自由基及检测方法
- 格式:pdf
- 大小:120.16 KB
- 文档页数:8
生物体系中自由基检测方法评述
1自由基检测方法
自由基产生是生物体系中一个重要的活动,它的检测方法有多种,其中最常用的方法就是自由基检测方法。
自由基检测技术是用来识别和定量危害生物体积质的最有效的方法。
自由基检测方法是通过分析活性自由基来检测外界干扰和内部诱导影响生物体系时产生的自由基。
自由基检测使用了一些特定的荧光指示剂,这些荧光指示剂与受检物体中含有的活性自由基物质发生化学反应,然后荧光指示剂产生强荧光信号,这样就可以用仪器检测,然后从细胞参数中获得更多的信息。
2特点
自由基检测方法有一些显著的优势,比如准确性高、快速、可以定量化,可以直接应用于生物体系中,而且不受探测物质形态或其他变量的影响,可以灵敏检测出低活性自由基水平。
另外,专门的多种指示剂也可以检测出多种不同形式的活性自由基,灵敏度也比较高,而且这种技术的操作也很简单。
3局限性
虽然自由基检测技术具有许多优点,但也有一些局限性,比如受到光的干扰,结果不够可控,而且价格也比较贵,不能检测出非光表达的系统,比如水溶性的自由基。
总的来说,自由基检测方法是一种生物体系中自由基检测的重要方法,它在检测外界干扰和内部诱导影响动态变化中具有重要的作用,它操作方便、灵敏度高,而且可以采集大量信息,但也存在一些不可避免的局限性,因此在应用中还需根据具体情况结合其他技术使用,以便得到最佳效果。
清除DPPH自由基能力检测方法清除DPPH自由基能力是用来评价化合物在体外是否具有抗氧化活性的一种常用方法。
DPPH自由基是一种常用的自由基模型,其具有紫色,可通过其吸收峰的变化来反映清除能力。
以下是常用的几种用于检测清除DPPH自由基能力的方法:1.分光光度法分光光度法是一种常用的检测方法,基本原理是通过测量化合物与DPPH反应后的溶液吸光度的变化来评估清除DPPH自由基能力。
实验过程如下:1)准备1mM的DPPH乙醇溶液。
2)将待测化合物按一定浓度体系添加到相应的试管中。
3)将相同体积的DPPH溶液加入到每个试管中,混匀。
4)放置在室温下,静置反应30分钟。
5)使用紫外可见分光光度计测量反应体系的吸光度,计算清除率。
2.电子顺磁共振法(EPR)电子顺磁共振法是另一种常用的方法,通过测量化合物对DPPH自由基的清除能力,进而评估其抗氧化活性。
实验过程如下:1)准备含有DPPH和待测化合物的溶液。
2)使用电子顺磁共振仪测量样品的EPR信号,同时测量含有DPPH和不含DPPH的样品作为参比。
3)通过比较样品与参比的EPR信号来计算清除率。
3.原子力显微镜方法(AFM)原子力显微镜方法是一种非常灵敏的方法,可以用于直接观察化合物对DPPH自由基的清除作用。
实验过程如下:1)制备DPPH自由基薄膜。
2)将待测化合物沉积到DPPH自由基薄膜上。
3)使用原子力显微镜观察样品的表面形态变化。
4)通过观察DPPH颜色的变化和表面形态的变化来评估清除率。
4.荧光法荧光法是一种快速、灵敏且简便的检测方法,利用化合物与DPPH反应后荧光上转换的变化来评估清除DPPH自由基能力。
实验过程如下:1)制备DPPH乙醇溶液。
2)将待测化合物与DPPH溶液混合。
3)使用荧光光谱仪测量样品的荧光强度的变化。
4)通过荧光强度的变化来计算清除率。
总结:以上所述是几种常用于检测清除DPPH自由基能力的方法,分别基于吸光度、EPR、AFM和荧光等原理。
荧光探针的合成及自由基检测研究摘要荧光分析法在生物化学、医学、工业和化学研究中的应用与日俱增,其原因在于荧光分析法具有高灵敏度的优点,且荧光现象具有有利的时间表度。
由于物质分子结构不同,其所吸收光的波长和发射的荧光波长也不同,利用这一特性可以定性鉴别物质。
荧光探针技术是一种利用探针化合物的光物理和光化学特性,在分子水平上研究某些体系的物理、化学过程和检测某种特殊环境材料的结构及物理性质的方法。
该技术不仅可用于对某些体系的稳态性质进行研究,而且还可对某些体系的快速动态过程如对某种新物种的产生和衰变等进行监测。
这种技术具备极高的灵敏性和极宽的动态时间响应范围的基本特点。
羟基自由基(HO·)和超氧阴离子自由基(O2-·)是生物体内活性氧代谢产生的物质,当体内蓄积过量自由基时,它能损伤细胞,进而引起慢性疾病及衰老效应。
因此,近些年来人们为了预防这类疾病的发生,自由基的研究已逐渐成为热点。
而快速、灵敏和实用的自由基检测方法就显得十分重要。
荧光探针检测自由基具有操作简便、响应迅速、选择性高等多种优点,我们将着重研究一类苯并噻唑结构荧光探针的合成及其对超氧阴离子自由基(O2-·)的检测。
关键词:荧光探针,苯并噻唑,超氧阴离子自由基,自由基检测SYNTHESIS OF FLUORESCENT PROBES AND DETECTION OF FREE RADICALSABSTRACTApplications of fluorescence analysis method in biochemistry, medicine, industry and chemical research grow with each passing day, the reason is that fluorescence analysis method has the advantages of high sensitivity, and the flurescence phenomenon has a favorable time characterization. Since the molecular structure of different materials, the absorption wavelength and fluorescence wavelength of the emitted light is different, this feature can be characterized using differential substances. Fluorescent probe technology is a method using photophysical and photochemical properties for researching some systems’physical and chemical process at the molecular level and detecting a particular structure and physical property of the special environment material. This technology not only can be used for steady-state nature of certain system, but also can monitore fast dynamic processes of a certain system such as the production and decay of a new species. This technology has the basic characteristics of a high degree of sensitivity and very wide dynamic range response time. Hydroxyl radical(HO-·)and superoxide anion radical(O2-·) is a substance produced in vivo metabolism of reactive oxygen species. When the body accumulates excess free radicals that will damage cells thereby causing chronic diseases and aging effects. Thus, in recent years people in order to prevent the occurrence of such diseases, the study of free radicals has become a hot spot. And fast, sensitive and practical method for the detection is very important. Using the fluorescent probes for the detection of free radicals is a simple, quick response, high selectivity variety of advantages. We will focus on the study of a classof synthetic fluorescent probes of benzothiazole structure and detection of superoxide anion radical.Key words:Fluorescent probes, Benzothiazole, Superoxide anion radical, Detection of free radicals目录1 绪论 (1)1.1 引言 (1)1.2 荧光 (1)1.2.1 荧光的产生 (1)1.2.2 荧光探针结构特点 (2)1.2.3 荧光探针传感机理 (3)1.2.4 常见荧光团 (3)1.2.5 荧光探针的性能 (5)1.2.6 影响荧光探针性能的因素 (5)1.2.7 荧光淬灭 (5)1.3 自由基 (6)1.3.1 自由基的间接检测技术 (6)1.3.2 自由基的直接检测技术 (7)1.4 研究现状 (8)1.4.1 超氧化物歧化酶(SOD)的检测 (8)1.4.2 2-(2-吡啶)-苯并噻唑啉荧光探针 (8)1.4.3 PF-1和PNF-1 (8)1.4.4 香草醛缩苯胺 (8)1.4.5 Hydroethidine类荧光探针 (9)1.4.6 二(2,4-二硝基苯磺酰基)二氟荧光素 (9)1.5 选题背景和意义 (10)1.6 课题研究内容 (10)2 荧光探针的合成 (11)2.1 引言 (11)2.2 还原文献 (11)2.3 新探针合成 (11)2.3.1 2-(4-二甲氨基苯)-苯并噻唑 (11)2.3.2 2-(4-氰基苯)-苯并噻唑 (12)2.3.3 2-(苯)-苯并噻唑 (12)2.3.4 2-(4-甲基苯)-苯并噻唑 (12)2.3.5 2-(4-硝基苯)-苯并噻唑 (13)2.3.6 2-(水杨醛)-苯并噻唑 (13)2.4 合成小结 (14)2.5 实验药品及规格 (14)2.6 实验仪器及型号 (15)3 实验结果与讨论 (16)3.1 引言 (16)3.2 荧光性能测试 (16)3.2.1 荧光性能待测溶液配制 (16)3.2.2 荧光性能测试结果 (16)3.2.3 测试谱图 (17)3.3 1H NMR数据 (21)3.3.1 2-(2-吡啶)-苯并噻唑 (21)3.3.2 2-(4-二甲氨基苯)-苯并噻唑 (22)3.3.3 2-(4-氰基苯)-苯并噻唑 (23)3.3.4 2-(苯)-苯并噻唑 (24)3.3.5 2-(4-甲基苯)-苯并噻唑 (25)3.3.6 2-(水杨醛)-苯并噻唑 (25)3.3.7 2-(2-噻吩)-苯并噻唑 (26)3.4 反应条件控制及处理 (27)3.5 结论与展望 (27)参考文献 (28)致谢 (30)译文及原文 (31)1 绪论1.1 引言荧光分析法在生物化学、医学、工业和化学研究中的应用与日俱增, 其原因在于荧光分析法具有高灵敏度的优点, 且荧光现象具有有利的时间表度。
第31卷第4期吉林医药学院学报V01.31N o.42010年08月Jour nal of J il in M ed i cal C ol l eg e A ug.2010—239一文章编号:1673-2995(2010)04-0239-02自由基的临床检测方法C l i ni cal de t e ct i on m e t hod of f r ee r adi ca l s综述潘黎明1,艾一玖“,林艳茹3(1.北华大学医学检验学院,吉林吉林132013;2.吉林医药学院附属医院,吉林吉林132013;3.北华大学临床医学院,吉林吉林132013)摘要:自由基极不稳定,半衰期短,具有很强的氧化能力,因此在生物体内具有重要的生物学意义。
大量的研究结果表明自由基与许多疾病的发生有密切的关系。
其反应特点为连锁反应,一经启动即可连续发生,且损伤作用累积,其临床检测对疾病的预防有重要的意义。
关键词:自由基;检测;临床应用;基层医院中图分类号:R446.1文献标识码:A近年来随着人们健康意识的提高,疾病的预防和抗衰老越来越受到人们的关注。
众多研究成果显示,自由基不仅关系到人类的衰老,而且与许多疾病的发生、发展和治疗密切有关…。
自由基对人体的损伤作用是累积的【2J,所以如果人们在其累积初期就发现它,就可以预防很多疾病的发生。
目前自由基的检测方法有很多种,按原理分类主要有分光光度法、化学发光法、高效液相色谱法、电--FIJ顷磁共振技术、电化学法、荧光方法和毛细管电泳法,每种方法都有自己不同的特点和适用范围口J。
广义的自由基检测分为三个部分:自由基直接间接检测、自由基清除酶系检测和自由基相关代谢产物的检测。
在临床上应用对检测方法有一定的要求,例如要体外检测,所需费用要在检测者能承受的范围,操作不能太繁琐等等。
本文主要介绍针对医学上疾病的预防、亚健康状态检查和基层医院的临床应用的一些自由基检测方法。
l自由基自由基(f r ee r adi cal)或称游离基(r adi ca l),是指具有未配对价电子(即外层轨道具有奇数电子)的原子、原子团或分子,如H,C l,O H,R O,R00,N O,N O:,0:。
食品中羟基自由基的检测与分析方法研究食品的安全与健康一直是人们关注的焦点,而其中一个重要的方面就是食品中羟基自由基的检测与分析。
羟基自由基是一种具有高度活性的氧自由基,它可以对人体产生负面影响,包括氧化脂质、蛋白质以及DNA等,从而导致各种疾病的发生。
因此,对食品中羟基自由基的检测与分析方法的研究具有重要的意义。
目前,食品中羟基自由基的检测与分析方法主要有以下几种。
第一种方法是基于化学荧光的检测与分析方法。
这种方法利用羟基自由基与特定荧光探针反应后产生荧光信号的原理,通过测量荧光信号的强度来检测食品中羟基自由基的含量。
这种方法具有操作简便、检测灵敏度高等优点,然而,由于化学荧光探针具有一定的选择性,因此,对于复杂的食品样品,这种方法的适用性存在一定的局限性。
第二种方法是基于电子自旋共振的检测与分析方法。
这种方法利用食品中羟基自由基与特定自旋探针之间的相互作用,从而产生特定的共振信号。
通过检测共振信号的强度和形状,可以推断出食品中羟基自由基的含量和分布。
这种方法具有高度的分辨率和灵敏度,但是由于设备成本高昂且操作复杂,因此在实际应用中受到一定的限制。
第三种方法是基于高效液相色谱-质谱联用技术的检测与分析方法。
该方法通过将食品样品中的羟基自由基与特定荧光标记物结合,并利用高效液相色谱将其分离,再经质谱仪进行检测。
这种方法具有高度的分离能力和灵敏度,可以对复杂的食品样品进行分析,然而,由于设备和操作要求较高,因此在实际应用中的推广受到一定的制约。
综上所述,食品中羟基自由基的检测与分析方法研究对于保障食品的安全和健康至关重要。
目前已有多种方法被提出并应用于实际检测中,然而,每种方法都存在一定的局限性。
因此,未来的研究应该进一步发展新的检测与分析方法,提高检测灵敏度和分辨率,降低成本和操作的复杂性,以便更好地满足食品安全的需求。
此外,还需要加强与食品相关领域的合作,共同促进食品中羟基自由基的检测与分析方法的发展,为人们提供更加安全、健康的食品。
核磁共振测自由基一、简介核磁共振(NMR)是一种强大的无损检测技术,可以对物质的微观结构和动态行为进行深入探测。
自由基,作为许多生物化学反应中的重要活性分子,其检测和分析对于理解反应机制、评估生物医学应用以及环境监测等方面具有重要意义。
核磁共振技术为自由基的检测提供了一种非侵入、非破坏性的手段。
二、核磁共振的基本原理核磁共振技术基于原子核的自旋磁矩。
当这些磁矩在磁场中受到射频脉冲的激励时,它们会发生能级跃迁,释放出射频信号。
通过测量和分析这些信号,可以获得关于分子结构和动态行为的信息。
三、核磁共振在自由基检测中的应用1. 直接检测:一些自由基具有特征性的核磁共振信号,可以直接通过核磁共振谱进行检测和识别。
这种方法尤其适用于那些在生物体内具有重要功能的自由基,如超氧自由基(•O2-)和羟基自由基(•OH)。
2. 动态监测:核磁共振技术还可以用于监测自由基反应的动力学过程。
通过测量自由基浓度的变化,可以深入理解反应机制和反应速率。
这对于评估抗氧化剂、药物等对自由基反应的影响具有重要意义。
3. 结构分析:核磁共振技术结合化学位移和J耦合等参数,可以用于解析自由基的结构,例如取代基的位置和电子效应等。
这对于理解自由基的化学性质和反应活性非常关键。
4. 代谢物追踪:通过核磁共振技术,可以追踪自由基在生物体内的代谢过程,了解其在生物体内的分布和转化。
这对于研究自由基与疾病的关系以及药物开发具有重要意义。
四、核磁共振测自由基的挑战与前景尽管核磁共振技术在自由基检测中具有显著的优势,但仍面临一些挑战。
首先,某些自由基的信号弱、稳定性差,导致检测难度较大。
其次,生物体内的自由基浓度通常较低,这要求检测方法具有较高的灵敏度。
此外,自由基的短寿命和低丰度也给检测带来了挑战。
为了克服这些挑战,研究者们正在不断探索新的技术和方法。
例如,开发高灵敏度的探测器和检测系统,利用超导量子计算技术提高检测的分辨率和灵敏度等。
随着技术的不断进步,核磁共振技术在自由基检测中的应用将更加广泛和深入。
抗氧化/自由基检测的方法及步骤
一、技术简介
自由基是含有未成对电子的原子、分子或原子团。
它是线粒体在电子传递的过程中产生的,正常情况下,机体的自由基清除系统可使自由基的产生与消除保持在极低的动态平衡水平上,对机体是有利的。
但当体内蓄积过量自由基时,就会损伤细胞,导致动物组织或细胞的氧化损伤。
在抗氧化研究中,自由基的检测已成为至关重要的一环,得到了广泛的应用。
自由基检测的方法多种多样,包括自由基相关酶的测定,化学发光测定,吸光度法等。
以SOD检测为例,介绍其主要原理和实验流程。
超氧化物歧化酶(SOD)是一种抗氧化剂,其主要功能是清除机体内的自由基。
黄嘌呤氧化酶催化黄嘌呤产生超氧阴离子自由基,后者氧化羟胺成亚硝酸盐,亚硝酸盐在对氨基苯磺酸与甲萘胺作用下呈现紫红色,用可见光分光光度计测其吸光度。
当被测样品中含SOD时,则对超氧阴离子自由基有专一性抑止作用,使可形成的亚硝酸盐减少,比色时测定管的吸光度值低于空白管的吸光度值,通过公式计算可求出被测样品中SOD的活力。
二、实验流程
1. 从血液或组织中提取超氧化物歧化酶(SOD);
2. 设置测定管和对照管,加入相应的试剂;
3. 混匀,37℃恒温水浴30min;
4. 加入显色剂;
5. 吸光度检测;
6. 根据公式计算SOD活力。
tmb检测羟基自由基实验报告本试剂盒应用双抗体夹心法测定标本中大鼠羟基自由基(HO·)水平。
用纯化的大鼠羟基自由基(HO·)抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入羟基自由基(HO·),再与HRP标记的羟基自由基(HO·)抗体结合,形成抗体-抗原-酶标抗体复合物,经过彻底洗涤后加底物TMB显色。
TMB在HRP酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。
颜色的深浅和样品中的羟基自由基(HO·)呈正相关。
用酶标仪在450nm波长下测定吸光度(OD值),通过标准曲线计算样品中大鼠羟基自由基(HO·)浓度。
样本处理及要求:1. 血清:室温血液自然凝固10-20分钟,离心20分钟左右(2000-3000转/分)。
仔细收集上清,保存过程中如出现沉淀,应再次离心。
2. 血浆:应根据标本的要求选择EDTA或柠檬酸钠作为抗凝剂,混合10-20分钟后,离心20分钟左右(2000-3000转/分)。
仔细收集上清,保存过程中如有沉淀形成,应该再次离心。
3. 尿液:用无菌管收集,离心20分钟左右(2000-3000转/分)。
仔细收集上清,保存过程中如有沉淀形成,应再次离心。
胸腹水、脑脊液参照实行。
4. 细胞培养上清:检测分泌性的成份时,用无菌管收集。
离心20分钟左右(2000-3000转/分)。
仔细收集上清。
检测细胞内的成份时,用PBS(PH7.2-7.4)稀释细胞悬液,细胞浓度达到100万/ml左右。
通过反复冻融,以使细胞破坏并放出细胞内成份。
离心20分钟左右(2000-3000转/分)。
仔细收集上清。
保存过程中如有沉淀形成,应再次离心。
5. 组织标本:切割标本后,称取重量。
加入一定量的PBS,PH7.4。
用液氮迅速冷冻保存备用。
标本融化后仍然保持2-8℃的温度。
加入一定量的PBS(PH7.4),用手工或匀浆器将标本匀浆充分。
离心20分钟左右(2000-3000转/分)。