点的直线,一次函数y =kx +b (k ≠0)是经过(0,b )、(-kb ,0)两点的直线. 2.一次函数的性质:当k >0时,y 随自变量x 的增大而增大;当k <0时,y 随x 的增大而减小.3.函数y =kx +b 中的系数符号,决定图象的大致位置的增减性.经典·考题·赏析【1】(山东)函数y =ax +b ①和y =bx +a ②(ab ≠0)在同一坐标系中的图象可能是( )【2】如图,已知正方形ABCD 的顶点坐标为A (1,1)、B (3,1)、C (3,3)、D (1,3),直线y =2x +b 交AB 于点E ,交CD 于点F .直线与y 轴的交点为(0,b ),则b 的变化范围是_____.【3】已知一次函数y =kx +b ,当自变量取值范围是2≤x ≤6时,函数值的取值范围5≤y ≤9.求此函数的解析式.【4】如图,直线y=-5x-5与x轴交于A,与y轴交于B,直线y=kx+b与x轴交于C,与y轴交于B点,CD⊥AB交y轴于E.若CE=AB,求直线BC的解析式.【5】如图,已知直线y=-x+2与x轴、y轴分别交于点A和点B.另一条直线y=kx+b(k≠0)经过(1,0),且把△AOB分成两部分.⑴若△AOB被分成的两部分面积相等,求k和b的值;⑵若△AOB 被分成的两部分的面积比为1:5,求k和b的值.一次函数的图象与性质答案考点·方法·破译1.一次函数及图象:⑴形如y =kx +b (k ,b 为常数,且k ≠0),则y 叫做x 的一次函数,当b =0,k ≠0时,y 叫做x 的正比例函数.⑵正比例函数y =kx (k ≠0)的图象是经过(0,0),(1,k )两点的直线,一次函数y =kx +b (k ≠0)是经过(0,b )、(-kb ,0)两点的直线. 2.一次函数的性质:当k >0时,y 随自变量x 的增大而增大;当k <0时,y 随x 的增大而减小.3.函数y =kx +b 中的系数符号,决定图象的大致位置的增减性.经典·考题·赏析【例1】(山东)函数y =ax +b ①和y =bx +a ②(ab ≠0)在同一坐标系中的图象可能是( )【解法指导】A 中①a >0,b >0,②b <0,a <0矛盾.B 中①a <0,b <0,矛盾.C 中①a >0,b >0②b >0,a =0矛盾.D 中①a >0,b <0②b <0,a >0,故选D .【例2】如图,已知正方形ABCD 的顶点坐标为A (1,1)、B (3,1)、C (3,3)、D (1,3),直线y =2x +b 交AB 于点E ,交CD 于点F .直线与y 轴的交点为(0,b ),则b 的变化范围是_____.【解法指导】直线y =2x +b 是平行于直线y =2x 的直线,当直线经过B 点时,b 最小,当x =3时,y=1∴1=2×3+b , b =-5当直线经过D 点时,b 最大,所以当x =1时,y =3∴3=2×1+b , b =1∴-5≤b ≤1【例3】已知一次函数y =kx +b ,当自变量取值范围是2≤x ≤6时,函数值的取值范围5≤y ≤9.求此函数的解析式.【解法指导】⑴当k >0,y 随x 的增大而增大,∴y =kx +b 经过(2,5),(6,9)两点∴⎩⎨⎧=+=+9652b k b k ∴⎩⎨⎧=-=31b k ,∴y =x +3 ⑵当k <0,y 随x 的增大而减小,∴y =kx +b 经过(2,9),(6,5)两点∴⎩⎨⎧=+=+5692b k b k ∴⎩⎨⎧-=-=111b k ,∴y =-x +11∴所求解析式为y =x +3或y =-x +11【例4】如图,直线y =-5x -5与x 轴交于A ,与y 轴交于B ,直线y =kx +b 与x 轴交于 C ,与y 轴交于B 点,CD ⊥AB 交y 轴于E .若CE =AB ,求直线BC 的解析式.【解法指导】由CE =AB ,CD ⊥AB 可得△AOB ≌△EOC ,因而OB =OC 而y =-5x -5与y 轴交于B∴B (0,-5)∴C (5,0),而直线BC 经过(0,-5),(5,0)可求得解析式y =x -5【例5】如图,已知直线y =-x +2与x 轴、y 轴分别交于点A 和点B .另一条直线y =kx +b (k ≠0)经过(1,0),且把△AOB 分成两部分.⑴若△AOB 被分成的两部分面积相等,求k 和b 的值;⑵若△AOB 被分成的两部分的面积比为1:5,求k 和b 的值.【解法指导】欲求k 和b 的值,需知道直线y =kx +b (k ≠0)经过两已知点,而点C (1,0)在直线上,因而只需求出另一点的坐标即可.解:⑴由题意得(2,0)、B (0,2),∴C 为OA 的中点,因而直线y =kx +b 过OA 中点且平分△AOB 的面积时只可能韦中线BC .∴y =kx +b 经过C (1,0),(0,2)∴⎩⎨⎧=+=b b kx 20∴k =2 b =2 ⑵①设y =kx +b 与OB 交于M (0,t )则有S △OMC =S △CAN ,∴MN ∥x 轴,∴N (34,32) ∴直线y =kx +b 经过34,32),(1,0)∴⎪⎩⎪⎨⎧=+=+03234b k b k ∴⎩⎨⎧-==22b k。
一次函数的定义1、判断正误: (1)一次函数是正比例函数; ( ) (2)正比例函数是一次函数; ( )(3)x +2y =5是一次函数; ( ) (4)2y -x=0是正比例函数. ( )2、选择题(1)下列说法不正确的是( )A .一次函数不一定是正比例函数。
B .不是一次函数就不一定是正比例函数。
C .正比例函数是特殊的一次函数。
D .不是正比例函数就一定不是一次函数。
(2)下列函数中一次函数的个数为( )①y=2x ;②y=3+4x ;③y=21;④y=ax (a ≠0的常数);⑤xy=3;⑥2x+3y-1=0;A .3个B 4个C 5个D 6个3、填空题(1)若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________。
(2)当m=__________时,函数y=3x2m+1 +3 是一次函数。
(3 )关于x 的一次函数y=x+5m-5,若使其成为正比例函数,则m 应取_________。
4、已知函数y=()()112-++m x m 当m 取什么值时,y 是x 的一次函数?当m 取什么值是,y 是x 的正比例函数。
5、函数:①y=-2x+3;②x+y=1;③xy=1;④y=1+x ;⑤y=221x+1;⑥y=0.5x 中,属一次函数的有 ,属正比例函数的有 (只填序号)(2)当m= 时,y=()()m x m x m +-+-1122是一次函数。
(3)请写出一个正比例函数,且x =2时,y= -6请写出一个一次函数,且x=-6时,y=2(4) 我国是一个水资源缺乏的国家,大家要节约用水.据统计,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.李丽同学在洗手时,没有把水龙头拧紧,当李丽同学离开x 小时后水龙头滴了y 毫升水.则y 与x 之间的函数关系式是(5)设圆的面积为s ,半径为R,那么下列说法正确的是( ) A S 是R 的一次函数 B S 是R 的正比例函数 C S 是2R 的正比例函数 D 以上说法都不正确6、说出下面两个问题中两个量的函数关系,并指出它们是不是正比例函数,是不是一次函数。
① 汽车以40千米/小时的平均速度从A 站出发,行驶了t 小时,那么汽车离开A 站的距离s(千米)和时间t(小时)之间的函数关系是什么?的函数关系式为 ,它是 函数② 汽车离开A 站4千米,再以40千米/小时的平均速度行驶了t 小时,那么汽车离开A 站的距离s(千米)与时间t(小时)之间的函数关系是什么?的函数关系式为 ,它是 函数7、曾子伟叔叔的庄园里已有50棵树,,他决定今后每年栽2棵树,则曾叔叔庄园树木的总数y (棵)与年数x 的函数关系式为 ,它是 函数8、圆柱底面半径为5cm ,则圆柱的体积V (cm 3)与圆柱的高h (cm )之间的函数关系式为 ,它是 函数9、甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y (元)与包裹重量x (千克)之间的函数解析式,并计算5千克重的包裹的邮资。
10、.在拖拉机油箱中,盛满56千克油,拖拉机工作时,每小时平均耗油6千克,求邮箱里剩下Q (千克)与拖拉机的工作时间t (小时)之间的函数解析式。
一次函数的图象1、 在同一平面直角坐标系中画出下列每组函数的图象. (1) y =2x 与y =2x +32、说出直线y =3x +2与221+=x y ;y =5x -1与y =5x -4的相同之处. 解 :直线y =3x +2与221+=x y 的 ,相同,所以这两条直线 ,同一点,且交点坐标 ,;直线y =5x -1与y =5x -4的 相同,所以这两条直线 ,. 3、(1)直线521,321--=+-=x y x y 和x y 21-=的位置关系是 ,直线521,321--=+-=x y x y 可以看作是直线x y 21-=向 平移 个单位得到的;; 向 平移 个单位得到的(2)将直线y =-2x +3向下平移5个单位,得到直线 .(3).函数y =kx -4的图象平行于直线y =-2x ,求函数若直线4y kx =-的解析式为 ;(4)直线y=2x-3可以由直线y=2x 经过 单位而得到;直线y=-3x+2 可以由直线y=-3x 经过 而得到;直线y=x+2可以由直线y=x-3经过 而得到.(5)直线y=2x +5与直线521+=x y ,都经过y 轴上的同一点( 、 )5、写出一条与直线y=2x -3平行的直线6、写出一条与直线y=2x -3平行,且经过点(2,7)的直线7、直线y=-5x +7可以看作是由直线y=-5x -1向 平移 个单位得到的1、(1)一次函数y=kx+b 当x=0时,y= ,横坐标为0点在 上,在y kx b =+中,;当y=0时,x= 纵坐标为0点在 上。
画一次函数的图象,常选取(0, )、( ,0)两点连线。
(2)直线y =4x -3过点(_____,0)、(0, ); (3)直线231+-=x y 过点( ,0)、(0, ). 2、 分别在同一直角坐标系内画出下列直线,写出各直线分别与x 轴、y 轴的交点坐标,并指出每一小题中两条直线的位置关系.(1)y =-x +2 ; y =-x -1. (2)y =3x -2 ; y =232-x .3、直线y =-x +2与x 轴的交点坐标是 ,与y 轴的交点坐标是4、直线y =-x -1与x 轴的交点坐标是 ,与y 轴的交点坐标是5、直线y =4x -2与x 轴的交点坐标是 ,与y 轴的交点坐标是6、直线y =232-x 与x 轴的交点坐标是 ,与y 轴的交点坐标是 7、 画出函数y =-2x +3的图象,借助图象找出:(1) 直线上横坐标是2的点,它的坐标是( , ) (2) 线上纵坐标是-3的点,它的坐标是( , ) (3) 直线上到y 轴距离等于2的点,它的坐标是( , ) (4)点(2、7)是否在此图象上;( )(5)找出横坐标是-2的点,并标出其坐标;( , ) (6)找出到x 轴的距离等于1的点,并标出其坐标;( , ) (7)找出图象与x 轴和y 轴的交点,并标出其坐标。
( , )9、求函数323-=x y 与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.10、一次函数y =3x +b 的图象与两坐标轴围成的三角形面积是24,求b .一次函数的性质1、 做一做,画出函数y =-2x +2的图象,结合图象 回答下列问题。
函数y =-2x +2的图象中: (1) 随着x 的增大,y 将 (填“增大”或“减小”) (2) 它的图象从左到右 (填“上升”或“下降”) (3)图象与x 轴的交点坐标是 ,与y 轴的交点坐标是 (4) 这个函数中,随着x 的增大,y 将增大还是减小?它的图象从左到右怎样变化? (5) 当x 取何值时,y =0? (6) 当x 取何值时,y >0?2、函数y =3x -6的图象中:(1)随着x 的增大,y 将 (填“增大”或“减小”) (2)它的图象从左到右 (填“上升”或“下降”) (3)图象与x 轴的交点坐标是 ,与y 轴的交点坐标是 3、已知函数y =(m -3)x -32. (1) 当m 取何值时,y 随x 的增大而增大? (2) 当m 取何值时,y 随x 的增大而减小?[B 组]1、 写出一个y 随x 的增大而减少的一次函数2、 写出一个图象与x 轴交点坐标为(3,0)的一次函数3、 写出一个图象与y 轴交点坐标为(0,-3)的一次函数1.一次函数y=5x+4的图象经过___________象限,y 随x 的增大而________,它的图象与x 轴. Y 轴的坐标分别为________________ (2).函数y=(k-1)x+2,当k >1时,y 随x 的增大而______,当k <1时,y 随x 的增大而_____。
2、函数y =-7x -6的图象中:(1)随着x 的增大,y 将 (填“增大”或“减小”) (2)它的图象从左到右 (填“上升”或“下降”) (3)图象与x 轴的交点坐标是 ,与y 轴的交点坐标是 (4)x 取何值时,y=2? 当x=1时,y=3.某个一次函数的图象位置大致如下图所示,试分别确定k 、b 的符号,并说出函数的性质.(k 0, b 0) (k 0, b 0)4、已知一次函数y =(2m-1)x +m +5,当m 取何值时,y 随x 的增大而增大?当m 取何值时,y 随x 的增大而减小?5.已知点(x1, y1)和(x2, y2)都在直线 y=43x-1上, 若x1 < x2, 则 y 1__________y 26. 已知一次函数y =(1-2m)x +m-1,若函数y 随x 的增大而减小,并且函数的图象经过二、三、四象限,求m 的取值范围.7.已知函数m x m y m m+-=--12)1(,当m 为何值时,这个函数是一次函数.并且图象经过第二、三、四象限?8.已知一次函数y =(1-2k ) x +(2k +1). ①当k 取何值时,y 随x 的增大而增大? ②当k 取何值时,函数图象经过坐标系原点?③当k 取何值时,函数图象不经过第四象限?9.已知函数y =2x -4. (1)作出它的图象;(2)标出图象与x 轴、y 轴的交点坐标;(3) 由图象观察,当-2≤x ≤4时,函数值y 的变化范围.10.若 a 是非零实数 , 则直线 y=ax-a 一 定过( )A.第一、二象限B. 第二、三象限C.第三、四象限D. 第一、四象限11.已知关于x 的一次函数y =(-2m +1)x +2m2+m-3.(1)若一次函数为正比例函数,且图象经过第一、第三象限,求m 的值; (2)若一次函数的图象经过点(1,-2),求m 的值.12. 已知一次函数y =(3m-8)x +1-m 图象与y 轴交点在x 轴下方,且y 随x 的增大而减小,其中m 为整数. (1)求m 的值;(2)当x 取何值时,0<y <4?一次函数图象和性质第1题. 将直线13y x =-向上平移3个单位得到的函数解析式是 .第7题. 直线y mx n =+如图所示,化简:m n -= .第8题. 已知函数y kx b y =+的图象与轴交点的纵坐标为5-,且当12x y ==时,,则此函数的解析式为 .第11题. 在函数2y x b =-中,函数y 随着x 的增大而 ,此函数的图象经过点(21)-,,则b = .第13题. 如图,表示一次函数y mx n =+与正比例函数y mnx =(m n ,为常数,且mn0≠)图象的是( )第14题. 在下列四个函数中,y 的值随x 值的增大而减小的是( ) A.2y x =B.36y x =-C.25y x =-+D.37y x =+第15题. 已知一次函数y kx k =+,其在直角坐标系中的图象大体是( )第16题. 在下列函数中,( )的函数值先达到100. A.26y x =+B.5y x =C.51y x =-D.42y x =+第17题. 已知一次函数35y x =+与一次函数6y ax =-,若它们的图象是两条互相平等的直线,则a = . 第18题. 一次函数3y x =+与2y x b =-+的图象交于y 轴上一点,则b = . 第19题. 作出函数41y x =-的图象,并回答下列问题: (1)y 的值随x 值的增大怎样变化? (2)图象与x 轴、y 轴的交点坐标是什么?A.B.C .D .D.C. B . A .第20题. 已知一次函数2(3)16y m x m =++-,且y 的值随x 值的增大而增大. (1)m 的范围;(2)若此一次函数又是正比例函数,试求m 的值.第24题. 已知一次函数y kx b =+的图象不经过第三象限,也不经过原点,那么k b 、的取值范围是( ) A.0k >且0b < B.0k >且0b < C.0k <且0b >D.0k <且0b <第26题. 如图所示,已知正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =--的图象大致是( )第27题. 若函数2(1)2y m x m =++-与y 轴的交点在x 轴的上方,且10m m <,为整数,则符合条件的m 有( ) A.8个B.7个C.9个D.10个第29题. 函数34y x =-,y 随x 的增大而 .第30题. 已知一次函数(3)21y m x m =-+-的图象经过一、二、四象限,求m 的取值范围.一、填空题1.正比例函数(0)y kx k =≠一定经过 点,经过(1), ,一次函数(0)y kx b k =+≠经过(0), 点,(0) ,点. 2.直线26y x =-+与x 轴的交点坐标是 ,与y 轴的交点坐标是 。