国防科技大学离散数学2017年考研初试真题
- 格式:pdf
- 大小:903.45 KB
- 文档页数:2
2017年11月上交的离散数学形考任务一本课程的教学内容分为三个单元,其中第三单元的名称是(A ).选择一项:A. 数理逻辑B. 集合论C. 图论D. 谓词逻辑题目2答案已保存满分10.00标记题目题干本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(D ).选择一项:A. 函数B. 关系的概念及其运算C. 关系的性质与闭包运算D. 几个重要关系题目3答案已保存满分10.00标记题目题干本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有(B)讲.选择一项:A. 18B. 20C. 19D. 17题目4答案已保存满分10.00标记题目题干本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是( C).选择一项:A. 集合恒等式与等价关系的判定B. 图论部分书面作业C. 集合论部分书面作业D. 网上学习问答题目5答案已保存满分10.00标记题目题干课程学习平台左侧第1个版块名称是:(C).选择一项:A. 课程导学B. 课程公告C. 课程信息D. 使用帮助题目6答案已保存满分10.00标记题目题干课程学习平台右侧第5个版块名称是:(D).选择一项:A. 典型例题B. 视频课堂C. VOD点播D. 常见问题题目7答案已保存满分10.00标记题目题干“教学活动资料”版块是课程学习平台右侧的第( A )个版块.选择一项:A. 6B. 7C. 8D. 9题目8答案已保存满分10.00标记题目题干课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(D ).选择一项:A. 复习指导B. 视频C. 课件D. 自测请您按照课程导学与章节导学中安排学习进度、学习目标和学习方法设计自己的学习计划,学习计划应该包括:课程性质和目标(参考教学大纲)、学习内容、考核方式,以及自己的学习安排,字数要求在100—500字.完成后在下列文本框中提交.解答:学习计划学习离散数学任务目标:其一是通过学习离散数学,使学生了解和掌握在后续课程中要直接用到的一些数学概念和基本原理,掌握计算机中常用的科学论证方法,为后续课程的学习奠定一个良好的数学基础;其二是在离散数学的学习过程中,培养自学能力、抽象思维能力和逻辑推理能力,解决实际问题的能力,以提高专业理论水平。
2017年全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim 2x b ax a +→-==,得12ab =.(2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-. (C) ()()11f f >-. (D) ()()11f f <-.【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为 (A) 12. (B) 6.(C) 4.(D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f xf z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<. (C) 025t =. (D) 025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处. (5)设α为n 维单位列向量,E 为n 阶单位矩阵,则 (A) TE -αα不可逆. (B) TE +αα不可逆. (C) T 2E +αα不可逆. (D) T2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫ ⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似. (D) A 与C 不相似,B 与C 不相似. 【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化,B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B . (8)设12,,,(2)n X X X n …为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是 (A)21()ni i X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ;221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()xy C C -=+【详解】特征方程2230r r ++=得1r =-,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydy xdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a. 【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x + 【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2 【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k kn n→∞+.【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx x x x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②, 令'0y =,得233,1x x ==±. 当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=, 令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =. 所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明: (I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=. (2)构造()()'F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,()lim 0,'(0)0,x f x f x +→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。
2017年考研数学一真题及答案解析跨考教育 数学教研室一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)若函数1,0(),0xx f x axb x ⎧->⎪=⎨⎪≤⎩在0x =处连续,则( ) ()()11()22()02A abB abC abD ab ==-==【答案】A【解析】001112lim lim ,()2x x xx f x ax ax a++→→-==在0x =处连续11.22b ab a ∴=⇒=选A.(2)设函数()f x 可导,且'()()0f x f x >,则( )()()()(1)(1)(1)(1)()(1)(1)(1)(1)A f fB f fC f fD f f >-<->-<-【答案】C 【解析】'()0()()0,(1)'()0f x f x f x f x >⎧>∴⎨>⎩或()0(2)'()0f x f x <⎧⎨<⎩,只有C 选项满足(1)且满足(2),所以选C 。
(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量()1,2,2u =的方向导数为( )()12()6()4()2A B C D【答案】D 【解析】2(1,2,0)122{2,,2},{4,1,0}{4,1,0}{,,} 2.|u |333f u gradf xy x z gradfgradf u ∂=⇒=⇒=⋅=⋅=∂ 选D.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中实线表示甲的速度曲线1()v v t =(单全国统一服务热线:400—668—2155 精勤求学 自强不息位:/m s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )0510********()s (/)v m s 10200000()10()1520()25()25A t B t C t D t =<<=>【答案】B【解析】从0到0t 这段时间内甲乙的位移分别为120(t),(t),t t v dt v dt ⎰⎰则乙要追上甲,则210(t)v (t)10t v dt -=⎰,当025t =时满足,故选C.(5)设α是n 维单位列向量,E 为n 阶单位矩阵,则( )()()()()22T T TT A E B E C E D E αααααααα-++-不可逆不可逆不可逆不可逆【答案】A【解析】选项A,由()0ααααα-=-=T E 得()0αα-=TE x 有非零解,故0αα-=TE 。
绝密★启用前2017年全国硕士研究生入学统一考试数学(二)(科目代码302)考生注意事项1.答题前,考生必须在试题册指定位置上填写考生姓名和考生编号;在答题卡指定位置上填写报考单位、考生姓名和考生编号,并涂写考生编号信息点。
2.考生须把试题册上的试卷条形码粘贴条取下,粘贴在答题卡“试卷条形码粘贴位置”框中。
不按规定粘贴条形码而影响评卷结果的,责任由考生自负。
3.选择题的答案必须涂写在答题卡相应题号的选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内。
超出答题区域书写的答案无效;在草稿纸、试题册上答题无效。
4.填(书)写部分必须使用黑色字迹签字笔或者钢笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B铅笔填涂。
5.考试结束后,将答题卡和试题册按规定一并交回,不可带出考场。
考生姓名:考生编号:2017年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)若函数在处连续,则()(A)(B)(C)(D)(2)设二阶可导函数满足且,则()(3)设数列收敛,则()当时,当时,当时,当时,(4)微分方程的特解可设为(A)(B)(C)(D)(5)设具有一阶偏导数,且对任意的,都有,则(A)(B)(C)(D)(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,图中实线表示甲的速度曲线(单位:),虚线表示乙的速度曲线,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则()(A)(B)(C)(D)(7)设为三阶矩阵,为可逆矩阵,使得,则()(A)(B)(C)(D)(8)设矩阵,则()(A)(B)(C)(D)二、填空题:914小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9) 曲线的斜渐近线方程为_______(10) 设函数由参数方程确定,则______(11)_______(12) 设函数具有一阶连续偏导数,且,,则(13)(14)设矩阵的一个特征向量为,则三、解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求极限(16)(本题满分10分)设函数具有2阶连续偏导数,,求,(17)(本题满分10分)求(18)(本题满分10分)已知函数由方程确定,求的极值(19)(本题满分10分)设函数在区间上具有2阶导数,且,证明:方程在区间内至少存在一个实根;方程在区间内至少存在两个不同实根。
2017考研数学一答案及解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,请将所选项前的字母填在答题纸指定位置上。
(1)若函数1(),0,0f x x axb x ⎧-⎪=>⎨⎪≤⎩在0x =连续,则( )。
A. 12ab = B. 12ab =-C. 0ab =D. 2ab = 【答案】A 【解析】由连续的定义可得-+lim ()lim ()(0)x x f x f x f →→==,而+++2000112lim ()lim lim 2x x x f x ax a→→→===,-0lim ()x f x b →=,因此可得12b a =,故选择A 。
(2)设函数()f x 可导,且()'()0f x f x >,则( )。
A. (1)(1)f f >- B. (1)(1)f f <- C. |(1)||(1)f f >- D. |(1)||(1)f f <- 【答案】C【解析】令2()()F x f x =,则有'()2()'()F x f x f x =,故()F x 单调递增,则(1)(1)F F =-,即22[(1)][(1)]f f >-,即|(1)||(1)f f >-,故选择C 。
(3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿向量(1,2,0)n =r的方向导数为( )。
A.12B.6C.4D.2 【答案】D【解析】2{2,,2}gradf xy x z =,因此代入(1,2,0)可得(1,2,0)|{4,1,0}g r a d f =,则有122{4,1,0}{,,}2||333f u grad u u ∂=⋅==∂。
(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中,实线表示甲的速度曲线1()v v t =(单位:m/s ),虚线表示乙的速度曲线2()v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则( )。
离散数学(本)2017年7月份试题一、单项选择题(每小题3分,本题共15分)1.设A={1, 3, 5, 7, 9},B={2, 4, 6},A到B的关系R={<x, y>|x-y=1},则R= ( ).A.{<1, 2>, <2, 3>, <3, 4>} B.{<1, 2>, <3, 4>, <5, 6>}C.{<1, 1>, <2, 2>, <3, 6>} D.{<3, 2>, <5, 4>, <7, 6>} 2.若集合A={a, b, c},则下列表述正确的是( ).A.{a, b }⊆A B.{a}∈AC.{a, b}∈A D.∅∈A3.设个体域为集合{1,2,3,4,5},则公式(∀x)(∃y)(x+y=5)的解释可为( ).A.存在一整数x有整数y满足x+y=5B.对任一整数x存在整数y满足x+y=5C.存在一整数x对任意整数y满足x+y=5D.任一整数x对任意整数y满足x+y=54.设G为连通无向图,则()时,G中存在欧拉回路.A.G存在两个奇数度数的结点B.G存在一个奇数度数的结点C.G不存在奇数度数的结点D.G存在偶数度数的结点5.n阶无向完全图K n的边数及每个结点的度数分别是().A.n(n-1)与n B.n(n-1)/2与n-1C.n-1与n D.n(n-1)与n-1二、填空题(每小题3分,本题共15分)6.设集合A={1, 2, 3},B={2, 3},C={3, 4},则A∪(B-C) =.7.设A={a,b},B={1,2},C={a,b},从A到B的函数f={<a,1>, <b,2>},从B 到C的函数g={<1,b>, <2,a >},则g︒ f等于.8.设G=<V,E>是一个图,| E |=10,则G的结点度数之和为.9.设G是具有n个结点m条边k个面的连通平面图,则n+k -2 = .10.设个体域D={1, 2, 3},A(x)为“x的2倍大于2”,则谓词公式(∀x)A(x)的真值为.三、逻辑公式翻译(每小题6分,本题共12分)11.将语句“如果他掌握了计算机的用法,那么他就能完成这项工作.”翻译成命题公式.12.将语句“前天下雨,昨天还是下雨.”翻译成命题公式.四、判断说明题(判断各题正误,并说明理由.每小题7分,本题共14分)13.设A={ a,b,c },R={< a,a >, < b,b >, < c,c > ,< a,b >,< b,a >,< b,c >,< c,b >},则R是等价关系.14.(∀x)(P(x)∧Q(y)→R(x))中量词∀的辖域为(P(x)∧Q(y)).五.计算题(每小题12分,本题共36分)15.设集合A={a, b, c, d },B={a, b},试计算(1)A⋃B;(2)A - B;(3)A×B.16.设G=<V,E>,V={v1, v2, v3, v4},E={(v1,v2) , (v1,v3) , (v1,v4) , (v2,v3) , (v3,v4)},试(1)给出G的图形表示;(2)写出其邻接矩阵;(3)求出每个结点的度数;(4)画出其补图的图形.17.试利用Kruskal算法求出如下所示赋权图中的最小生成树(要求写出求解步骤),并求此最小生成树的权.六、证明题(本题共8分)18.试证明:⌝P∨Q⇒P→ ⌝ (P→ ⌝Q).离散数学(本)2017年7月份试题参考解答一、单项选择题(每小题3分,本题共15分)1.D 2.A 3.B 4.C 5.B二、填空题(每小题3分,本题共15分)6.{1, 2, 3}7.{<a ,b >, <b ,a >}8.20(或:2|E |)9.m10.假(或F ,或0)三、逻辑公式翻译(每小题6分,本题共12分)11.设P :他掌握了计算机的用法, Q :他能完成这项工作. (2分) 则命题公式为: P → Q . (6分)12.设P :前天下雨, Q :昨天还是下雨. (2分)则命题公式为:P ∧Q . (6分)四、判断说明题(每小题7分,本题共14分)13.错误. (3分) R 不是等价关系,因R 中包含< a ,b >与< b ,c >,但不包含< a ,c >,故不满足传递性. (7分)14.错误. (3分) 辖域为紧接量词∀之后的最小子公式(P (x )∧Q (y )→R (x )). (7分)五.计算题(每小题12分,本题共36分)15.(1)A ⋃B ={ a , b , c , d }; (4分)(2)A - B={ c , d }; (8分)(3)A ×B={<a , a >, <a , b >, <b , a >, <b , b >, <c , a >, < c , b >, <d , a >, < d , b >} (12分)16.(1)G 的图形表示如图一所示:(3分)(2)邻接矩阵:(6分)(3) deg(v 1)=3,deg(v 2)=2, v 1 οο ο ο v 2 v 3 v 4 图一deg(v 3)=3,deg(v 4)=2 (9分)(4)补图如图二所示:(12分)17. 用Kruskal 算法求产生的最小生成树。
国防科技大学研究生院2001年硕士生入学考试试题考试科目:操作系统考生注意:1.答案必须写在我校统一配发的专用答题纸上2.统考生做 一、二、三、四、五;3.单独考生做一、二、三、六、七;一.(58分)回答如下问题1.(6分)假定有一个支持实时、分时和批处理的操作系统,对该系统应如何设计进程调度策略?2.(5分)什么叫线程?为什么要引进线程?3.(6分)某计算机系统设计成只有一级中断(该级中有多个中断)的中断系统,简述当中断发生时,是如何进入该中断处理程序的?4.(5分)在文件系统中为什么要引进“Open”系统调用?操作系统是如何处理的?5.(5分)假定存储器空闲块有如下结构:请你构造一串内存请求序列,对该请求序列首次满足分配算法能满足,而最佳满足分配法则不能。
6.(6分)为什么要在设备管理中引入缓冲技术?操作系统如何实现缓冲技术?7.(6分)用什么办法可以破坏死锁的循环等待条件?为什么?8.(6分)进程的状态主要有哪些?当发生状态转换时,操作系统完成哪些工作?9.(6分)在文件系统中,为什么要设立“当前目录”?操作系统如何实现改变“当前目录”?10.(7分)举例说明P、V操作为什么要用原语实现?操作系统如何实现这种原语操作? 二.(12分)设有四个进程P1,P2,P3,P4,它们到达就绪队列的时刻,运行时间及优先级如下表所示:进程 到达就绪队列时间运行时间(基本时间单位)优先级(基本时间单位)P1 0 9 1P2 1 4 2P3 2 8 3P4 3 10 4问:(1)若采用可剥夺的优先级调度算法,给出各进程的调度次序以及每个进程的等待时间。
(2)若采用时间片轮转调度算法,且时间片为2个基本时间单位,试给出各进程的调度次序及平均周围时间。
三.(8分)假设系统由相同类型的m个资源组成,有 n 个进程,每个进程至少请求一个资源。
证明:当n个进程最多需要的资源数之和小于m+n时,该系统无死锁。
四.(12分)在页式虚存系统中,一程序的页面走向(访问串)为 1,2,3,4,1,2,5,1,2,3,4,5 ,设分配给该程序的驻留集为m,试分别计算m=3和m=4时,FIFO和LRU五.(10分)对于下述优先图,用Parbegin/Parend语句及操作系统提供的同步/互斥工具,写出并发程序。