随机型时间序列
- 格式:pptx
- 大小:663.74 KB
- 文档页数:35
时间序列的成分可以分为四种:趋势(T)、季节性或季节变动(S)、周期性或循环波动(C)、随机性或不规则波动(I)。
时间序列可以分为平稳序列和非平稳序列两大类。
平稳序列是基本上不存在趋势的序列。
这类序列中的各观察值基本上在某个固定的水平上波动,虽然在不同的时间段波动的程度不同,但并不存在某种规律,波动可以看成是随机的。
非平稳序列(non-stationary series)是包含趋势、季节性或周期性的序列,它可能只含有其中一种成分,也可能含有几种成分。
因此非平稳序列又可以分为有趋势的序列、有趋势和季节性的序列、几种成分混合而成的复合型序列。
趋势(Trend):是时间序列在长期内呈现出来的某种持续上升或持续下降的变动,也称长期趋势。
时间序列中的趋势可以是线性的,也可以是非线性的。
季节性(seasonality)也称季节变动(seasonal fluctuation),它是时间序列在一年内重复出现的周期性波动。
例如:在商业活动中,常常听到的“销售旺季”或“销售淡季”这类术语。
其本质上指的是一种周期性的变化。
含有季节成分的序列可能含有趋势,也可能不含有趋势。
周期性(cyclicity)也称循环波动(cyclical fluctuation),是时间序列中呈现出来的围绕长期趋势的一种波浪形或震荡式变动。
周期性通常是由商业和经济活动引起的,它不同于趋势变动,不是朝着单一方向的持续运动,而是涨落相同的交替波动;它也不同于季节变动,季节变动有比较固定的规律,而且变动周期大多为一年,循环波动则无固定规律,变动周期多在一年以上,且周期长短不一。
周期性通常是由经济环境的变化引起的。
除此之外,还有些偶然性因素对时间序列产生影响,致使时间序列呈现出某种随机波动。
时间序列中除去趋势、周期性和季节性之后的偶然性波动称为随机性(randomness),也称不规则波动(irregular variations)。
构成要素:长期趋势,季节变动,循环变动,不规则变动。
第5章 随机型时间序列预测方法随机时间序列分析方法的出现虽然有相当长的历史,但广泛用于经济、商业预测和经济分析还是第二次世界大战之后。
一方面计算机技术的迅速发展,为随机时间序列分析的建模和预测提供了强有力的工具;另一方面,是由于美国著名的统计学家博克斯(Box )和英国的詹金斯(Jenkins )于1968年在理论上提出了一整套的随机时间序列的模型识别、参数估计和诊断检验的建模方法,并于1970年出版了专著《时间序列分析——预测与控制》。
该书对随机序列的理论分析和应用作了系统的论述,尤其是1976年出第2版以后,其应用更为广泛。
优点:它能利用一套相当明确规定的准则来处理复杂的模式,预测精度也比较高。
缺点:但同时为了达到高的精确性,其计算过程复杂,计算工作量大,花费也大。
利用随机型时间序列预测方法建立预测模型的过程可以分为4个阶段: (1) 第一阶段:根据建模的目的和理论分析,确定模型的基本形式。
(2) 第二阶段:进行模型识别,即从一大类模型中选择出一类试验模型。
(3) 第三阶段:将所选择的模型应用于所取得的历史数据,求得模型参数。
(4) 第四阶段:检验得到的模型是否合适。
若合适,则可以用于预测和控制;若不合适,则返回到第二阶段重新选择模型。
5.1 随机型时间序列模型 1.时间序列随机时间序列是指{}n X ,对于每个n ,n X 都是一个随机变量。
定义:时间序列{}n X 是平稳的,如果它满足:(1)对于任一n ,()n E X C =,C 是与n 无关的常数;(2)对于任意的n 和k ,[()()]n k n k E X C X C γ+--=,其中k γ与n 无关。
k γ称为时间序列{}n X 的自协方差函数。
0/k k ργγ=称为自相关函数。
平稳性定义中的两条也就是说时间序列的均值和自协方差函数不随时间的变化而变化。
通常我们可以假设一个平稳时间序列{}n X 的均值为0。
如果均值不为零的话,我们可以对原有的时间序列进行一次平移变换,即令nn X X C '=-,则{}n X '是一个零均值的平稳序列。
第5章随机型时间序列预测方法本章将讨论随机型时间序列预测技术。
此方法的优点在于它能利用一套相当明确规定的准则来处理复杂的模式,预测精度也比较高。
但同时为了达到高的精确性,其计算过程复杂,计算工作量大,花费也大。
随机型时间序列预测技术建立预测模型的过程可以分为四个阶段:第一阶段:根据建模的目的和理论分析,确定模型的基本形式。
第二阶段:进行模型识别,即从一大类模型中选择出一类试验模型。
第三阶段:将所选择的模型应用于所取得的历史数据,求得模型的参数。
第四阶段:检验得到的模型是否合适。
若合适,则可以用于预测或控制;若不合适,则返回到第二阶段重新选择模型。
建模流程图如下:图5.1 时间序列分析建模流程根据随机型时间序列预测技术建模顺序,本章依次讨论随机型时间序列模型,ARMA模型的相关分析,模型的识别,ARMA序列的参数估计以及模型的检验和预报。
5.1 随机型时间序列模型本节讨论时间序列的几种常用模型。
从实用观点来看,这些模型能够表征任何模式的时间序列数据。
这几类模型是:1)自回归(AR)模型;2)移动平均(MA )模型;3) 自回归移动平均(ARMA)模型;4)求和自回归移动平均(ARIMA)模型。
5.1.1 时间序列所谓随机时间序列是指{|,1,2,,,}n X n o N =±±± ,这里对每个n ,n X 都是一个随机变量。
以下我们简称为时间序列。
定义5.1 时间序列{|0,1,2,}n X n =±± 称为平稳的,如果它满足: (1)对任一n ,()n E X C =,C 是与n 无关的常数;(2)对任意的n 和k ,()()n k n k E X C X C γ+--=其中k γ与n 无关。
k γ称为时间序列{}n X 的自协方差函数,0/k k ργγ=称为自相关函数。
平稳性定义中的两条也就是说时间序列的均值和自协方差函数不随时间的变化而变化。
随机型时间序列预测法概述随机型时间序列预测法的核心思想是通过对历史观测值的统计分析,来获得对未来观测值的概率分布预测。
常用的方法包括随机游走模型、ARIMA模型和蒙特卡洛模拟等。
随机游走模型是基于随机游走过程的思想,认为未来的观测值仅仅取决于当前的观测值,而不受其他因素的影响。
随机游走模型假设未来观测值是当前观测值的随机扰动,因此只需要根据历史观测值的方差来预测未来的观测值的方差。
ARIMA模型是一种基于自回归移动平均的方法,可以对时间序列数据进行拟合和预测。
ARIMA模型的核心思想是通过对时间序列数据进行平稳化处理,然后利用自回归和移动平均的效应来对未来观测值进行预测。
蒙特卡洛模拟是一种基于随机采样的方法,通过对历史观测值的概率分布进行抽样,得到多个可能的未来观测值序列。
然后,可以通过对这些样本序列的统计分析来获得对未来观测值的概率分布预测。
总之,随机型时间序列预测法通过对时间序列数据的随机性特征进行建模和分析,可以得到对未来观测值的概率分布预测。
这些方法可以帮助我们更好地理解和预测时间序列数据的随机性,提供数据分析和决策支持。
随机型时间序列预测法的应用领域非常广泛。
它可以用于金融市场预测、天气预报、股票市场分析、经济指标预测等许多领域。
在这些领域中,时间序列数据经常呈现出一定的随机性,传统的预测方法往往无法准确捕捉到这种随机性,因此随机型时间序列预测法成为了一种有效的预测方法。
随机游走模型是一种简单而又直观的随机型时间序列预测方法。
它假设未来的观测值仅仅取决于当前的观测值,并且通过随机扰动来进行模拟。
这种方法的一个重要特点是不考虑任何外部因素对未来观测值的影响,因此被广泛应用于金融市场预测中。
例如,在股票市场中,随机游走模型被用来预测股票价格的波动范围,从而帮助投资者制定买卖策略。
ARIMA模型是一种比较常用的随机型时间序列预测方法。
它基于自回归和移动平均的效应,旨在通过对时间序列数据进行平稳化处理,然后根据历史观测值的自相关性和移动平均性来预测未来观测值。