自由基及检测方法
- 格式:doc
- 大小:186.00 KB
- 文档页数:8
生物体系中自由基检测方法评述
1自由基检测方法
自由基产生是生物体系中一个重要的活动,它的检测方法有多种,其中最常用的方法就是自由基检测方法。
自由基检测技术是用来识别和定量危害生物体积质的最有效的方法。
自由基检测方法是通过分析活性自由基来检测外界干扰和内部诱导影响生物体系时产生的自由基。
自由基检测使用了一些特定的荧光指示剂,这些荧光指示剂与受检物体中含有的活性自由基物质发生化学反应,然后荧光指示剂产生强荧光信号,这样就可以用仪器检测,然后从细胞参数中获得更多的信息。
2特点
自由基检测方法有一些显著的优势,比如准确性高、快速、可以定量化,可以直接应用于生物体系中,而且不受探测物质形态或其他变量的影响,可以灵敏检测出低活性自由基水平。
另外,专门的多种指示剂也可以检测出多种不同形式的活性自由基,灵敏度也比较高,而且这种技术的操作也很简单。
3局限性
虽然自由基检测技术具有许多优点,但也有一些局限性,比如受到光的干扰,结果不够可控,而且价格也比较贵,不能检测出非光表达的系统,比如水溶性的自由基。
总的来说,自由基检测方法是一种生物体系中自由基检测的重要方法,它在检测外界干扰和内部诱导影响动态变化中具有重要的作用,它操作方便、灵敏度高,而且可以采集大量信息,但也存在一些不可避免的局限性,因此在应用中还需根据具体情况结合其他技术使用,以便得到最佳效果。
具有生物活性的自由基的检测及其生理学意义自由基是一种不稳定的电子,它们的不同反应性使它们对我们的身体产生了巨大的影响。
在医学和生物化学领域,对生物活性自由基的检测和研究,是目前极为热门和前沿的研究领域。
毋庸置疑,对自由基的检测和研究,具有重要的理论和实用价值。
本文分别从自由基的概念和特性、化学性质和生理学意义,阐述了对具有生物活性的自由基的检测方法及其生理学意义。
一、自由基的概念和特性自由基是一种不稳定的分子或原子,它们具有不成对的电子,因而在很多方面表现出与稳定的化合物不同的反应性质。
自由基的存在与活动是伴随着我们生命的各个阶段,任何生物体在生长发育、代谢、呼吸、免疫等过程中都会产生自由基,但这些自由基若产生过多,可引起人体的不良反应,甚至引发一系列的癌症、心血管疾病等。
而自由基的化学性质和特性,也决定了自由基与人体内的其他物质之间发生反应所产生的化学反应机制,如有氧呼吸、氧化,还原。
二、化学性质自由基是一种极其不稳定的粒子,没有正常分子的空间电子构型,从而其能量较低,容易与他物质相互作用,例如最常见的自由基氧自由基(O·)、超氧自由基(·O2-)及其他次级自由基,它们在活性氧的反应过程中会与铁、铜、锌等离子或分子、脂蛋白、谷胱甘肽还原酶等,形成新的反应产物,导致健康问题。
而且自由基十分喜欢攫夺其他分子中的电子,当它们夺得分子中的电子后,这个原子或分子的化学性质也许会发生巨大变化,甚至发生新的化学反应。
三、自由基的生理学意义由于自由基在我们日常生活中的不断存在和产生,因此,对自由基以及细胞内氧化还原状态的检测,已经成为当今生物医学和基础研究领域的一个前沿课题。
这是因为自由基与人体内的其他分子或细胞发生反应后,会随着血液流入心脏、肝脏等重要器官,对这些器官造成不良影响,并且加速了体内大量的自由基的形成,导致健康问题。
目前有很多方法可以检测自由基,其中最常用的是测定人体内的抗氧化能力。
第31卷第4期吉林医药学院学报V01.31N o.42010年08月Jour nal of J il in M ed i cal C ol l eg e A ug.2010—239一文章编号:1673-2995(2010)04-0239-02自由基的临床检测方法C l i ni cal de t e ct i on m e t hod of f r ee r adi ca l s综述潘黎明1,艾一玖“,林艳茹3(1.北华大学医学检验学院,吉林吉林132013;2.吉林医药学院附属医院,吉林吉林132013;3.北华大学临床医学院,吉林吉林132013)摘要:自由基极不稳定,半衰期短,具有很强的氧化能力,因此在生物体内具有重要的生物学意义。
大量的研究结果表明自由基与许多疾病的发生有密切的关系。
其反应特点为连锁反应,一经启动即可连续发生,且损伤作用累积,其临床检测对疾病的预防有重要的意义。
关键词:自由基;检测;临床应用;基层医院中图分类号:R446.1文献标识码:A近年来随着人们健康意识的提高,疾病的预防和抗衰老越来越受到人们的关注。
众多研究成果显示,自由基不仅关系到人类的衰老,而且与许多疾病的发生、发展和治疗密切有关…。
自由基对人体的损伤作用是累积的【2J,所以如果人们在其累积初期就发现它,就可以预防很多疾病的发生。
目前自由基的检测方法有很多种,按原理分类主要有分光光度法、化学发光法、高效液相色谱法、电--FIJ顷磁共振技术、电化学法、荧光方法和毛细管电泳法,每种方法都有自己不同的特点和适用范围口J。
广义的自由基检测分为三个部分:自由基直接间接检测、自由基清除酶系检测和自由基相关代谢产物的检测。
在临床上应用对检测方法有一定的要求,例如要体外检测,所需费用要在检测者能承受的范围,操作不能太繁琐等等。
本文主要介绍针对医学上疾病的预防、亚健康状态检查和基层医院的临床应用的一些自由基检测方法。
l自由基自由基(f r ee r adi cal)或称游离基(r adi ca l),是指具有未配对价电子(即外层轨道具有奇数电子)的原子、原子团或分子,如H,C l,O H,R O,R00,N O,N O:,0:。
食品中羟基自由基的检测与分析方法研究食品的安全与健康一直是人们关注的焦点,而其中一个重要的方面就是食品中羟基自由基的检测与分析。
羟基自由基是一种具有高度活性的氧自由基,它可以对人体产生负面影响,包括氧化脂质、蛋白质以及DNA等,从而导致各种疾病的发生。
因此,对食品中羟基自由基的检测与分析方法的研究具有重要的意义。
目前,食品中羟基自由基的检测与分析方法主要有以下几种。
第一种方法是基于化学荧光的检测与分析方法。
这种方法利用羟基自由基与特定荧光探针反应后产生荧光信号的原理,通过测量荧光信号的强度来检测食品中羟基自由基的含量。
这种方法具有操作简便、检测灵敏度高等优点,然而,由于化学荧光探针具有一定的选择性,因此,对于复杂的食品样品,这种方法的适用性存在一定的局限性。
第二种方法是基于电子自旋共振的检测与分析方法。
这种方法利用食品中羟基自由基与特定自旋探针之间的相互作用,从而产生特定的共振信号。
通过检测共振信号的强度和形状,可以推断出食品中羟基自由基的含量和分布。
这种方法具有高度的分辨率和灵敏度,但是由于设备成本高昂且操作复杂,因此在实际应用中受到一定的限制。
第三种方法是基于高效液相色谱-质谱联用技术的检测与分析方法。
该方法通过将食品样品中的羟基自由基与特定荧光标记物结合,并利用高效液相色谱将其分离,再经质谱仪进行检测。
这种方法具有高度的分离能力和灵敏度,可以对复杂的食品样品进行分析,然而,由于设备和操作要求较高,因此在实际应用中的推广受到一定的制约。
综上所述,食品中羟基自由基的检测与分析方法研究对于保障食品的安全和健康至关重要。
目前已有多种方法被提出并应用于实际检测中,然而,每种方法都存在一定的局限性。
因此,未来的研究应该进一步发展新的检测与分析方法,提高检测灵敏度和分辨率,降低成本和操作的复杂性,以便更好地满足食品安全的需求。
此外,还需要加强与食品相关领域的合作,共同促进食品中羟基自由基的检测与分析方法的发展,为人们提供更加安全、健康的食品。
EPR 羟基自由基概述EPR(电子顺磁共振)是一种用于研究物质中未成对电子的技术。
其中,羟基自由基是一种重要的自由基,具有很高的化学和生物学活性。
本文将介绍羟基自由基的形成、性质、检测方法以及在化学和生物领域中的应用。
羟基自由基的形成羟基自由基(•OH)是一种高活性的氧化剂,通常通过以下途径形成: 1. 光解水:当光照射到水分子时,可以产生氢离子和羟基自由基。
2. 高能粒子辐射:如X射线、γ射线等能够引发水分子解离,生成羟基自由基。
3. 化学反应:某些化学反应中会产生羟基自由基,如Fenton反应等。
羟基自由基的性质羟基自由基具有以下重要性质: 1. 高度活性:羟基自由基具有很高的氧化还原能力,在许多生物和化学反应中起着重要作用。
2. 瞬态寿命短:羟基自由基具有很短的寿命,一般在纳秒到微秒的时间尺度内反应或消失。
3. 进一步反应性:羟基自由基可以与其他分子发生进一步反应,如与脂质、蛋白质、DNA等发生氧化反应。
羟基自由基的检测方法为了检测羟基自由基的存在和活性,科学家们开发了多种方法: 1. EPR技术:EPR技术是最常用的羟基自由基检测方法之一。
通过观察样品中未成对电子的共振吸收信号,可以确定羟基自由基的存在和浓度。
2. 化学探针:化学探针是一种能够与羟基自由基特异性反应并生成可观测信号的分子。
常用的化学探针包括DMPO (5,5-二甲氧基-1-吡咯烷氧酮)和DEPMPO(5,5-二乙氧甲氧酮)等。
3. 荧光探针:某些荧光探针可以与羟基自由基结合并产生荧光信号。
这种方法具有高灵敏度和选择性。
羟基自由基在化学领域中的应用羟基自由基在化学领域中有广泛的应用,包括: 1. 氧化反应:羟基自由基是一种强氧化剂,可以参与多种氧化反应,如有机合成中的氢原子脱除反应。
2. 自由基聚合:羟基自由基可以引发自由基聚合反应,从而合成具有特定结构和性质的高分子材料。
3. 氧化催化剂:羟基自由基可以作为催化剂参与氧化反应,例如Fenton反应中的羟基自由基起到催化剂的作用。
核磁共振测自由基一、简介核磁共振(NMR)是一种强大的无损检测技术,可以对物质的微观结构和动态行为进行深入探测。
自由基,作为许多生物化学反应中的重要活性分子,其检测和分析对于理解反应机制、评估生物医学应用以及环境监测等方面具有重要意义。
核磁共振技术为自由基的检测提供了一种非侵入、非破坏性的手段。
二、核磁共振的基本原理核磁共振技术基于原子核的自旋磁矩。
当这些磁矩在磁场中受到射频脉冲的激励时,它们会发生能级跃迁,释放出射频信号。
通过测量和分析这些信号,可以获得关于分子结构和动态行为的信息。
三、核磁共振在自由基检测中的应用1. 直接检测:一些自由基具有特征性的核磁共振信号,可以直接通过核磁共振谱进行检测和识别。
这种方法尤其适用于那些在生物体内具有重要功能的自由基,如超氧自由基(•O2-)和羟基自由基(•OH)。
2. 动态监测:核磁共振技术还可以用于监测自由基反应的动力学过程。
通过测量自由基浓度的变化,可以深入理解反应机制和反应速率。
这对于评估抗氧化剂、药物等对自由基反应的影响具有重要意义。
3. 结构分析:核磁共振技术结合化学位移和J耦合等参数,可以用于解析自由基的结构,例如取代基的位置和电子效应等。
这对于理解自由基的化学性质和反应活性非常关键。
4. 代谢物追踪:通过核磁共振技术,可以追踪自由基在生物体内的代谢过程,了解其在生物体内的分布和转化。
这对于研究自由基与疾病的关系以及药物开发具有重要意义。
四、核磁共振测自由基的挑战与前景尽管核磁共振技术在自由基检测中具有显著的优势,但仍面临一些挑战。
首先,某些自由基的信号弱、稳定性差,导致检测难度较大。
其次,生物体内的自由基浓度通常较低,这要求检测方法具有较高的灵敏度。
此外,自由基的短寿命和低丰度也给检测带来了挑战。
为了克服这些挑战,研究者们正在不断探索新的技术和方法。
例如,开发高灵敏度的探测器和检测系统,利用超导量子计算技术提高检测的分辨率和灵敏度等。
随着技术的不断进步,核磁共振技术在自由基检测中的应用将更加广泛和深入。
抗氧化/自由基检测的方法及步骤
一、技术简介
自由基是含有未成对电子的原子、分子或原子团。
它是线粒体在电子传递的过程中产生的,正常情况下,机体的自由基清除系统可使自由基的产生与消除保持在极低的动态平衡水平上,对机体是有利的。
但当体内蓄积过量自由基时,就会损伤细胞,导致动物组织或细胞的氧化损伤。
在抗氧化研究中,自由基的检测已成为至关重要的一环,得到了广泛的应用。
自由基检测的方法多种多样,包括自由基相关酶的测定,化学发光测定,吸光度法等。
以SOD检测为例,介绍其主要原理和实验流程。
超氧化物歧化酶(SOD)是一种抗氧化剂,其主要功能是清除机体内的自由基。
黄嘌呤氧化酶催化黄嘌呤产生超氧阴离子自由基,后者氧化羟胺成亚硝酸盐,亚硝酸盐在对氨基苯磺酸与甲萘胺作用下呈现紫红色,用可见光分光光度计测其吸光度。
当被测样品中含SOD时,则对超氧阴离子自由基有专一性抑止作用,使可形成的亚硝酸盐减少,比色时测定管的吸光度值低于空白管的吸光度值,通过公式计算可求出被测样品中SOD的活力。
二、实验流程
1. 从血液或组织中提取超氧化物歧化酶(SOD);
2. 设置测定管和对照管,加入相应的试剂;
3. 混匀,37℃恒温水浴30min;
4. 加入显色剂;
5. 吸光度检测;
6. 根据公式计算SOD活力。
自由基原位表征手段
自由基是一类具有单个未成对电子的高度反应性分子或原子,它们在生物体内可以引起氧化应激和细胞损伤。
原位表征手段用于研究自由基在生物体内的生成、活性和作用机制,可以帮助科学家更好地理解自由基相关的疾病发生机制和防治措施。
以下是一些常用的自由基原位表征手段:
1. 电子顺磁共振(EPR)谱:EPR谱是一种直接观测自由基的方法,通过测定自由基分子的电子自旋共振信号,可以定量分析自由基的生成和反应动力学。
2. 荧光探针:荧光探针可以用于检测细胞内的氧化应激水平,其中一些荧光探针可以特异性地与自由基反应产生荧光信号,用于定量测定自由基的生成量。
3. 活性氧检测试剂:活性氧检测试剂可以用于检测细胞内活性氧物质(如超氧阴离子、过氧化氢等)的生成,从而间接反映自由基的活性。
4. 单细胞成像技术:单细胞成像技术结合荧光探针可以实现对单个细胞内自由基的实时检测和成像,揭示自由基在细胞水平的动态变化过程。
5. 质谱分析:质谱分析可以通过分析自由基引起的产物,如氧化脂质、氧化蛋白等,来间接评估自由基的活性和作用。
这些原位表征手段可以帮助科学家深入了解自由基在生物体内的生成和作用机制,为疾病的预防和治疗提供重要参考。
高等有机化学教案——自由基(radical)教案概述:本教案旨在让学生理解自由基的概念、特性以及其在有机化学反应中的应用。
通过学习,学生将能够识别不同类型的自由基,掌握自由基反应的基本原理,并能够分析自由基反应机理。
教学目标:1. 理解自由基的概念及其特性。
2. 识别不同类型的自由基。
3. 掌握自由基反应的基本原理。
4. 分析自由基反应机理。
5. 能够应用自由基理论解释实际有机化学反应。
教学内容:第一章:自由基概述1.1 自由基的定义1.2 自由基的特性1.3 自由基的表示方法第二章:自由基的与检测2.1 自由基的途径2.2 自由基的检测方法2.3 自由基的实验观察第三章:自由基反应的基本原理3.1 自由基反应的类型3.2 自由基反应的机理3.3 自由基反应的条件第四章:不同类型的自由基反应4.1 氢自由基反应4.2 卤素自由基反应4.3 碳自由基反应第五章:自由基反应在有机合成中的应用5.1 自由基聚合反应5.2 自由基加成反应5.3 自由基取代反应教学方法:1. 讲授:讲解自由基的基本概念、特性和反应原理。
2. 实验演示:通过实验观察自由基的和反应。
3. 案例分析:分析具体自由基反应的机理和应用。
4. 讨论与提问:鼓励学生提问和参与讨论,加深对自由基反应的理解。
教学评估:1. 课堂参与度:评估学生提问和参与讨论的情况。
2. 练习题:布置相关的练习题,检验学生对自由基反应的理解。
3. 实验报告:评估学生在实验中的观察和分析能力。
教学资源:1. 教材:高等有机化学教材相关章节。
2. 实验材料:用于自由基反应实验的化学品和仪器。
3. 课件:用于辅助讲解和展示自由基反应的相关内容。
教学时间安排:1. 每章内容讲解时间:约45分钟。
2. 实验演示时间:约1小时。
3. 课堂讨论与提问时间:约15分钟。
4. 练习题和实验报告评估时间:课后自行完成。
第六章:自由基反应机理的深入分析6.1 自由基反应的链式过程6.2 自由基反应的链终止反应6.3 自由基反应的调控因素第七章:自由基反应动力学7.1 自由基反应速率定律7.2 自由基浓度的影响7.3 温度对自由基反应的影响第八章:自由基反应的立体化学8.1 自由基反应的立体选择性8.2 自由基反应的立体动力学8.3 自由基反应的立体化学控制第九章:自由基反应在生物体内的应用9.1 自由基反应与生物体内氧化应激9.2 自由基反应在生物体内的防御机制9.3 自由基反应在药物化学中的应用第十章:自由基反应的实际应用10.1 自由基聚合反应在材料科学中的应用10.2 自由基反应在有机合成中的应用案例分析10.3 自由基反应在其他领域的应用教案编辑专员提示:在编写教案时,应确保每个章节的教学目标和内容相互关联,形成一个完整的知识体系。
自由基浓度单位cm-3什么是自由基浓度?自由基浓度是指单位体积(一般为立方厘米)中存在的自由基的数量。
自由基是一类具有单个未成对电子的化学物质,其反应活性非常高,常常参与各种化学反应中。
自由基的存在与反应会对生物体和环境产生重要的影响。
自由基的产生来源自由基的产生来源很多,包括自然界中的太阳辐射、空气污染物、摄入的含有有害物质的食物、烟草烟雾等等。
此外,人体自身的新陈代谢也会产生自由基。
当这些来源增加时,自由基的浓度也会相应增加。
自由基的影响虽然自由基是生物体正常代谢过程中的产物,但其潜在的损害作用不能被忽视。
自由基可以与生物体中的脂质、蛋白质和核酸等分子发生反应,导致氧化损伤。
这种氧化损伤在许多疾病的发生和发展中起着重要作用,如心血管疾病、癌症、糖尿病等。
自由基的浓度测定方法测定自由基浓度是了解自由基相关反应机制和评估生物体的氧化应激状态的重要手段之一。
目前常用的自由基浓度测定方法主要有电子自旋共振(ESR)技术、流式细胞术、荧光探针法等。
其中,电子自旋共振(ESR)技术是目前应用最广泛的一种方法。
该技术通过利用自由基固有的未成对电子进行信号检测,来测定自由基的浓度。
这种方法具有高灵敏度和高特异性的优点,可以检测多种类型的自由基。
流式细胞术是一种通过流式细胞仪检测细胞中自由基浓度的方法。
该方法利用特定的荧光探针标记细胞中的自由基,通过流式细胞仪测定荧光强度来反映自由基浓度。
这种方法不仅能够测定自由基的浓度,还可以用来研究细胞内各个成分之间的相互作用。
荧光探针法是一种通过荧光分子与自由基发生化学反应而产生荧光信号来测定自由基浓度的方法。
这种方法可以快速、灵敏地测定自由基的浓度,并且可以应用于体内和体外样品的检测。
自由基浓度的调控在生物体内,自由基与抗氧化物质之间处于动态平衡,这种平衡状态对于维持生物体正常的功能和健康非常重要。
抗氧化物质能够与自由基发生反应,中和其活性,减轻其对生物分子的氧化损伤。
自由基及检测方法自由基是指具有未成对电子的化学物质分子或离子。
由于不稳定的电子结构,自由基往往具有高度反应性,常常与其他分子发生反应,对生物体和环境产生一定的危害。
因此,检测自由基的方法对于研究其活性和对策的制定非常重要。
首先,常见的检测自由基的方法有光谱法、电化学法和化学法。
1.光谱法:光谱法主要利用自由基与一些指示剂的发色反应,通过测量吸光度的变化来定量分析自由基的浓度。
例如,通过双氧水自由基法测定。
该方法将自由基和一定浓度的双氧水反应,自由基会被消耗,产生的氧会比较多,从而使溶液中的过量双氧水能够分解。
这种分解产生的氧气和标准溶液中的过量双氧水处理后产生的气相氧气一起,通过传递的管道,进入分光光度计中测定吸光度变化。
2.电化学法:电化学法主要是通过测量自由基在电极上的电流和电势来定量分析自由基的浓度。
常用的方法包括电化学阻抗谱法、循环伏安法和常规直线扫描伏安法。
其中,循环伏安法是常用的检测自由基的方法之一、循环伏安法通过改变电极电位并测量电流的变化来研究电化学反应,其中电流的变化与自由基的浓度相关。
3.化学法:化学法主要是利用自由基与一些化学试剂发生特定的反应,从而产生显色、发光等可测量的信号,进而定量分析自由基的浓度。
例如,常用的方法包括酸碱指示剂法和化学荧光法。
酸碱指示剂法通过改变溶液的酸碱度来测定自由基的浓度,原理是自由基的反应会改变溶液中的酸碱物质的浓度,从而改变颜色的变化。
而化学荧光法通过自由基与荧光试剂发生特定反应产生荧光,通过测量荧光的强度来定量分析自由基的浓度。
此外,还有一些特殊的检测方法:1.ESR(电子自旋共振)法:该方法依托于电子自旋共振光谱,通过测量自由基与电磁波之间的相互作用来分析自由基的存在与浓度。
具体操作是将样品放入ESR仪器中,通过照射样品产生磁场,使得自由基的电子自旋发生改变,进而可以观察到共振信号的变化。
2.活性氧自由基检测技术:活性氧自由基是一种特殊的自由基,可以通过特定的抗氧化物质捕捉或与特定的荧光染料反应来进行检测。
简述二氧化氮自由基的来源、清除和检测方法自由基,化学上也称为“游离基”,是含有一个不成对电子的原子团。
由于原子形成分子时,化学键中电子必须成对出现,因此自由基就到处夺取其他物质的一个电子,使自己形成稳定的物质。
在化学中,这种现象称为“氧化”。
我们生物体系主要遇到的是氧自由基,例如超氧阴离子自由基、羟自由基、脂氧自由基、二氧化氮和一氧化氮自由基。
加上过氧化氢、单线态氧和臭氧,通称活性氧。
体内活性氧自由基具有一定的功能,如免疫和信号传导过程。
但过多的活性氧自由基就会有破坏行为,导致人体正常细胞和组织的损坏,从而引起多种疾病。
如心脏病、老年痴呆症、帕金森病和肿瘤。
此外,外界环境中的阳光辐射、空气污染、吸烟、农药等都会使人体产生更多活性氧自由基,使核酸突变,这是人类衰老和患病的根源。
一般情况下,生命是离不开自由基活动的。
我们的身体每时每刻都从里到外的运动,每一瞬间都在燃烧着能量,而负责传递能量的搬运工就是自由基。
当这些帮助能量转换的自由基被封闭在细胞里不能乱跑乱窜时,它们对生命是无害的。
但如果自由基的活动失去控制,超过一定的量,生命的正常秩序就会被破坏,疾病可能就会随之而来。
特别是二氧化氮自由基,随着吸烟者人数的增加、空气环境的污染程度的加重,都直接或间接的导致了人体内二氧化氮自由基数量的增加。
N02主要来源于煤炭燃烧和汽车尾气排放,室内N02主要来源于燃煤灶、燃气灶的使用和抽烟等。
近年来,关于N02诱导各类疾病病死率上升的流行病学数据大量涌现,特别是有学者指出,N02会影响心脑血管系统和神经功能,并提示肺和支气管不是N02毒性作用的唯一靶器官。
因此在第一部分实验中,我们首先对正常大鼠进行了不同浓度(0、5、10和20 mg/m3) N02的吸入染毒处理,进而从氧化应激、炎性反应和细胞凋亡等多个角度考察了N02对心脑组织的毒性作用。
所以说自由基是一把双刃剑。
认识自由基,了解自由基对人体的作用,对健康十分必要。
ESR电子顺磁共振(EPR)或称电子自旋共振(ESR)现象最早发现于1944年。
它利用具有未成对电子的物质在磁场作用下吸收电磁波的能量使电子发生能级间的跃迁的特征,对顺磁性物质进行检测与分析。
自旋捕集方法是将不饱和的抗磁性化合物(自旋捕集剂)加入反应体系,与反应体系中产生的各种活性高、寿命短的自由基结合形成相对稳定的自旋加合物,以适于ESR检测其原理是利用适当的自旋捕捉剂与活泼的短寿命自由基结合,生成相对稳定的自旋加合物,可以用电子自旋共振波谱法检测自旋加合物的数量,利用自旋加合物的数量来计算原来自由基的多少。
H:V:ESR测自由基是怎么被检测的(细胞,组织,溶液?体内,体外?)(MGD)2 - Fe2 +,是含有10mmol·L- 1MGD 和2mmol·L- 1FeSO4的溶液。
体外捕集:处死后取组织(血液、细胞),加入捕集剂,ESR测定体内捕集:腹腔注射捕集剂,处死取组织(血液、细胞),ESR测定腹腔注射几乎没有检测到自由基信号,或者信号很弱,而处死后样品加捕获剂则可以检测到自由基信号。
通用捕获剂典型的自旋捕捉剂是亚硝基化合物或氮氧化合物,把足够量的自旋捕捉剂加入到产生自由基的体系中,自旋捕获剂就会快速地和任何出现的自由基反应,最后给出稳定的可检测的氮样氧自由基加合物。
所形成的自由基加合物的ESR 谱上有被捕自由基基因给出的超精细分裂,可鉴别被捕自由基通用自旋捕获剂所形成的自由基加合物对自由基结构变化相当敏感,ESR 技术检测O-2O-2可以与1,2-二羟基苯-3,5-二磺酸钠(Tiron)(钛铁试剂)快速反应生成一种称之为“Tiron 半醌自由基”的自旋加合物,比较稳定,可在室温下应用电子顺磁共振波谱仪(EPR)进行检测,从而解决了生理条件下水溶液中寿命极其短暂的O-2·的定性和定量问题ESR 技术检测·OHDMPO作自由基捕获剂对自由基结构变化相当敏感,可以提供自由基结构的详细信息。
ESR电子顺磁共振(EPR)或称电子自旋共振(ESR)现象最早发现于1944年。
它利用具有未成对电子的物质在磁场作用下吸收电磁波的能量使电子发生能级间的跃迁的特征,对顺磁性物质进行检测与分析。
自旋捕集方法是将不饱和的抗磁性化合物(自旋捕集剂)加入反应体系,与反应体系中产生的各种活性高、寿命短的自由基结合形成相对稳定的自旋加合物,以适于ESR检测其原理是利用适当的自旋捕捉剂与活泼的短寿命自由基结合,生成相对稳定的自旋加合物,可以用电子自旋共振波谱法检测自旋加合物的数量,利用自旋加合物的数量来计算原来自由基的多少。
H:V:ESR测自由基是怎么被检测的(细胞,组织,溶液?体内,体外?)(MGD)2 - Fe2 +,是含有10mmol·L- 1MGD 和2mmol·L- 1FeSO4的溶液。
体外捕集:处死后取组织(血液、细胞),加入捕集剂,ESR测定体内捕集:腹腔注射捕集剂,处死取组织(血液、细胞),ESR测定腹腔注射几乎没有检测到自由基信号,或者信号很弱,而处死后样品加捕获剂则可以检测到自由基信号。
通用捕获剂典型的自旋捕捉剂是亚硝基化合物或氮氧化合物,把足够量的自旋捕捉剂加入到产生自由基的体系中,自旋捕获剂就会快速地和任何出现的自由基反应,最后给出稳定的可检测的氮样氧自由基加合物。
所形成的自由基加合物的ESR 谱上有被捕自由基基因给出的超精细分裂,可鉴别被捕自由基通用自旋捕获剂所形成的自由基加合物对自由基结构变化相当敏感,ESR 技术检测O-2O-2可以与1,2-二羟基苯-3,5-二磺酸钠(Tiron)(钛铁试剂)快速反应生成一种称之为“Tiron 半醌自由基”的自旋加合物,比较稳定,可在室温下应用电子顺磁共振波谱仪(EPR)进行检测,从而解决了生理条件下水溶液中寿命极其短暂的O-2·的定性和定量问题ESR 技术检测·OHDMPO作自由基捕获剂对自由基结构变化相当敏感,可以提供自由基结构的详细信息。
它与·OH产生的自旋加合物的ESR谱表现出特别容易识别的特征谱线。
在溶液中容易形成的自我捕集产物二聚体自由基不会干扰实验结果。
ESR 技术检测血红蛋白结合的一氧化氮在组织或血液中,一氧化氮大多与氧或过渡金属反应生成了硝酸盐或亚硝酸盐以及一氧化氮与金属的配合物。
一氧化氮与血红蛋白的结合速率常数非常高,而且能够得到有特征的ESR 波谱。
利用这一性质,我们可以用血红蛋白作为一氧化氮的捕集剂检测一氧化氮自由基。
但是,HbNO 极易氧化,这就限制了这种方法在富氧条件下的应用。
ESR 技术检测生物体系产生的一氧化氮一氧化氮与含金属蛋白反应产生的亚硝酰的金属配合物,往往会抑制细胞中许多重要的酶,对细胞产生毒害作用。
目前应用较多的捕集剂的有Fe2+- (DETC)2,它可与一氧化氮形成稳定的单亚硝酰-铁配合物MNIC,给出特征的ESR 波谱。
但由于Fe2+-( DETC)2不溶于水,在一定程度上限制了它的使用。
铁配合物捕集一氧化氮的最新进展得益于Komarov等人的研究,他们使用DETC 的衍生物MGD,与亚铁离子合成稳定的亲水性配合( MGD)2- Fe2+,该配合物易溶于水( MGD)2-Fe2+非常适合捕集检测活细胞或组织中放的一氧化氮。
但MNIC-DETC为疏水性物质,MNIC-MGD 为亲水性物质; MNIC-DETC 可附着于细胞膜甚至进入细胞,而MNIC-MGD 不能进入细胞。
因此,根据其各自的特性,实验中应选取不同的捕捉剂。
分光光度法概念:是利用物质所特有的吸收光谱来鉴别物质或测定其含量的一项技术。
特点:灵敏度高、精确度高、操作简便、快速。
对于复杂的组分系统,无须分离即可检测出其中所含的微量组分的特点。
原理:利用自由基使显色剂发生颜色变化, 根据吸光度的变化值而间接测得自由基的含量1、羟基自由基1.1 水杨酸法Fenton 反应产生·OH, ·OH 氧化水杨酸得到2 , 3-二羟基苯甲酸, 用其在510 nm 处的吸光度值表示·OH的多少, 吸光度值与·OH的量成正比。
1.2 细胞色素C 氧化法其反应机理为·OH能使还原型细胞色素C(浅红色)氧化成氧化型细胞色素C(浅黄色) 通过测定反应体系中吸光度的减少量(550 nm) , 间接测得·OH的含量。
1.3 脱氧核糖法采用Fe3 +-EDTA-抗坏血酸-过氧化氢体系产生·OH。
此方法中脱氧核糖作为·OH的攻击目标。
脱氧核糖受·OH攻击后裂解, 在酸性、加热的条件下可与硫代巴比妥酸反应生成红色化合物。
可根据在532 nm 处测定的吸光度值来间接反映·OH的含量。
1.4 DMSO羟自由基氧化DMSO生成的甲醛与2,4-二硝基苯肼(DNPH)反应在碱性条件下生成稳定的酒红色腙类物质,其最大吸收波长为390nm,分光光度法测定其含量可间接测定羟自由基的生成量。
1.5氧化褪色分光光度法亚甲兰(MB)、二甲基亚砜(DMSO)、溴邻苯三酚红(BPR)、茜素紫、邻二氮菲-Fe2+ Fenton 反应产生·OH, ·OH使邻二氮菲-Fe2+氧化为邻二氮菲-Fe3+, 使邻二氮菲-Fe2+在536 nm 处的最大吸收峰消失。
根据536 nm 处吸光度变化判断受试物清除·OH的能力。
需要注意的是, 测定时加样方法对结果有重要影响, 需先将邻二氮菲、PBS 及水混匀, 并且每管加入FeSO4后立即混匀, 否则会使局部颜色过浓, 影响结果的重复性。
2、超氧自由基超氧自由基的分光光度法测定, 最常用的方法有细胞色素 C 的超氧自由基还原法和硝基四氮唑蓝(nitro bluetetrazolium , NBT) 还原法。
具有氧化活性的细胞色素C被O2-还原后, 形成了在波长550 nm 处有强吸收的亚铁细胞色素, 可以用于O2-的测定。
但是, 细胞色素C还原法的体系中如果存在着其他还原性物质便会对结果造成干扰, 如还原性酶的干扰。
NBT 在O2-的作用下, 还原生成不溶于水、蓝色的二甲臜(Diformazan), 它的最大吸收波长560 nm , 吸光系数达10000 以上, 测定灵敏度相当高。
肾上腺素氧化法以肾上腺素氧化为肾上腺素红作为O2-生成的指标。
测定310 nm处肾上腺素红的产量可间接测出反应体系的O2-含量。
该法操作简便, 而且灵敏度可以设法增加, 但干扰因素较多。
在羟胺氧化法中O2-可氧化羟胺生成亚硝酸根,在酸性条件下, 亚硝酸与氨基苯磺酸和N2甲奈基二氨基乙烯反应生成红色化合物, 后者在530 nm 处有最大吸收峰,测定在530 nm 处的吸光度变化, 可以间接的反映O2-的含量, 但是该方法存在一定的缺点, 如甲萘胺溶液不稳定、空白值较大等。
3、NOGriess 试剂由磺酸( sulpheilic acid) 和萘乙二胺组成。
在酸性条件,这一试剂可以与亚硝酸盐反应生成红色物质在545 --555 nm 有一个最大吸收。
可以用分光光度计检测。
Griess 试剂法最大的优点是简便易行,通常只需要将试剂加入待测的样品中即可。
但是这种简单做法在生物体系中却常常不能准确反映一氧化氮的生成量。
因为一氧化氮会发生反应,并依环境及时间按一定比例生成亚硝酸盐或硝酸盐。
另外,某些生物体系如血液,尿液及体液中本身就存在一定浓度的硝酸盐和亚硝酸盐,这就需要使传统的Griess 法与新的技术相结合,增加灵敏度并同时检测硝酸盐及亚硝酸盐的含量4、CATCAT作用于底物中过氧化氢,使过氧化氢分解成水和氧气,体系中残留的过氧化氢再与钼酸胺作用生成黄色复合物,其呈色的深浅可用分光光度计进行测定,从而反应出过氧化氢酶活性,是一个简易快速及精确的检验方法。
5.SOD5.1 细胞色素C还原法细胞色素C还原法(McCord法):原理是黄嘌呤-黄嘌呤氧化酶体系中产生的O2-使一定量的氧化型细胞色素C还原为还原型细胞色素C,后者在550nm有最大光吸收。
在SOD存在时,由于一部分O2-被SOD催化而歧化O2-还原细胞色素C的反应速度则相应减少,即其反应受到抑制。
将抑制反应的百分数与SOD浓度作图可得到抑制曲线,由此计算样品中SOD 活性。
本法是间接法中的经典方法,但本法灵敏度较低。
5.2 NBT法O2-可将氮蓝四唑还原为蓝色的甲腙,后者在560nm处有最大吸收。
而SOD可清除O2-,从而抑制了甲腙的形成。
于是光还原反应后,反应液蓝色愈深,说明酶活性愈低,反之酶活性愈高。
一个酶活力单位定义为将NBT的还原抑制到对照一半(50%)时所用的酶量。
5.3邻苯三酚自氧化法利用邻苯三酚在碱性条件下能迅速自氧化,释放出O2-,生成带色的中间产物。
反应开始后先变成黄绿色,几分钟后转为绿色,最后转变为黄色。
黄绿色产物在325nm处测定溶液的吸光度。
加入酶液使O2-歧化,产生O2和H2O2,是中间产物不能累积。
酶活性单位采用1mL反应液中每分钟抑制邻苯三酚自氧化速率达50%时的酶定量为一个活力单位。
邻苯三酚自氧化速率随其浓度的升高而增加。
6、GSH-Px谷胱甘肽过氧化物酶(GSH-Px)是机体内广泛存在的一种重要的过氧化物分解酶。
GSH-Px的活性中心是硒半胱氨酸,其活力大小可以反映机体硒水平。
硒是GSH-Px酶系的组成成分,它能催化GSH变为GSSG,使有毒的过氧化物还原成无毒的羟基化合物,从而保护细胞膜的结构及功能不受过氧化物的干扰及损害。
谷胱甘肽过氧化物酶(GSH-Px)是体内存在的一种含硒清除自由基和抑制自由基反应的系统。
对防止体内自由基引起膜脂质过氧化特别重要,其活力以催化GSH氧化的反应速度,及单位时间内GSH减少的量来表示,GSH和5,5’-二硫对硝基苯甲酸(DTNB)反应在GSH-Px催化下可生成黄色的5-硫代2-硝基苯甲酸阴离子,于423nm波长有最大吸收峰,测定该离子浓度,即可计算出GSH减少的量,由于GSH能进行非酶反应氧化,所以最后计算酶活力时,必须扣除非酶反应所引起的GSH减少。
总体上来说, 分光光度法操作简单, 费用少, 仪器设备价格低廉, 但存在检测的灵敏度较低, 检测限较高, 专一性不强等缺点。
分光光度如何定量根据朗博(Lambert)-比尔(Beer)定律:A=abc式中A为吸光度,b为溶液层厚度(cm),c为溶液的浓度(g/dm3),a为吸光系数。
其中吸光系数与溶液的本性、温度以及波长等因素有关。
化学发光法(CL)化学发光的原理是发光剂被自由基氧化成激发态,反应物或产物分子从中获得能量的电子激发,形成电子激发态, 当返回基态时, 以发射光子的形式释放能量, 这一过程称为化学发光(CL) 。