人教版九年级数学上册(同步练习)24.4弧长和扇形面积(含答案)
- 格式:doc
- 大小:496.50 KB
- 文档页数:11
一、选择题〔每题4分,共32分.以下各题均有四个选项,其中只有一个是符合题意的.〕1.以下事件是必然事件的是〔〕.A.随意掷两个均匀的骰子,朝上面的点数之和是6B.掷一枚硬币,正面朝上C.3个人分成两组,一定有两个人分在一组D.打开电视,正在播放动画片2.抛物线可以由抛物线平移而得到,以下平移正确的选项是〔〕.A.先向左平移1个单位,再向上平移2个单位B.先向左平移1个单位,再向下平移2个单位C.先向右平移1个单位,再向上平移2个单位D.先向右平移1个单位,再向下平移2个单位3.已知一顶圆锥形纸帽底面圆的半径为10cm,母线长为50cm,则圆锥形纸帽的侧面积为〔〕.A.B. C. D.4.两圆半径分别为2和3,圆心坐标分别为〔1,0〕和〔-4,0〕,则两圆的位置关系是〔〕.A.外离 B.外切 C.相交 D.内切5.同时投掷两枚硬币,出现两枚都是正面的概率为〔〕.A. B. C. D.6.如图,在平面直角坐标系中,点在第一象限,⊙ 与轴相切于点,与轴交于,两点,则点的坐标是〔〕.A. B. C. D.7.抛物线与相交,有一个交点在x轴上,则k的值为〔〕.A.0 B. 2 C.−1 D.8.如图,在直角梯形中,∥ ,,,AD=2cm,动点P、Q同时从点出发,点沿BA、AD、DC运动到点停止,点沿运动到点停止,两点运动时的速度都是1cm/s,而当点到达点时,点正好到达点.设P点运动的时间为,的面积为.以下图中能正确表示整个运动中关于的函数关系的大致图象是〔〕.A. B. C.D.二.填空题〔每题4分,此题共16分〕9.正六边形边长为3,则其边心距是___________cm.10.函数的最小值为_________,最大值为__________.11.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是_______________.12.已知二次函数满足:〔1〕;〔2〕;〔3〕图象与x轴有2个交点,且两交点间的距离小于2;则以下结论中正确的有.①② ③④⑤三.解答题〔每题5分,此题共30分〕13.计算: 14.用配方法解方程:15.已知,当m为何值时,是二次函数?16.如图,在半径为6 cm的⊙O中,圆心O到弦AB的距离 OC为3 cm.试求:〔1〕弦AB的长;〔2〕AB⌒ 的长.17.已知二次函数y=ax2+bx+c的图象的顶点位于x轴下方,它到x轴的距离为4,下表是x 与y的对应值表:x 0 2y 0 −3 −4 −3 0〔1〕求出二次函数的解析式;〔2〕将表中的空白处填写完整;〔3〕在右边的坐标系中画出y=ax2+bx+c的图象;〔4〕根据图象答复:当x为何值时,函数y=ax2+bx+c的值大于0._______________________18.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.〔1〕求证:BC是⊙O切线;〔2〕假设BD=5,DC=3,求AC的长.四.应用题〔19题6分,20题5分,21题4分〕19.桐桐和大诚玩纸牌游戏.以下图是同一副扑克中的4张扑克牌的正面,将它们正面朝下洗匀后放在桌上,桐桐先从中抽出一张,大诚从剩余的3张牌中也抽出一张.桐桐说:假设抽出的两张牌的数字都是偶数,你获胜;否则,我获胜.〔1〕请用列表〔或树状图〕表示出两人抽牌可能出现的所有结果;〔2〕假设按桐桐说的规则进行游戏,这个游戏公平吗?请说明理由.20.某体育品商店在销售中发现:某种体育器材平均每天可售出20件,每件可获利40元;假设售价减少1元,平均每天就可多售出2件;假设想平均每天销售这种器材盈利1200元,那么每件器材应降价多少元?假设想获利最大,应降价多少?21.用尺规作图找出该残片所在圆的圆心O的位置.〔保留作图痕迹,不写作法〕五.解答题〔此题5分〕22.已知如图,正方形AEDG的两个顶点A、D都在⊙O 上,AB为⊙O直径,射线线ED与⊙O 的另一个交点为 C,试判断线段AC与线段BC的关系.六.综合运用〔23、25题7分,24题8分〕23.已知:关于x的一元一次方程kx=x+2 ①的根为正实数,二次函数y=ax2−bx+kc〔c≠0〕的图象与x轴一个交点的横坐标为1.〔1〕假设方程①的根为正整数,求整数k的值;〔2〕求代数式的值;〔3〕求证:关于x的一元二次方程ax2−bx+c=0 ②必有两个不相等的实数根.初三期中考试参考答案及评分标准一、选择题:〔此题共32分,每题4分〕题号 1 2 3 4 5 6 7 8答案 C C B B A D B B二、填空题:〔此题共16分,每题4分〕9. 10.−4, 5 11. 12.①②③⑤〔少选1个扣1分,多项选择或选错均不得分〕三、解答题:〔此题共30分,每题5分〕13.计算:解:原式= …………..4分〔化简运算对一个数给1分〕= ……………………5分14.用配方法解方程:解:………..1分………..3分∴……..5分15.已知,当m为何值时,是二次函数?解:依题设,假设原函数为二次函数,则有 (2)解得m=3 ………...5分16.如图,在半径为6 cm的⊙O中,圆心O到弦AB的距离 OC为3 cm.试求:〔1〕弦AB的长;〔2〕AB⌒ 的长.解:依题设有OC⊥AB于C,又∵AB为⊙O的弦∴ AC=BC= AB……… 2分连结OA 则又∵OA=6,OC=3∴ AC=∴ AB=………3分〔2〕由〔1〕知,在Rt△ACO中,OA=6,OC=3∴ ∠OAC=30° ∴ ∠AOC=60°∴ ∠AOB=120°………4分∴AB⌒ = = ………..5 分17.已知二次函数y=ax2+bx+c的图象的顶点位于x轴下方,它到x轴的距离为4,下表是x 与y的对应值表:x -1 0 1 2 3y 0 -3 -4 -3 0〔1〕求出二次函数的解析式;解:由上表可知,二次函数图象的对称轴为直线x=1,顶点坐标为〔1,4〕……1分∴ 二次函数解析式可变形为又由图象过〔0,-3〕,有-3=a-4,解得a=1∴ 二次函数解析式为.....2分〔2〕将表中的空白处填写完整;.....3分〔3〕在右边的坐标系中画出y=ax2+bx+c的图象;………4分〔4〕根据图象答复:当x为何值时,函数y=ax2+bx+c的值大于0.x<−1或x>3.....5分18.如图,在△ABC中,∠C=90°, AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.〔1〕求证: BC是⊙O切线;〔2〕假设BD=5, DC=3,求AC的长.解:〔1〕证明:如图1,连接OD.∵ OA=OD, AD平分∠BAC,∴ ∠ODA=∠OAD,∠OAD=∠CAD.………………1分∴ ∠ODA=∠CAD.∴ OD//AC.…………………………………2分∴ .︒∠ODB=∠C=90∴ BC是⊙O的切线.……………………………3分图1 〔2〕解法一:如图2,过D作DE⊥AB于E..︒∴ ∠AED=∠C=90又∵ AD=AD,∠EAD=∠CAD,∴ △AED≌△ACD.∴ AE=AC, DE=DC=3.,由勾股定理,得图2︒在Rt△BED中,∠BED =90 BE= .………………………………………………………4分设AC=x〔x>0〕,则AE=x., BC=BD+DC=8,︒在Rt△ABC中,∠C=90 AB=x+4,由勾股定理,得x2 +82= 〔x+4〕 2.解得x=6.即 AC=6. (5)分解法二:如图3,延长AC到E,使得AE=AB.∵ AD=AD,∠EAD =∠BAD,∴ △AED≌△ABD.∴ ED=BD=5.,由勾股定理,得︒在Rt△DCE中,∠DCE=90CE= .………… ……………4分图3, BC=BD+DC=8,由勾股定理,得︒在Rt△ABC中,∠ACB=90AC2 +BC2= AB 2.即 AC2 +82=〔AC+4〕 2.解得 AC=6.…………………………………………………………5分19.解:〔1〕树状图为:共有12种可能结果. 3分〔2〕游戏公平. 4分∵ 两张牌的数字都是偶数有6种结果:〔6,10〕,〔6,12〕,〔10,6〕,〔10,12〕,〔12,6〕,〔12,10〕.∴ 桐桐获胜的概率P= = .5分大诚获胜的概率也为.6分∴ 游戏公平.20.某体育品商店在销售中发现:某种体育器材平均每天可售出20件,每件可获利40元;假设售价减少1元,平均每天就可多售出2件.假设想平均每天销售这种器材盈利1200元,那么每件器材应降价多少元?假设想获利最大,应降价多少?解:设假设想盈利1200元,每件器材应降价x元,则有 (2)可解得,答:假设想盈利1200元,每件器材降价10元或20元均可 (3)设降价x元时,盈利为y元,则 0<X解析式可变形为且 0<15<40由此可知,当降价15元时,最大获利为1250元. (5)分.21.用尺规作图找出该残片所在圆的圆心O的位置.〔保留作图痕迹,不写作法〕任作2弦给1分,两条中垂线各1分,标出并写出点O即为所求给1分五.解答题〔此题5分〕22.已知如图,正方形AEDG的两个顶点A、D都在⊙O 上,AB为⊙O直径,射线线ED与⊙O的另一个交点为 C,试判断线段AC与线段BC的关系.解:线段AC与线段BC垂直且相等………1分证明:连结AD ………2分∵ 四边形AEDG为正方形∴ ∠ADE=45°∵ 四边形ABCD内接⊙O∴∠B+∠ADC=180°……...3分又∵∠ADE+∠ADC=180°∴∠B=∠ADE=45°又∵AB为⊙O直径∴ ∠ACB=90°,即AC⊥BC……4分∴ ∠BAC=45°∴ AC=BC……..5分23.解:〔1〕解:由 kx=x+2,得〔k-1〕 x=2.依题意 k-1≠0.∴.……………………………………1分∵ 方程的根为正整数,k为整数,∴ k-1=1或k-1=2.∴ k1= 2,k2=3.…………………………………………………2分〔2〕解:依题意,二次函数y=ax2-bx+kc的图象经过点〔1,0〕,∴ 0 =a-b+kc, kc = b-a .∴ = …3分〔3〕证明:方程②的判别式为Δ=〔-b〕2-4ac= b2-4ac.由a≠0,c≠0,得ac≠0.证法一:〔 i 〕假设ac<0,则-4ac>0.故Δ=b2-4ac>0.此时方程②有两个不相等的实数根.……4分〔 ii 〕假设ac>0,由〔2〕知a-b+kc =0,故 b=a+kc.Δ=b2-4ac= 〔a+kc〕2-4ac=a2+2kac+〔kc〕2-4ac = a2-2kac+〔kc〕2+4kac-4ac =〔a-kc〕2+4ac〔k-1〕. (5)分∵ 方程kx=x+2的根为正实数,∴ 方程〔k-1〕 x=2的根为正实数.由 x>0, 2>0,得k-1>0.…………………………………6分∴ 4ac〔k-1〕>0.∵ 0, 〔a-kc〕2∴Δ=〔a-kc〕2+4ac〔k-1〕>0.此时方程②有两个不相等的实数根. (7)分证法二:〔 i 〕假设ac<0,则-4ac>0.故Δ=b2-4ac>0.此时方程②有两个不相等的实数根.……4分〔 ii 〕假设ac>0,∵ 抛物线y=ax2-bx+kc与x轴有交点,0.≥∴ Δ1=〔-b〕2-4akc =b2-4akc〔b2-4ac〕-〔 b2-4akc〕=4ac〔k-1〕.由证法一知 k-1>0,∴ b2-4ac> 0.≥b2-4akc∴ Δ= b2-4ac>0.此时方程②有两个不相等的实数根. (7)分综上,方程②有两个不相等的实数根.证法三:由已知,,∴可以证明和不能同时为0〔否则〕,而,因此.。
24.4 弧长和扇形面积同步练习卷一.选择题(共10小题).1.若扇形的半径为6,圆心角为120°,则此扇形的弧长是()A.3πB.4πC.5πD.6π2.已知圆锥的底面半径为6cm,母线长为10cm,则这个圆锥的全面积是()A.60πcm2B.96πcm2C.132πcm2D.168πcm23.如图,用一个半径为6cm的定滑轮拉动重物上升,滑轮旋转了120°,假设绳索粗细不计,且与滑轮之间没有滑动,则重物上升了()A.πcm B.2πcm C.3πcm D.4πcm4.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2cm,绕AC所在直线旋转一周,所形成的圆锥侧面积是()A.16πcm2B.8πcm2C.4πcm2D.2πcm25.如图,点A、B、C、D都在边长为1的网格格点上,以A为圆心,AE为半径画弧,弧EF经过格点D,则扇形AEF的面积是()A.B.C.πD.6.如图,从一块半径为20cm的圆形铁皮上剪出一个圆心角是60°的扇形ABC,则此扇形围成的圆锥的侧面积为()A.200πcm2B.100πcm2C.100πcm2D.50πcm27.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB=120°,半径OA为3m,那么花圃的面积为()A.6πm2B.3πm2C.2πm2D.πm28.如图,长方形ABCD中,AB=3BC,且AB=9cm,以点A为圆心,AD为半径作圆交BA 的延长线于点M,则阴影部分的面积等于()A.(π+9)cm2B.(π+18)cm2C.(π+9)cm2D.(π+18)cm2二.填空题9.弧长等于半径的圆弧所对的圆心角是度.10.一个周长确定的扇形,要使它的面积最大,扇形的圆心角应为度.11.已知扇形的弧长为6π,它的圆心角为120°,则该扇形的半径为.12.已知圆弧所在圆的半径为6,所对圆心角为60°,则这条弧的长为.13.扇形的半径为6cm,弧长为10cm,则扇形面积是.14.已知一个圆锥形零件的母线长为13cm,底面半径为5cm,则这个圆锥形的零件的侧面积为cm2.(结果用π表示).15.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为18cm,BD 的长为9cm,则纸面部分BDEC的面积为cm2.16.如图,在扇形AOB中,∠AOB=90°,OA=4,以OB为直径作半圆,圆心为点C,过点C作OA的平行线分别交两弧点D、E,则阴影部分的面积为.三.解答题17.计算下图中扇形AOB的面积(保留π)18.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm,扇形的圆心角θ=120°,求该圆锥的高h的长.19.如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,求扇形OAB的弧长,周长和面积.(结果保留根号及π).20.如图,在半径为6cm的⊙O中,圆心O到弦AB的距离OE为3cm.(1)求弦AB的长;(2)求劣弧的长.21.在扇形OAB中,C是弧AB上一点,延长AC到D,且∠BCD=75°.(1)求∠AOB的度数;(2)扇形OAB是某圆锥的侧面展开图,若OA=12,求该圆锥的底面半径.22.如图所示,现有一圆心角为90°、半径为80cm的扇形铁片,用它恰好围成一个圆锥形的量筒;如果用其它铁片再做一个圆形盖子把量筒底面密封.(接缝都忽略不计).求:(1)该圆锥盖子的半径为多少cm?(2)制作这个密封量筒,共用铁片多少cm2.(注意:结果保留π)参考答案一.选择题1.解:∵扇形的半径为6,圆心角为120°,∴此扇形的弧长==4π.故选:B.2.解:根据题意,这个圆锥的全面积=×2π×6×10+π×62=60π+36π=96π(cm2).故选:B.3.解:根据题意,重物的高度为=4π(cm).故选:D.4.解:∵∠ACB=90°,∠BAC=30°,BC=2cm∴AB=4,则圆锥的底面周长=4π,旋转体的侧面积=×4π×4=8π,故选:B.5.解:由题意,扇形的半径AD==,∠EAF=45°,∴扇形AEF的面积==.故选:A.6.解:作OD⊥AB于D,如图,则AD=BD,∵∠OAD=∠BAC=30°,∴OD=OA=10,AD=OD=10,∴AB=2AD=20,∴扇形围成的圆锥的侧面积==200π(cm2).故选:A.7.解:∵扇形花圃的圆心角∠AOB=120°,半径OA为3cm,∴花圃的面积为=3π,故选:B.8.解:阴影部分的面积=扇形MAD的面积+矩形ABCD的面积﹣△CMB的面积=+3×9﹣×3×12=(π+9)cm2,故选:C.二.填空题9.解:设圆的半径为r,弧长等于半径的圆弧水对的圆心角是n°,根据题意得r=,即得n=,即弧长等于半径的圆弧所对的圆心角是度.10.解:设扇形的半径为r,周长为C,圆心角为n°,面积为S,S=(C﹣2r)r=﹣r2+r=﹣(r﹣)2+,∴当r=C时,S取得最大值,∴C=4r,∴=4r﹣2r,解得,n=,故答案为:.11.解:设扇形的半径为r,6π=,解得,r =9,故答案为:9.12.解:l ==2π, 故答案为2π.13.解:根据题意得,S 扇形=lR ==30(cm 2). 故答案为30cm 2.14.解:圆锥的底面周长=2π×5=10π,圆锥形的零件的侧面积=×10π×13=65π,故答案为:65π.15.解:S =S 扇形BAC ﹣S 扇形DAE =﹣=π(cm 2). 故答案是:π16.解:连接OE ,如图,∵CE ∥OA ,∴∠BCE =90°,∵OE =4,OC =2,∴CE =OC =2,∴∠CEO =30°,∠BOE =60°,∴S阴影部分=S 扇形BOE ﹣S △OCE ﹣S 扇形BCD =﹣×2×2﹣=π﹣2.故答案为π﹣2三.解答题17.解:如图,因为∠ACO=60°,OC=OA=4cm,所以△ACO是等边三角形,所以∠AOC=60°,所以∠AOB=120°,=π(cm2)答:扇形AOB的面积是πcm2.18.解:如图,由题意得:2πr=,而r=2,∴AB=6,∴由勾股定理得:AO2=AB2﹣OB2,而AB=6,OB=2,∴AO=4.即该圆锥的高为4.19.解:由图形可知,∠AOB=90°,∴OA=OB==2,∴扇形OAB的面积==2π,弧AB的长是:=π∴周长=弧AB的长+2OA=π+4.综上所述,扇形OAB的弧长是π,周长是π+4,面积是2π.20.解:(1)∵OE⊥AB,∴E为AB的中点,即AE=BE,在Rt△AOE,OA=6cm,OE=3cm,根据勾股定理得:AE==3cm,则AB=2AE=6cm.(2)在直角△OAE中,OA=6cm,OE=3cm,则OA=2OE,所以∠OAE=30°,∴∠AOE=∠BOE=60°,∴∠AOB=120°,∴劣弧的长是:=4π(cm).21.解:(1)作出所对的圆周角∠APB,∵∠APB+∠ACB=180°,∠BCD+∠ACB=180°,∴∠APB=∠BCD=75°,∴∠AOB=2∠APB=150°;(2)设该圆锥的底面半径为r,根据题意得2πr=,解得r=5,∴该圆锥的底面半径为5.22.解:(1)圆锥的底面周长是:=40πcm .设圆锥底面圆的半径是r ,则 2πr =40π.解得:r =20cm ;(2)S =S 侧+S 底=×π×802+400π=2000π(cm 2). 答:共用铁片2000πcm 2.。
24.4弧长和扇形面积(第1课时)【学习目标】了解扇形的概念,理解 n?°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.【学习重点】n°的圆心角所对的弧长 L= n R,扇形面积S扇= n R2及其它们的应用.180360【学习过程】(教师寄语:勤动脑,多动手,体验收获!)自主探究(教师寄语:学会独立思考,自主学习是最重要的!)一、任务一:探究弧长公式1、圆的周长公式是什么?什么叫弧长?2、圆的周长可以看作 ______度的圆心角所对的弧.1°的圆心角所对的弧长是 _______; 2°的圆心角所对的弧长是 _______;4°的圆心角所对的弧长是 _______;n°的圆心角所对的弧长是 _______。
任务二:探究扇形面积公式3、圆的面积公式是什么?什么叫扇形?4、圆的面积可以看作度圆心角所对的扇形的面积;设圆的半径为R,1°的圆心角所对的扇形面积S 扇形 =_______; 2°的圆心角所对的扇形面积 S 扇形=_______; 5°的圆心角所对的扇形面积S 扇形=_______;n °的圆心角所对的扇形面积S 扇形 =_______。
5、比较扇形面积公式和弧长公式,如何用弧长表示扇形的面积?二、合作学习(教师寄语:学会与别人合作是一种能力!)例 1、(教材 121 页例 1)例 2:如图,已知扇形 AOB的半径为 10,∠ AOB=60°,求AB的长( ?结果精确到 0.1)和扇形 AOB的面积结果精确到 0.1)三、课时小结(教师寄语:及时总结能使人不断进步!)四、自我测评(教师寄语:细心思考,必定成功!)1、已知扇形的圆心角为120°,半径为6,则扇形的弧长是().A . 3B . 4C . 5D . 62、如图所示,把边长为 2 的正方形 ABCD的一边放在定直线L 上,按顺时针方向绕点 D 旋转到如图的位置,则点 B 运动到点 B′所经过的路线长度为()A.1B.C.2D.2B C(A')B'AlD C'A BCO(第 2 题图)(第 3 题图)(第 4 题图)(第 6 题图)3、如图所示, OA=30B,则AD的长是BC的长的 _____倍.4、如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中AOB 为120,OC 长为8cm, CA 长为12cm,则阴影部分的面积为。
人教版九年级数学上册《24.4弧长和扇形面积》同步测试题及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.在半径为1的⊙O 中,120°的圆心角所对的弧长是 () A .3π B .23π C .πD .32π 2.用一个圆心角为150°,半径为12的扇形作一个圆锥的侧面,则这个圆锥的底面半径为( ) A .2.5B .5C .6D .103.将一半径为6的圆形纸片,沿着两条半径剪开形成两个扇形.若其中一个扇形的弧长为5π,则另一个扇形的圆心角度数是多少?( ) A .30B .60C .105D .2104.若圆锥的底面直径为6cm ,侧面展开图的面积为215πcm ,则圆锥的母线长为( ) A .5cm 2B .2cm 5C .3cmD .5cm5.如图,在⊙ABC 中,AB=AC=,BC=2,以A 为圆心作圆弧切BC 于点D ,且分别交边AB 、AC 于E 、F ,则扇形AEF 的面积是( )A .B .C .D .6.用一个圆心角为120°,半径为4的扇形,做一个圆锥的侧面,则这个圆锥的全面积(侧面与底面面积的和)为( ) A .563πB .643πC .569πD .649π二、填空题7.已知扇形的弧长为6π,它的圆心角为120,则该扇形的半径为 . 8.圆锥底面圆的半径2cm r =,母线长为6cm ,则圆锥全面积为 .9.如图,扇形OAB 的圆心角为30︒,半径为1,将它在水平直线上向右无滑动滚动到'''O A B 的位置时,则点O 到点'O 所经过的路径长为 .10.如图,O 的直径6AB =,圆内接ACD 中,AC=CD ,30CAD ∠=︒则阴影部分的面积为 .三、解答题11.(本小题满分10分)如图,已知扇形的半径为15cm ,⊙AOB=120°.(1)求扇形的面积;(2)用这扇形围成圆锥的侧面,求该圆锥的高和底面半径.12.如图,AB 是⊙O 的直径,BC 切⊙O 于点B ,OC 交⊙O 于点D 的半径为3 20C ∠=︒.(1)求A ∠的度数;(2)求AD 的长.(结果保留π)参考答案题号 1 2 3 4 5 6 答案BBDDB D1.【答案】B【分析】根据弧长公式可知弧长. 【详解】解: l =120121803ππ⨯=. 故选B . 2.【答案】B【分析】根据弧长公式先计算出扇形的弧长,再根据圆锥的底面周长等于这个扇形的弧长即可求解. 【详解】解:由题意知:扇形的弧长=1501210180ππ⨯= 设圆锥的底面半径为R ,圆锥的底面周长等于扇形的弧长 ⊙2πR =10π ∴R =5 故选:B .【点睛】本题考查了扇形的弧长公式及圆锥的展开图,属于基础题,熟练掌握扇形弧长的计算公式是解题的关键. 3.【答案】D【分析】根据题意可知两个扇形的弧长之和就是圆的周长,则可以求得另一个扇形的弧长,再根据弧长公式求解即可.【详解】解:由题意可求得圆的周长2612C ⨯==ππ 其中一个扇形的弧长15L =π,则另一个扇形的弧长21257L -==πππ 设另一个扇形的圆心角度数为n ︒ 根据弧长公式:180n rL =π,有: 67180n ⨯=ππ,解得210n = 故选:D .【点睛】本题考查弧长的计算,解题关键是理解题意,正确应用弧长公式进行计算.【分析】已知圆锥底面圆的半径可求出侧面展开图的弧长,根据侧面展开图的面积即可求解. 【详解】如图所示⊙圆锥的底面直径为6cm ⊙圆锥的底面半径为3cm⊙圆锥的底面圆周长是2π6πC r == ⊙侧面展开图的面积为215πcm⊙侧面展开图的面积116π15π22S l C l ==⨯=⊙圆锥的母线长为5l = 故选:D .【点睛】本题主要考查圆锥侧面展开图的面积,理解掌握面积公式的计算方法是解题的关键. 5.【答案】B【详解】试题分析:先判断出⊙ABC 是等腰直角三角形,从而连接AD ,可得出AD=1,直接代入扇形的面积公式进行运算即可. ⊙AB=AC=,BC=2⊙AB 2+AC 2=BC 2⊙⊙ABC 是等腰直角三角形 连接AD ,则AD=BC=1则S 扇形AEF =故选B .考点:1.扇形面积的计算;2.等腰直角三角形.【分析】先求出圆锥的侧面积和底面半径,再求圆锥的表面积,由此即可求出这个圆锥的表面积. 【详解】解:圆锥的侧面积=π×42×120?360?=163π圆锥的底面半径=2π×4×120?360?÷2π=43圆锥的底面积=π×(43)2=169π圆锥的表面积=侧面积+底面积=1616=39649πππ+. 故选:D .【点睛】本题考查圆锥的表面积,解题时要认真审题,掌握扇形面积、圆锥底面半径的计算方法是解题的关键. 7.【答案】9【分析】知道弧长,圆心角,直接代入弧长公式L=180n rπ即可求得扇形的半径. 【详解】解:⊙扇形的圆心角为120°,它所对应的弧长6π ⊙6π=120180rπ 解得:r=9. 故答案为9.【点睛】此题主要考查了扇形弧长的应用,要掌握弧长公式:L=180n rπ才能准确的解题. 8.【答案】216πcm【分析】圆锥的全面积是底面圆的面积与侧面扇形的面积,由此即可求解. 【详解】解:如图所示,圆锥底面圆的半径2cm r =,母线长为6cm⊙底面圆的周长为2π2π24πcm r =⨯=,底面圆的面积为222ππ24πcm r ==,侧面扇形的面积为214π612πcm 2⨯= ⊙圆锥的全面积为24π12π16πcm +=故答案为:216πcm .【点睛】本题主要考查立体几何图形的面积,掌握圆锥面积是底面圆面积与侧面扇形的面积之和是解题的关键. 9.【答案】76π【分析】点O 到点O ′所经过的路径长分三段,先以A 为圆心,1为半径,圆心角为90度的弧长,再平移了AB 弧的长,最后以B 为圆心,1为半径,圆心角为90度的弧长.根据弧长公式计算即可. 【详解】解:⊙扇形OAB 的圆心角为30°,半径为1 ⊙AB 弧长=301180π⨯⨯=6π⊙点O 到点O ′所经过的路径长=90172=18066πππ⨯⨯⨯+ 故答案为:76π. 【点睛】本题考查了弧长公式,旋转的性质和圆的性质,理解点O 到点O ′所经过的路径长分三段是解题的关键.10.【答案】9332π 【分析】连接OC 、OD ,交AD 与点K ,根据AC CD =,30CAD ∠=︒得到1230∠=∠=︒ AOC ∆ COD ∆为等边三角形,证明出四边形ACDO 为菱形,,进而求出阴影部分的面积. 【详解】解:连接OC 、OD ,交AD 与点K ,如图所示:⊙AC CD = 30CAD ∠=︒ ⊙1230∠=∠=︒⊙32260∠=∠=︒ 42160∠=∠=︒ ⊙AO OC OD ==⊙AOC ∆,COD ∆为等边三角形 ⊙OA OD OC AC CD ==== ⊙四边形ACDO 为菱形⊙CO AD ⊥ ⊙360∠=︒ ⊙530∠=︒⊙AB 为圆O 直径为6 ⊙3AO = ⊙1322OK AO == ∴22333()322AK =-= 23CO KO ==∴233AD AK ==⊙19322ACDO S AD CO =⋅=菱形312033360AOD S ππ=⨯⨯=扇形 ⊙9332S π=阴 【点睛】本题考查了求扇形阴影部分的面积,正确作出辅助线是解题的关键. 11.【答案】(1)150π平方厘米(2)r=10cm ;5cm 【分析】(1)根据扇形的面积公式S=2360n r π,代值计算即可(2)利用弧长公式可求得扇形的弧长,除以2π即为圆锥的底面半径,再利用勾股定理求得高即可.【详解】解:(1)⊙S=2360n r π ⊙S=224015360π⨯=150πcm 2(2)⊙弧长=24015180π⨯=20π ⊙2πr=20π,r=10cm⊙圆锥的高221510-55cm )【点睛】本题考查了扇形的面积公式以及圆锥有关计算,解本题的关键是掌握圆锥的侧面展开图的弧长等于圆锥的底面周长.12.【答案】(1) 35A ∠=︒;(2) 弧AD 的长为116π. 【分析】(1)由切线性质结合已知得70BOD ∠=︒,根据⊙OAD 是等腰三角形即可计算出⊙A =35°.(2)由(1)可知⊙AOC =110°,根据弧长公式即可计算. 【详解】解:(1)BC 是⊙O 的切线90B ∴∠=︒.又⊙⊙C =20°.902070BOC ∴∠=︒-︒=︒⊙OA =OD ⊙⊙A =⊙ADO1 352A BOC ∴∠=∠=︒(2)180AOC BOC ∠=︒-∠18070110AOC ∴∠=︒-︒=︒∴弧AD 的长为110111806ππ=. 【点睛】本题考查了切线的性质,等腰三角形的性质,弧长的计算等知识点,能求出⊙BOC 的度数是解此题的关键,注意:圆的切线垂直于过切点的半径.。
2020年人教版九年级数学上册 24.4《弧长和扇形面积》随堂练习第1课时 弧长和扇形面积基础题知识点1 弧长公式及应用1.(岳阳中考)已知扇形的圆心角为60°,半径为1,则扇形的弧长为( ) A.π2 B .π C.π6 D.π3 2.(衡阳中考)圆心角为120°,弧长为12π的扇形的半径为( )A .6B .9C .18D .36 3.一个扇形的半径为8 cm ,弧长为163π cm ,则扇形的圆心角为( )A .60°B .120°C .150°D .180° 4.如图,用一个半径为5 cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了( )A .π cmB .2π cmC .3π cmD .5π cm5.如图,⊙O 是△ABC 的外接圆,BC=2,∠BAC=30°,则劣弧BC ︵的长等于( )A.2π3B.π3C.23π3D.3π3知识点2 扇形的面积公式及应用6.半径为6,圆心角为120°的扇形的面积是( ) A .3π B .6π C .9π D .12π7.一个扇形的圆心角是120°,面积是3π cm 2,那么这个扇形的半径是( ) A .1 cm B .3 cm C .6 cm D .9 cm8.已知扇形的半径为6 cm ,面积为10π cm 2,则该扇形的弧长等于 cm .9.一个扇形的半径为3 cm ,面积为π cm 2,则此扇形的圆心角为 度.10.如图,△ABC 是⊙O 内接正三角形,⊙O 的半径为3,则图中阴影部分面积是 .11.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且BC=6 cm ,AC=8 cm ,∠ABD=45°. (1)求BD 的长;(2)求图中阴影部分的面积.易错点 忽视题中条件12.如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25 cm ,贴纸部分的宽BD 为15 cm.若纸扇两面贴纸,则贴纸的面积为 cm 2.中档题13.如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB=12,∠C=60°,则FE ︵的长为( )A.π3B.π2 C .Π D .2π14.如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD ∥OB ,则图中休闲区(阴影部分)的面积是(C)A .(10π-923)米2B .(π-923)米2C .(6π-923)米2D .(6π-93)米15.如图,在△ABC 中,∠B=30°,∠C=45°,AD 是BC 边上的高,AB=4 cm ,分别以B ,C为圆心,以BD ,CD 为半径画弧,交边AB ,AC 于点E ,F ,则图中阴影部分面积是 cm 2.16.图1是以AB 为直径的半圆形纸片,AB=6 cm ,沿着垂直于AB 的半径OC 剪开,将扇形OAC 沿AB 方向平移至扇形O ′A ′C ′,如图2,其中O ′是OB 的中点,O ′C ′交BC ︵于点F ,则BF ︵的长为 cm.17.如图1,正方形ABCD 是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图2的程序移动. (1)请在图1中画出光点P 经过的路径; (2)求光点P 经过的路径总长(结果保留π).18.如图,已知PA为⊙O的切线,A为切点,B为⊙O上一点,∠AOB=120°,过点B作BC ⊥PA于点C,BC交⊙O于点D,连接AB,AD.(1)求证:OD平分∠AOB;(2)若OA=2 cm,求阴影部分的面积.综合题19.“莱洛三角形”是一种等宽曲线,在游标卡尺上,它在任何方向上的宽度都相等,其构造方法是分别以等边三角形的三个顶点为圆心,以边长为半径画弧,得到的封闭图形就是莱洛三角形,如图1.莱洛三角形在日常生活中有广泛的应用,如汽车发动机就有莱洛三角形,如图2,若图1中等边三角形的边长是2,则该莱洛三角形的周长是2π.第2课时 圆锥的侧面积和全面积基础题知识点1 圆柱的侧面积与全面积1.圆柱形水桶底面周长为3.2π m ,高为0.6 m ,它的侧面积是( )A .1.536π m 2B .1.92π m 2C .0.96π m 2D .2.56π m 22.一个圆柱的底面直径为6 cm ,高为10 cm ,则这个圆柱全面积是 cm 2(结果保留π). 知识点2 圆锥的侧面积与全面积3.已知圆锥的底面半径为4 cm ,母线长为6 cm ,则它的侧面展开图的面积等于( )A .24 cm 2B .48 cm 2C .24π cm 2D .12π cm 24.已知一个圆锥的侧面积是底面积的2倍,圆锥母线长为2,则圆锥底面半径是( ) A.12 B .1 C. 2 D.325.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为( ) A .1.5 B .2 C .2.5 D .36.如图,圆锥的底面半径r=3,高h=4,则圆锥的侧面积是( )A .12πB .15πC .24πD .30π7.一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是( ) A .120° B .180° C .240° D .300° 8.若一个圆锥的底面圆半径为3 cm ,其侧面展开图圆心角为120°,则圆锥母线长是 cm. 9.如图,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC ,已知圆锥的高h 为12 cm ,OA=13 cm ,则扇形AOC 中AC ︵的长是 cm.(结果保留π)10.如图,已知圆锥的高为3,高所在直线与母线的夹角为30°,则圆锥侧面积为 .11.已知圆锥的侧面展开图是一个半径为12 cm,弧长为12π cm的扇形,求这个圆锥的侧面积及高.易错点考虑不全面导致漏解12.已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为.中档题13.如图,Rt△ABC中,∠B=90°,AB=2,BC=1,把△ABC分别绕直线AB和BC旋转一周,所得几何体的底面圆的周长分别记作l1,l2,侧面积分别记作S1,S2,则( )A.l1∶l2=1∶2,S1∶S2=1∶2B.l1∶l2=1∶4,S1∶S2=1∶2C.l1∶l2=1∶2,S1∶S2=1∶4D.l1∶l2=1∶4,S1∶S2=1∶414.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8 cm,圆柱体部分的高BC=6 cm,圆锥体部分的高CD=3 cm,则这个陀螺的表面积是( )A.68π cm2 B.74π cm2 C.84π cm2 D.100π cm215.如图,从一张腰长为60 cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )A.10 cm B.15 cmC.10 3 cm D.20 2 cm16.一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为 cm2.17.如图,AB是⊙O的直径,AC是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC围成一个圆锥的侧面,则这个圆锥底面圆的半径是.18.如图,Rt△ABC中,∠ACB=90°,AC=BC=22,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为 (结果保留π).19.如图,有一直径是1米的圆形铁皮,圆心为O,要从中剪出一个圆心角是120°的扇形ABC,求:(1)被剪掉阴影部分的面积;(2)若用所留的扇形ABC铁皮围成一个圆锥,该圆锥底面圆的半径是多少?综合题20.如图1,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的邻边(即腰AB 或AC)与对边(即底边BC)的比值也就确定了,我们把这个比值记作T(A),即T(A)=∠A 的对边(底边)∠A 的邻边(腰)=BCAC,当∠A=60°时,如T(60°)=1. (1)理解巩固:T(90°)= ,T(120°)= ,T(A)的取值范围是 ;(2)学以致用:如图2,圆锥的母线长为18,底面直径PQ=14,一只蚂蚁从点P 沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长.(精确到0.1,参考数据:T(140°)≈0.53,T(70°)≈0.87,T(35°)≈1.66)参考答案基础题知识点1 弧长公式及应用1.(岳阳中考)已知扇形的圆心角为60°,半径为1,则扇形的弧长为(D) A.π2 B .π C.π6 D.π3 2.(衡阳中考)圆心角为120°,弧长为12π的扇形的半径为(C)A .6B .9C .18D .36 3.(自贡中考)一个扇形的半径为8 cm ,弧长为163π cm ,则扇形的圆心角为(B)A .60°B .120°C .150°D .180° 4.(兰州中考)如图,用一个半径为5 cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了(C) A .π cm B .2π cm C .3π cm D .5π cm5.(南宁中考)如图,⊙O 是△ABC 的外接圆,BC=2,∠BAC=30°,则劣弧BC ︵的长等于(A) A.2π3 B.π3 C.23π3 D.3π3知识点2 扇形的面积公式及应用6.(宜宾中考)半径为6,圆心角为120°的扇形的面积是(D) A .3π B .6π C .9π D .12π7.(维吾尔中考)一个扇形的圆心角是120°,面积是3π cm 2,那么这个扇形的半径是(B) A .1 cm B .3 cm C .6 cm D .9 cm8.(怀化中考)已知扇形的半径为6 cm ,面积为10π cm 2,则该扇形的弧长等于10π3__cm . 9.(广西中考)一个扇形的半径为3 cm ,面积为π cm 2,则此扇形的圆心角为40度.10.(常德中考)如图,△ABC 是⊙O 的内接正三角形,⊙O 的半径为3,则图中阴影部分的面积是3π. 11.(无锡中考)如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且BC=6 cm ,AC=8 cm ,∠ABD=45°. (1)求BD 的长;(2)求图中阴影部分的面积.解:(1)∵AB 是⊙O 的直径, ∴∠C=90°,∠BDA=90°. ∵BC=6 cm ,AC=8 cm , ∴AB=62+82=10(cm). ∵∠ABD=45°.∴△ABD 是等腰直角三角形. ∴BD=AD=22AB=5 2 cm. (2)连接DO ,∵△ABD 是等腰直角三角形,OB=OA , ∴∠BOD=90°. ∵AB=10 cm , ∴OB=OD=5 cm.∴S 阴影=S 扇形OBD -S △BOD =90π×52360-12×52=(25π4-252)cm 2.易错点 忽视题中条件12.(教材P116习题T8变式)如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25 cm ,贴纸部分的宽BD 为15 cm.若纸扇两面贴纸,则贴纸的面积为350πcm 2. 02 中档题13.(山西中考)如图,在▱ABCD 中,AB 为⊙O 的直径,⊙O 与DC 相切于点E ,与AD 相交于点F ,已知AB=12,∠C=60°,则FE ︵的长为(C)A.π3B.π2C .ΠD .2π14.(山西中考)如图是某公园的一角,∠AOB=90°,弧AB 的半径OA 长是6米,C 是OA 的中点,点D 在弧AB 上,CD ∥OB ,则图中休闲区(阴影部分)的面积是(C)A .(10π-923)米2B .(π-923)米2 C .(6π-923)米2 D .(6π-93)米15.(盘锦中考)如图,在△ABC 中,∠B=30°,∠C=45°,AD 是BC 边上的高,AB=4 cm ,分别以B ,C 为圆心,以BD ,CD 为半径画弧,交边AB ,AC 于点E ,F ,则图中阴影部分的面积是(23+2-32π) cm 2.16.(山西中考)图1是以AB 为直径的半圆形纸片,AB=6 cm ,沿着垂直于AB 的半径OC 剪开,将扇形OAC 沿AB 方向平移至扇形O ′A ′C ′,如图2,其中O ′是OB 的中点,O ′C ′交BC ︵于点F ,则BF ︵的长为π cm.17.如图1,正方形ABCD 是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图2的程序移动.(1)请在图1中画出光点P 经过的路径;(2)求光点P 经过的路径总长(结果保留π).解:(1)如图.(2)光点P 经过的路径总长为4×90π×3180=6π.18.(山西中考适应性考试)如图,已知PA 为⊙O 的切线,A 为切点,B 为⊙O 上一点,∠AOB=120°,过点B 作BC ⊥PA 于点C ,BC 交⊙O 于点D ,连接AB ,AD.(1)求证:OD 平分∠AOB ;(2)若OA=2 cm ,求阴影部分的面积.解:(1)证明:∵PA 为⊙O 的切线,∴OA ⊥PA.∵BC ⊥PA ,∴∠OAP=∠BCA=90°.∴OA ∥BC.∴∠AOB +OBC=180°.∵∠AOB=120°,∴∠OBC=60°.∵OB=OD ,∴△OBD 是等边三角形.∴∠BOD=60°.∴∠AOD=∠BOD=60°.∴OD 平分∠AOB.(2)∵OA ∥BC ,∴点O 和点A 到BD 的距离相等.∴S △ABD =S △OBD .∴S 阴影=S 扇形OBD .∴S 阴影=60π×4360=23π(cm 2).03 综合题19.(山西中考命题专家原创)“莱洛三角形”是一种等宽曲线,在游标卡尺上,它在任何方向上的宽度都相等,其构造方法是分别以等边三角形的三个顶点为圆心,以边长为半径画弧,得到的封闭图形就是莱洛三角形,如图1.莱洛三角形在日常生活中有广泛的应用,如汽车发动机就有莱洛三角形,如图2,若图1中等边三角形的边长是2,则该莱洛三角形的周长是2π.第2课时 圆锥的侧面积和全面积01 基础题知识点1 圆柱的侧面积与全面积1.圆柱形水桶底面周长为3.2π m ,高为0.6 m ,它的侧面积是(B)A .1.536π m 2B .1.92π m 2C .0.96π m 2D .2.56π m 22.(来宾中考)一个圆柱的底面直径为6 cm ,高为10 cm ,则这个圆柱的全面积是78πcm 2(结果保留π).知识点2 圆锥的侧面积与全面积3.(无锡中考)已知圆锥的底面半径为4 cm ,母线长为6 cm ,则它的侧面展开图的面积等于(C)A .24 cm 2B .48 cm 2C .24π cm 2D .12π cm 24.(德阳中考)已知一个圆锥的侧面积是底面积的2倍,圆锥母线长为2,则圆锥的底面半径是(B)A.12B .1 C. 2 D.325.(嘉兴中考)一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为(D)A .1.5B .2C .2.5D .36.(宁夏中考)如图,圆锥的底面半径r=3,高h=4,则圆锥的侧面积是(B)A .12πB .15πC .24πD .30π7.(齐齐哈尔中考)一个圆锥的侧面积是底面积的3倍,则圆锥侧面展开图的扇形的圆心角是(A) A .120° B .180°C .240°D .300°8.(孝感中考)若一个圆锥的底面圆半径为3 cm ,其侧面展开图的圆心角为120°,则圆锥的母线长是9cm.9.(广东中考)如图,把一个圆锥沿母线OA 剪开,展开后得到扇形AOC ,已知圆锥的高h 为12 cm ,OA=13 cm ,则扇形AOC 中AC ︵的长是10πcm.(结果保留π)10.(聊城中考)如图,已知圆锥的高为3,高所在直线与母线的夹角为30°,则圆锥的侧面积为2π.11.已知圆锥的侧面展开图是一个半径为12 cm ,弧长为12π cm 的扇形,求这个圆锥的侧面积及高.解:侧面积为:12×12×12π=72π(cm 2). 设底面半径为r ,则有2πr=12π,∴r=6 cm.由于高、母线、底面半径恰好构成直角三角形,根据勾股定理可得,高为122-62=63(cm).易错点 考虑不全面导致漏解12.(黄冈中考)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为π或4π.02 中档题13.(杭州中考)如图,Rt △ABC 中,∠B=90°,AB=2,BC=1,把△ABC 分别绕直线AB 和BC 旋转一周,所得几何体的底面圆的周长分别记作l 1,l 2,侧面积分别记作S 1,S 2,则(A)A .l 1∶l 2=1∶2,S 1∶S 2=1∶2B .l 1∶l 2=1∶4,S 1∶S 2=1∶2C .l 1∶l 2=1∶2,S 1∶S 2=1∶4D .l 1∶l 2=1∶4,S 1∶S 2=1∶414.(绵阳中考)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB=8 cm ,圆柱体部分的高BC=6 cm ,圆锥体部分的高CD=3 cm ,则这个陀螺的表面积是(C)A .68π cm 2B .74π cm 2C .84π cm 2D .100π cm 215.(十堰中考)如图,从一张腰长为60 cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为(D)A .10 cmB .15 cmC .10 3 cmD .20 2 cm16.(恩施中考)一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为15πcm 2.17.(苏州中考)如图,AB 是⊙O 的直径,AC 是弦,AC=3,∠BOC=2∠AOC.若用扇形OAC 围成一个圆锥的侧面,则这个圆锥底面圆的半径是12.18.如图,Rt △ABC 中,∠ACB=90°,AC=BC=22,若把Rt △ABC 绕边AB 所在直线旋转一周,则所得几何体的表面积为82π(结果保留π).19.如图,有一直径是1米的圆形铁皮,圆心为O ,要从中剪出一个圆心角是120°的扇形ABC ,求:(1)被剪掉阴影部分的面积;(2)若用所留的扇形ABC 铁皮围成一个圆锥,该圆锥底面圆的半径是多少?解:(1)连接OA ,OB.由∠BAC=120°,可知AB=12米,点O 在扇形ABC 的BC ︵上. ∴扇形ABC 的面积为120360π×(12)2=π12(平方米). ∴被剪掉阴影部分的面积为π×(12)2-π12=π6(平方米). (2)由2πr=120180π×12,得r=16. 即圆锥底面圆的半径是16米. 03 综合题20.如图1,等腰三角形ABC 中,当顶角∠A 的大小确定时,它的邻边(即腰AB 或AC)与对边(即底边BC)的比值也就确定了,我们把这个比值记作T(A),即T(A)=∠A 的对边(底边)∠A 的邻边(腰)=BC AC,当∠A=60°时,如T(60°)=1. (1)理解巩固:T(90°)=2,T(120°)=3,T(A)的取值范围是0<T(A)<2;(2)学以致用:如图2,圆锥的母线长为18,底面直径PQ=14,一只蚂蚁从点P 沿着圆锥的侧面爬行到点Q ,求蚂蚁爬行的最短路径长.(精确到0.1,参考数据:T(140°)≈0.53,T(70°)≈0.87,T(35°)≈1.66)解:∵圆锥的底面直径PQ=14,∴圆锥的底面周长为14π,即侧面展开图扇形的弧长为14π.设扇形的圆心角为n°,则n×π×18180=14π,解得n=140.∵T(70°)≈0.87,∴蚂蚁爬行的最短路径长为0.87×18≈15.7.。
人教版九年级数学上册《24.4 弧长和扇形面积》练习题-附参考答案一、选择题1.已知圆心角为120°的扇形的弧长为6π,该扇形的面积为()A.12πB.21πC.27πD.36π2.如图,⊙O的半径为3,AB为弦,若∠ABC=30°,则AC⌢的长为()A.πB.1 C.1.5 D.1.5π3.如图,将边长为3的正方形铁丝框ABCD,变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ADB的面积为()A.3 B.6 C.9 D.3π4.如图,分别以等边三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若等边三角形边长为3cm,则该莱洛三角形的周长为()A.2πB.9 C.3πD.6π5.如图,四边形OABC为菱形,∠AOC=120°,点B、C在以点O为圆心的EF⌢上,若OA=1,∠1=∠2,则扇形OEF的面积为()A.π6B.π4C.π3D.2π36.如图,正方形ABCD的边长为2,O为对角线的交点,点E,F分别为BC,AD的中点.以C为圆心,BC为半径作圆弧BD,再分别以E,F为圆心,BE为半径作圆弧BO,OD,则图中阴影部分的面积为()A.π−1B.π−3C.π−2D.4−π7.如图,四边形ABCD是半径为2的⊙O的内接四边形,连接OA,OC.若∠AOC:∠ABC=4:3,则AC⌢的长为()A.35πB.45πC.65πD.85π8.如图,以矩形ABCD的顶点A为圆心,AD长为半径画弧交边BC于点E,E恰为边BC的中点,AD=4 √3则图中阴影部分的面积为()A.18√3−8πB.18√3−4πC.24√3−8πD.12√6−6π二、填空题9.一个扇形的半径是3cm,圆心角是60°,则此扇形的面积是cm2.10.如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于.11.如图,半径为2的⊙O与正五边形ABCDE的边AB,DE分别相切于点B,D,则劣弧BD的长为.12.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,CD=2√3,则阴影部分的面积为.⌢围成的图13.已知:如图,半圆O的直径AB=12cm,点C,D是这个半圆的三等分点,则弦AC,AD和CD形(图中阴影部分)的面积S是.三、解答题14.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,BC=1,以B为圆心,BA为半径画弧交CB的延长线于点D,求弧AD的长15.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2 √3 ,BF=2,求阴影部分的面积(结果保留π).16.如图,内接于,交于点,交于点,交于点,连接,CF .(1)求证:;(2)若的半径为,求的长结果保留.17.如图,已知AB 是O 的直径,点C 在O 上,D 为O 外一点,且90ADC ∠=︒ 2180B DAB ∠+∠=︒.(1)试说明:直线CD 为O 的切线;(2)若30,2B AD ∠=︒=求阴影部分的面积.1.C2.A3.C4.C5.C6.C7.D8.Aπ9.3210.2π11.8512.2π313.6πcm214.解:∵在Rt△ABC中,∠C=90°,∠BAC=30°,BC=1 ∴AB=2BC=2,∠ABC=90°-∠BAC=60°∴∠ABD=180°-∠ABC=120°∴弧AD=故答案为.15.(1)解:BC与⊙O相切.理由如下:连接OD.∵AD是∠BAC的平分线∴∠BAD=∠CAD.∴∠OAD=∠ODA∴∠CAD=∠ODA∴OD ∥AC∴∠ODB=∠C=90°即OD ⊥BC .又∵BC 过半径OD 的外端点D∴BC 与⊙O 相切;(2)解:设OF=OD=x ,则OB=OF+BF=x+2. 根据勾股定理得: OB 2=OD 2+BD 2 即 (x +2)2=x 2+12 ,解得:x=2 即OD=OF=2∴OB=2+2=4.在Rt △ODB 中,∵OD= 12 OB∴∠B=30°∴∠DOB=60°∴S 扇形DOF = 60π×4360 = 2π3 ,则阴影部分的面积为S △ODB ﹣S 扇形DOF = 12×2×2√3−2π3 = 2√3−2π3 . 故阴影部分的面积为 2√3−2π3 . 16.(1)证明:四边形是平行四边形.(2)解:连接由得∴的长. 17.(1)解:如图,连接OC OB OC =OCB B ∴∠=∠2AOC OCB B B ∴∠=∠+∠=∠2180B DAB ∠+∠=︒180AOC DAB ∴∠+∠=︒.OC AD ∴∥90ADC ∠=︒18090OCD ADC ∴∠=︒-∠=︒即CD OC ⊥,又OC 是O 的半径 ∴直线CD 为O 的切线.(2)如图,连接AC ,作OE BC ⊥,垂足为E ,则2BC BE = 30B ∠=︒260AOC B ∴∠=∠=︒OA OC =OAC ∴是等边三角形60OCA ∴∠=︒906030ACD ∴∠=︒-︒=︒ 12AD AC ∴= 2AD =4AC ∴=,即O 的半径为4 OE BC ⊥BE CE ∴=30,4B OB ∠=︒=2OE ∴=22224223BE OB OE ∴=-=-= 43BC ∴=1432BOC S BC OE ∴=⋅⋅=△ 30,B OB OC ∠=︒=120BOC ∴∠=︒2OBC 12041643433603OBC S S S ππ⨯⨯∴=-=-=-阴影扇△.。
人教版九年级数学24.4 弧长和扇形面积培优课时训练一、选择题1. 如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB =5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25 C.7.5 D.92. 一个扇形的半径为6,圆心角为120°,则该扇形的面积是()A.2π B.4πC.12π D.24π3. 小明用图中的扇形纸片作一个圆锥的侧面.已知该扇形的半径是5 cm,弧长是6π cm,那么这个圆锥的高是()A.4 cm B.6 cm C.8 cm D.12 cm4. 改编如图①所示物体由两个圆锥组成,在从正面看到的形状图中(如图②),∠A=90°,∠ABC=105°.若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2 B. 3 C.32 D. 25. 用圆心角为120°,半径为6 cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A. 2 cm B .3 2 cm C .4 2 cm D .4 cm6. 如图,一段公路的转弯处是一段圆弧(AB ︵),则AB ︵的展直长度为()A .3π mB .6π mC .9π mD .12π m7. 如图,在边长为4的正方形ABCD 中,以点B 为圆心,AB 长为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是(结果保留π)( )A .8-πB .16-2πC .8-2πD .8-12π8. 如图,在△AOC 中,OA =3 cm ,OC =1 cm ,将△AOC 绕点O 顺时针旋转90°后得到△BOD ,则AC 边在旋转过程中所扫过的图形的面积为( )A.π2 cm2 B .2π cm2C.17π8 cm2D.19π8 cm29. 如图,△ABC 内接于⊙O ,∠B =65°,∠C =70°.若BC =2 2,则BC ︵的长为( )A .π B.2π C .2π D .2 2π10. 如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E.B ,E 是半圆弧的三等分点,BE ︵的长为2π3,则图中阴影部分的面积为( )图A.π9 B.3π9C.3 32-3π2D.3 32-2π3二、填空题11.如图,正六边形ABCDEF 内接于半径为4的圆,则B 、E 两点间的距离为________.12. 如图所示,⊙O的半径是2,直线l 与⊙O 相交于A ,B 两点,M ,N 是⊙O上的两个动点,且在直线l 的异侧.若∠AMB =45°,则四边形MANB 面积的最大值是_______.13. (2019•十堰)如图,为半圆的直径,且,将半圆绕点顺时针旋转,点旋转到点的位置,则图中阴影部分的面积为__________.14. 已知一个圆心角为270°,半径为3 m的扇形工件未搬动前如图示,A,B两点触地放置,搬动时,先将扇形以点B为圆心,做如图示的无滑动翻转,再使它紧贴地面滚动,当A,B两点再次触地时停止,则圆心O所经过的路线长为________m.(结果用含π的式子表示)15. 如图所示,在Rt△ABC中,∠ACB=90°,AC=BC=2 2.若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为________.(结果保留π)三、解答题16. 如图所示的粮囤可以看成是圆柱体与圆锥体的组合体,已知其底面圆的半径为6 m,高为4 m,下方圆柱的高为3 m.(1)求该粮囤的容积;(2)求上方圆锥的侧面积(计算结果保留根号).17. 已知一个圆锥的轴截面△ABC(如图0)是等边三角形,它的表面积为75π cm2,求这个圆锥的底面圆的半径和母线长.18. 如图,在正方形ABCD 中,AD =2,E 是AB 的中点,将△BEC 绕点B 逆时针旋转90°后,点E 落在CB 的延长线上的点F 处,点C 落在点A 处,再将线段AF 绕点F 顺时针旋转90°得线段FG ,连接EF ,CG . (1)求证:EF ∥CG ;(2)求点C ,A 在旋转过程中形成的AC ︵,AG ︵与线段CG 所围成的阴影部分的面积.人教版 九年级数学 24.4 弧长和扇形面积 培优课时训练-答案一、选择题1. 【答案】A2. 【答案】C[解析] 根据扇形的面积公式,S =120×π×62360=12π.故选C.3. 【答案】A[解析] 设圆锥的底面圆的半径是r cm ,则2πr =6π,解得r =3,则圆锥的高是52-32=4(cm).4. 【答案】D[解析] ∵∠A =90°,∠ABC =105°,∴∠ABD =45°,∠CBD =60°,∴△ABD 是等腰直角三角形,△CBD 是等边三角形.设AB 的长为R ,则BD 的长为2R.∵上面圆锥的侧面积为1,即1=12lR ,∴l =2R ,∴下面圆锥的侧面积为12·2R ·2R = 2.故选D.5. 【答案】C[解析] 设纸帽底面圆的半径为r cm ,则2πr =120×π×6180,解得r =2.设圆锥的高为h cm ,由勾股定理得h2+r2=62,所以h2+22=62,解得h =4 2.6. 【答案】B[解析] AB ︵的展直长度=108π·10180=6π(m).故选B.7. 【答案】C[解析] 在边长为4的正方形ABCD 中,BD 是对角线,∴AD =AB=4,∠BAD =90°,∠ABE =45°,∴S △ABD =12AD·AB =8,S 扇形BAE =45·π·42360=2π,∴S 阴影=S △ABD -S 扇形BAE =8-2π. 故选C.8. 【答案】B[解析] 如图,AC 边在旋转过程中所扫过的图形的面积即阴影部分的面积.S 阴影=S △OCA +S 扇形OAB -S 扇形OCD -S △ODB.由旋转知△OCA ≌△ODB ,∴S △OCA =S △ODB ,∴S 阴影=S 扇形OAB -S 扇形OCD =90π×32360-90π×12360=2π(cm2).故选B.9. 【答案】A[解析] 在△ABC 中,由三角形内角和定理,得∠A =180°-∠B -∠C =45°.连接OB ,OC ,则∠BOC =2∠A =90°.设圆的半径为r ,由勾股定理,得r2+r2=(2 2)2,解得r =2,所以BC ︵的长为90π×2180=π.10. 【答案】D二、填空题11. 【答案】8【解析】∵六边形ABCDEF 为正六边形,∴AB ︵=BC ︵=EF ︵=ED︵=AF ︵=CD ︵,∴BE ︵的长是圆周长的一半,则BE 是圆的直径,∴BE =2×4=8.12. 【答案】42 [解析] 如图,过点O 作OC ⊥AB 于点C ,交⊙O 于D ,E 两点,连接OA ,OB ,DA ,DB ,EA ,EB.∵∠AMB =45°,∴∠AOB =2∠AMB =90°, ∴△OAB 为等腰直角三角形, ∴AB =OA2+OB2=2 2.∵S 四边形MANB =S △MAB +S △NAB ,又当点M 到AB 的距离最大时,△MAB 的面积最大;当点N 到AB 的距离最大时,△NAB 的面积最大,∴当点M 运动到点D ,点N 运动到点E 时,四边形MANB 的面积最大,此时S 四边形DAEB =S △DAB +S △EAB =12AB·CD +12AB·CE =12AB·(CD +CE)=12AB·DE =12×2 2×4=4 2.13. 【答案】【解析】由图可得, 图中阴影部分的面积为:,故答案为:.14. 【答案】6π[解析] 由题意易知∠AOB =90°,OA =OB ,∴∠ABO =45°,圆心O 旋转的长度为2×45π×3180=3π2(m),圆心O 平移的距离为270π×3180=9π2(m),则圆心O 经过的路线长为3π2+9π2=6π(m).15. 【答案】82π [解析] 过点C 作CD ⊥AB 于点D .在Rt △ABC 中,∠ACB =90°,AC =BC =2 2, ∴AB =2AC =4,∴CD =2. 以CD 为半径的圆的周长是4π.故Rt △ABC 绕直线AB 旋转一周所得几何体的表面积是2×12×4π×2 2=8 2π.三、解答题16. 【答案】解:(1)容积V =π×62×3+13×π×62×(4-3)=108π+12π=120π(m3). 答:该粮囤的容积为120π m3.(2)圆锥的母线长l =62+12=37(m),所以圆锥的侧面积S =π×6×37=637π(m2).17. 【答案】解:∵轴截面△ABC 是等边三角形, ∴AC =BC =2OC.由题意,得π·OC·AC+π·OC2=75π,∴3π·OC2=75π,∴OC2=25.∵OC>0,∴OC=5 cm,∴AC=2OC=2×5=10(cm).即这个圆锥的底面圆的半径为5 cm,母线长为10 cm.18. 【答案】解:(1)证明:∵四边形ABCD是正方形,∴AB=BC=AD=2,∠ABC=90°.∵△BEC绕点B逆时针旋转90°得△BFA,∴△BFA≌△BEC,∴∠FAB=∠ECB,∠ABF=∠CBE=90°,AF=CE,∴∠AFB+∠FAB=90°.∵线段AF绕点F顺时针旋转90°得线段FG,∴∠AFB+∠CFG=∠AFG=90°,AF=FG,∴∠CFG=∠FAB=∠ECB,CE=FG,∴CE綊FG,∴四边形EFGC是平行四边形,∴EF∥CG.(2)∵E是AB的中点,∴AE=BE=12AB.∵△BFA≌△BEC,∴BF=BE=12AB=1,∴AF=AB2+BF2= 5.由(1)知四边形EFGC是平行四边形,FC为其对角线,∴点G到FC的距离等于点E到FC的距离,即BE的长,∴S阴影=S扇形BAC+S△ABF+S△FGC-S扇形FAG=90π·22360+12×2×1+12×(1+2)×1-90π·(5)2360=52-π4.。
《24.4 弧长和扇形面积》一、选择题1.如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为()A.40° B.45° C.60° D.80°2.如图,已知?ABCD的对角线BD=4cm,将?ABCD绕其对称中心O旋转180°,则点D所转过的路径长为()A.4π cm B.3π cm C.2π cm D.π cm3.如图,以等腰直角△ABC两锐角顶点A、B为圆心作等圆,⊙A与⊙B恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为()A.B.C.D.4.钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是()A.π B.π C.π D.π5.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是()A.B.C.D.π6.如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为()A.B.C.π+1 D.7.如图,扇形AOB的半径为1,∠AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为()A.B.C.D.8.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()A.B.C.D.二、填空题9.如图是李大妈跳舞用的扇子,这个扇形AOB的圆心角∠O=120°,半径OA=3,则弧AB的长度为______(结果保留π).。
人教版 九年级数学上册 第24章 24.4弧长和扇形面积 专题练习(含答案)基础巩固1.⊙的内接多边形周长为3 ,⊙的外切多边形周长为3.4, 则下列各数中与此圆的周长最接近的是( )AB. D2.如图已知扇形的半径为6cm ,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )A .B .C .D .3.若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是A .40°B .80°C .120°D .150°4.艳军中学学术报告厅门的上沿是圆弧形,这条弧所在圆的半径为1.8 米,所对的圆心角为100°,则弧长是 米.(π≈3) 【参考答案】 1. C 2. D 3. C 4. 3O O 10AOB 120°24πcm 26πcm 29πcm 212πcm 120 BOA6cm能力提高 一、选择题1.如图,已知的半径,,则所对的弧的长为( ) A .B .C .D .2.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为 ( )A .10cmB .30cmC .40cmD .300cm3.若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是( ) A .1.5B .2C .3D .64.有30%圆周的一个扇形彩纸片,该扇形的半径为40cm ,小红同学为了在“六一”儿童节联欢晚会上表演节目,她打算剪去部分扇形纸片后,利用剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠),那么剪去的扇形纸片的圆心角为( ).A.9°B.18°C.63°D.72°5.已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图所示),则sin θ的值为( )A.B. C. D. O ⊙6OA =90AOB ∠=°AOB ∠AB 2π3π6π12π125135131013126.在综合实践活动课上,小明同学用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径高则这个圆锥漏斗的侧面积是( ) A . B . C . D .二、填空题1.,圆心角等于450的扇形AOB 内部作一个正方形CDEF ,使点C 在OA上,点D .E 在OB 上,点F 在上,则阴影部分的面积为(结果保留) .2.如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为 (结果保留).3.将一块含30°角的三角尺绕较长直角边旋转一周得一圆锥,这个圆锥的高是3,则圆锥的侧面积是____.4.如图,三角板中,,,.三角板绕直角顶点逆时针旋转,当点的对应点落在边的起始位置上时即停止转动,则点转过的路径长为 .6cm OB =,8cm OC =.230cm 230cm π260cm π2120cm AB ππABC ︒=∠90ACB ︒=∠30B 6=BC C A 'A AB B 第2题图5.已知正六边形的边长为1cm ,分别以它的三个不相邻的顶点为圆心,1cm 长为半径画弧(如图),则所得到的三条弧的长度之和为 cm (结果保留).6.矩形ABCD的边AB =8,AD =6,现将矩形ABCD 放在直线l 上且沿着l 向右作无滑动地翻滚,当它翻滚至类似开始的位置时(如图所示),则顶点A 所经过的路线长是_________.7.已知在△ABC 中,AB=6,AC=8,∠A=90°,把Rt△ABC 绕直线AC 旋转一周得到一个圆锥,其表面积为,把Rt△ABC 绕直线AB 旋转一周得到另一个圆锥,其表面积为,则:等于_________ 三、解答题1.如图,有一个圆O 和两个正六边形,.的6个顶点都在圆周上,的6条边都和圆O 相切(我们称,分别为圆O 的内接正六边形和外切正六边形).(1)设,的边长分别为,,圆O 的半径为,求及的值; (2)求正六边形,的面积比的值.π1111A B C D 1S 2S 1S 2S 1T 2T 1T 2T 1T 2T 1T 2T a b r a r :b r :1T 2T 21:S SB 'A CAB 第4题2.如图,圆心角都是90º的扇形OAB 与扇形OCD 叠放在一起,连结AC ,BD .(1)求证:AC=BD ; (2)若图中阴影部分的面积是,OA=2cm ,求OC 的长.3.如图,已知菱形的边长为,两点在扇形的上,求的长度及扇形的面积.2 43cm ABCD 1.5cm B C ,AEF ABCBCD AEF【参考答案】 选择题 1. B 2. A3. C4. B5. A6. C 填空题 1.2. 3. 18π 4. 5. 6. 7. 2∶3 解答题1.解:(1)连接圆心O 和T 的6个顶点可得6个全等的正三角形 .所以r∶a=1∶1;连接圆心O 和T 相邻的两个顶点,得以圆O 半径为高的正三角形, 所以r∶b=∶2;(2) T ∶T 的连长比是∶2,所以S ∶S = . 2. (1)证明:2385-π∏83π22ππ24123123124:3):(2=b a(2)根据题意得:;∴ 解得:OC =1cm .3. 解:四边形是菱形且边长为1.5,.又两点在扇形的上,,是等边三角形..的长(cm )BDAC BOD AOC DO CO BO AB BOD AOC AODBOD AOD AOC COD AOB =⇒∆≅∆⇒⎪⎭⎪⎬⎫==∠=∠⇒∠+∠=∠+∠⇒∠∠ 900==360)(9036090360902222OC OA OC OA S -=-=πππ阴影360)2(904322OC -=ππABCD 1.5AB BC ∴==B C 、AEF 1.5AB BC AC ∴===ABC ∴△60BAC ∴∠=°21805.160ππ=∙=ππ835.122121=∙∙==lR S ABC 扇形)(2cm。
24.4 弧长和扇形面积同步练习2024-2025学年九年级上册数学人教版第一课时知识点一 弧长的有关计算1. 在半径为1的⊙O 中, 120°的圆心角所对的弧长是 ( ) A.3π B. 3π- C. π D.2π 2. 在半径为2 的⊙O 中,AB 的长为2π,则AB 所对的圆心角 为 ( ) A. 90° B. 45° C. 22.5° D. 180°3.“莱洛三角形”也称为圆弧三角形,它是工业生产中广泛使用的一种图形.如图,分别以等边△ABC 的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的封闭图形是“莱洛三角形”. 若等边△ABC 的边长为3,则该“莱洛三角形”的周长等于 ( ) A. π B. 3π C. 2π D.2π−√34. 如图, 四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为2,∠B=135°, 则 AĈ的长是( ) A. 2π B. π C. π/2 D. π/3 5. 如图, 在扇形AOB 中, ∠AOB=90°, 点 C 为OA 的中点, CD⊥OA 交 AB ̂于D, 若 BD ̂的长为 13π, 则⊙O 的半径为 .知识点二 扇形面积的有关计算6. 如图, 在⊙O 中, OA=2,∠C=45°, 则图中阴影部分的面积是 .7. 如图,在3×3的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中的圆弧为格点△ABC 外接圆的一部分,小正方形的边长为1,图中阴影部分的面积为 ( )A.52π−74 B.52π−72 C.54π−74 D.54π−72 8.(1) 在扇形AOB 中, ∠AOB =75∘,AB̂的长为2.5π, 则⊙O 的半径为 ;9. 如图, AB 是半圆O的直径, 以O为圆心, OC 长为半径的半圆交AB于C, D 两点, 弦AF 切小半圆于点E.已知OA=2, OC=1, 则图中阴影部分的面积是̂所在圆相切于点A, B. 若该10.如图是某款“不倒翁”及其轴截面图, PA, PB 分别与AMB̂的长是 cm.圆半径是18 cm,∠P=50°, 则AMB11. 如图, AB 为⊙O 的直径,点C 为⊙O上一点, CD⊥AD, AD 交⊙O 于E, AC 平分∠BAD.(1) 求证: CD 是⊙O 的切线;(2) 连CE, CE∥AB,AB=4,求图中阴影部分面积.12.如图, 在Rt△ABC 中,∠C=90°, AC=BC, 点O在AB 上, 以O为圆心, OA 为半径的半圆分别交AC, BC, AB 于点 D, E, F, 且点 E 是弧 DF 的中点.(1) 求证: BC 是⊙O 的切线;(2) 若CE=√2,求图中阴影部分的面积(结果保留π).̂的中点, D、E为圆上动点, 且 D、E关于AB 对13. 如图, AB 为⊙O 的直径, 点 C 为AB̂沿AD 翻折交AE 于点F, 使点C 恰好落在直径AB 上点C'处, 若⊙O 的周长为1称,将AD̂的长.0,求AF第二课时知识点一圆锥的展开图与扇形的关系1. 圆锥的母线长为13 cm,底面半径为5cm,则此圆锥的高线为 ( )A. 6 cmB. 8cmC. 10 cmD. 12 cm2. 在半径为50cm的圆形铁皮上剪出一块扇形铁皮,用剩余部分做一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,则剪出的扇形的圆心角度数为 ( )A. 228°B. 144°C. 72°D. 36°3. 现有一个圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为 ( )A. 4 cmB. 3cmC. 2cmD. 1 cm4. 已知一个圆锥的侧面展开图是一个半径为9,圆心角为120°的扇形,则该圆锥的底面半径等于( ).A. 9B. 27C. 3D. 10知识点二圆锥的侧面积与全面积5. 已知圆锥的底面半径是3,高为4,则这个圆锥的侧面展开图的面积是 ( )A. 12πB. 15πC. 30πD. 24π6. 已知圆锥的侧面展开图是一个半圆,则这个圆锥的母线长与底面半径的比是 .7. 在长方形ABCD 中, AB=16, 如图所示裁出一个扇形ABE, 将扇形围成一个圆锥 (AB 和AE 重合),则此圆锥的底面圆的半径为 ( )A. 4B. 6C. 4√2D. 88. 如图所示的扇形是一个圆锥的侧面展开图,若∠AOB=120°, AB的长为12πcm, 求该圆锥的侧面积.9. 如图,一个圆锥的高为3√3 cm,侧面展开图是半圆.(1) 求∠BAC 的度数;(2) 求圆锥的侧面积(结果保留π).10. 若一个圆锥的侧面积是底面积的3 倍,则这个圆锥的侧面展开图的圆心角为 ( )A. 60°B. 90°C. 120°D. 180°11. 如图, 用一个半径为30 cm, 面积为300πcm²的扇形铁皮,制作一个无底的圆锥 (不计损耗),则圆锥的底面半径r 为 ( )A. 5cmB. 10 cmC. 20cmD. 5πcm12. 如图,圆锥的底面半径为3cm,母线长为9cm,C 为母线PB 的中点,在圆锥的侧面上, 从A 到C 的最短距离是 cm.13. 如图,已知圆锥的母线AB 长为40cm, 底面半径OB 长为 10 cm, 若将绳子一端固定在点B,绕圆锥侧面一周,另一端与点B 重合,则这根绳子的最短长度是 cm.14. 如图,有一个直径为1m的圆形铁皮,圆心为O,要从中间剪去一个圆心角为120°的扇形ABC, 且BC经过点O.(1) 求被剪掉阴影部分的面积;(2) 若用所留的扇形ABC 铁皮围成一个圆锥,该圆锥的底面半径是多少?15. 如图1,在正方形铁皮上剪下一个扇形和一个半径为1 cm的圆形,使之恰好围成如图2所示的一个圆锥,求圆锥的高.。
24.4 弧长和扇形面积
知识点
1.在半径为R 的圆中,1°的圆心角所对的弧长是____________,n °的圆心角所对的弧长是______________.
2.在半径为R 的圆中,1°的圆心角所对的扇形面积是____________,n °的圆心角所对的扇形面积S 扇形=______________.
3.半径为R ,弧长为l 的扇形面积S 扇形=________.
一、选择题
1.(2013•潜江)如果一个扇形的弧长是3
4
π,半径是6,那么此扇形的圆心角为( ) A .︒40B .︒45C .︒60D .︒80
2.(2013•南通) 如图,已知□ABCD 的对角线BD =4cm ,将
□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路
径长为( ) A .4πcm
B .3πcm
C .2πcm
D .πcm
3.(2013•宁夏)如图,以等腰直角△ABC 两锐角顶点A 、B 为圆心作等圆,⊙A 与⊙B 恰好外切,若AC=2,那么图中两 个扇形(即阴影部分)的面积之和为( )
A.
4π B.2π
C.
2
4.(2013•资阳)钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是 ( )
A .12π
B .1
4
π C. 18π D .π
5.(2013•荆州)如图,将含60°角的直角三角板ABC 绕顶点 A 顺时针旋转45°度后得到△AB 'C ',点B 经过的路径为弧 BB ',若角∠BAC =60°,AC =1,则图中阴影部分的面积是 ( )
A .2π
B .3π
C .4
π
D .π
6.(2013•恩施州)如图所示,在直角坐标系中放置 一个边长为1的正方形ABCD ,将正方形ABCD 沿 x 轴的正方向无滑动的在x 轴上滚动,当点A 离开
第2题
A
B
C
D
O
第3题
′
第5题
第6题
原点后第一次落在x 轴上时,点A 运动的路径线与 x 轴围成的面积为( ) A.
122
π
+
B.12π
+ C.
1π+ D.12
π+
7.(2013•德州)如图,扇形AOB 的半径为1,∠AOB =90°,以AB 为
直径画半圆.则图中阴影部分的面积为( )
A .
14πB .π1
2- C .12 D .1142
π+
8.(2013•襄阳)如图,以AD 为直径的半圆O 经过Rt △ABC 斜边AB 的两个端点,交直角边AC 于点E ,B 、E 是半圆弧的 三等分点,弧BE 的长为π,则图中阴影部分的面积为 ( ) A.
9
π
B.9
C.32
2
π-
D.22
3
π-
二、填空题
9.(2013•茂名)如图是李大妈跳舞用的扇子,这个扇形 AOB 的圆心角120O ∠=,半径OA=3,则弧.AB ..的长 度为(结果保留π).
10.(2013•遂宁)如图,△ABC 的三个顶点都在5×5 的网格(每个小正方形的边长均为1个单位长度)的 格点上,将△ABC 绕点B 逆时针旋转到△A ′BC ′的位 置,且点A ′、C ′仍落在格点上,则图中阴影部分的面积 约是___________.(π≈3.14,结果精确到0.1)
11.(2013•玉林)如图,实线部分是半径为15m 的两条等弧 组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心, 则游泳池的周长是_______m .
A
B 第7题
第8题
第10题
第11题。