第5章 确定型时间序列预测法
- 格式:ppt
- 大小:885.50 KB
- 文档页数:65
时间序列的预测方法时间序列预测是指根据过去一系列的观测值来预测未来的发展趋势。
它在很多领域都有应用,如经济学、金融学、气象学、交通运输等。
时间序列预测是一个复杂的问题,需要综合考虑多种因素和方法。
下面我将介绍一些常用的时间序列预测方法。
首先,最简单的方法是移动平均法和指数平滑法。
移动平均法是通过计算一定时间段内的平均值来估计未来的趋势。
指数平滑法则是根据历史数据的加权平均值来估计未来的趋势。
这两种方法都是基于历史数据的统计特征进行预测,适用于数据变化较为平稳的情况。
其次,回归分析是一种常用的时间序列预测方法。
它通过分析自变量和因变量之间的关系来建立一个回归模型,并利用回归模型进行预测。
回归模型可以是线性的也可以是非线性的,可以包含一或多个自变量。
回归分析适用于需要考虑多个因素对结果的影响的情况,例如经济数据的预测。
另外,ARIMA模型(自回归滑动平均模型)是一种广泛应用的时间序列预测方法。
ARIMA模型可以用来描述时间序列的非线性趋势、季节性和随机性。
它由自回归(AR)部分、差分(I)部分和滑动平均(MA)部分组成,因此可以适应不同类型的时间序列。
ARIMA模型的参数由经验估计和模型拟合来确定,可以通过模型的残差分析来验证模型的可靠性。
此外,神经网络模型也被广泛用于时间序列的预测。
神经网络模型具有较强的非线性拟合能力,可以很好地适应数据的复杂特征。
其中,循环神经网络(RNN)和长短期记忆网络(LSTM)是常用的时间序列预测模型。
RNN和LSTM都可以处理时序数据之间的依赖关系,适用于预测具有长期滞后影响的时间序列。
此外,支持向量回归(SVR)和决策树也是常见的时间序列预测方法。
SVR是一种非线性回归模型,通过在高维空间中找到一个最优的分离超平面来建立预测模型。
决策树则是通过对样本数据进行递归划分,构建一个树状结构来预测结果。
这两种方法都具有较强的拟合能力和泛化能力,可以用于各种类型的时间序列预测问题。
第五章时间序列的指数平滑猜测法[习题]・、单项选择题1.当数据的随机因素较大时,选用的N因该()。
A较大B较小 C.随机选择 D.等于n2.当数据的随机因素较小时,选用的N因该()。
A 较大 B..随机选择 C.较小D.等于n3.在移动平均值的计算中包括的过去观看值的实际个数()A.至少有5个B.必需一开头就明确规定C有多少个都可以D至少有3个4温特线性和季节性指数平滑包括的平滑参数个数是()A1个B2个C3个D4个5布朗单一参数线性指数平滑法包括的平滑参数个数是()A1个B2个C3个D4个6序列有季节性时,应选用的猜测法是()A霍尔特双参数线性指数平滑法B布朗单一参数线性指数平滑法C温特线形和季节性指数平滑法D布朗二次多项式指数平滑法7温特线形和季节性指数平滑法中,通常确定a、β和γ的最佳方法是()A反复试验法B最小二乘法C均方差误差最小法D阅历法8 一次指数平滑法中,反复试验查找Ο,是为了()A均方差最小B计算简便C查找合适的权重D序列接近线性猜测9温特线性和季节性指数平滑法中的平滑参数a、β和y ()A 三者和为 1B α, β> 1 , O<γ<lC 三者都在0到1之间D 三者都大于11 0在进行猜测时,最新观看值包含更多信息,权重应()A更大 B 更小C无所谓D随机选择二、多项选择题1下面对一次指数平滑法描述正确的是()A猜测的通式为:B是一种加权猜测C不需要存储全部历史数据D但需要存储一组数据E它供应的猜测值是前一期猜测值加上前期猜测值中产生的误差的修正值2序列有线性趋势时,可选择的猜测法有()A布朗单一参数线性指数平滑法B霍尔特双参数线性指数平滑法C温特线形和季节性指数平滑法D 布朗二次多项式指数平滑法E线性二次移动平均法3 一次指数平滑法的初值得确定有以下几种方法() A 取最初两期的算术平均值为初值 B 取最初三期的加权平均值为初值 C 取第一期的实际值为初值 D 取最初几期的平均值为初值 E 取初值=14下面对一次移动平均法描述不正确的有() A 当数据的随机因素较大时,宜选用较小的N B 当数据的随机因素较小时,宜选用较较大的N C 每一新猜测值是对前一移动平均值的修正 DN 越大平滑效果愈好 E 计算量少5线性二次指数平滑法中主要包括() A 布朗单一参数线性指数平滑法 B 温特线形和季节性指数平滑法 C 霍尔特双参数线性指数平滑法 D 布朗二次多项式指数平滑法 E 线性二次移动平均法6 一次移动平均法的主要限制是() A 计算移动平均法必需具有N 个过去观看值 B N 个过去观看值中每一个权数都相等C 移动平均线不能很好的反映时间序列的趋势及其变化D 计算量大E 当需要猜测大量的数值时,就必需存储大量数据 7关于霍尔特双参数线性指数平滑法的说法正确的是() A 其基本原理与布朗线性指数平滑法相像 B 它不用二次指数平滑 C 它是对趋势直线进行平滑 D 有3个平滑参数E 比布朗单一参数线性指数平滑法敏捷 8 已知9个月的实际数据如下:()则以下说法错误的是()(N=3)得第4期的猜测值为3 (N=3)得第4期的猜测值为2。
时间序列预测法时间序列预测法时间序列预测法(Time Series Forecasting Method)目录[隐藏]1 什么是时间序列预测法?2 时间序列预测法的步骤3 时间序列分析基本特征[1]4 时间序列预测法的分类5 时间序列预测法案例分析5.1 案例一:可提费用的时间序列预测[2]5.2 案例二:时间序列预测法的运用例子6 相关条目7 参考文献[编辑]什么是时间序列预测法?一种历史资料延伸预测,也称历史引伸预测法。
是以时间数列所能反映的社会经济现象的发展过程和规律性,进行引伸外推,预测其发展趋势的方法。
时间序列,也叫时间数列、历史复数或动态数列。
它是将某种统计指标的数值,按时间先后顺序排到所形成的数列。
时间序列预测法就是通过编制和分析时间序列,根据时间序列所反映出来的发展过程、方向和趋势,进行类推或延伸,借以预测下一段时间或以后若干年内可能达到的水平。
其内容包括:收集与整理某种社会现象的历史资料;对这些资料进行检查鉴别,排成数列;分析时间数列,从中寻找该社会现象随时间变化而变化的规律,得出一定的模式;以此模式去预测该社会现象将来的情况。
[编辑]时间序列预测法的步骤第一步收集历史资料,加以整理,编成时间序列,并根据时间序列绘成统计图。
时间序列分析通常是把各种可能发生作用的因素进行分类,传统的分类方法是按各种因素的特点或影响效果分为四大类:(1)长期趋势;(2)季节变动;(3)循环变动;(4)不规则变动。
第二步分析时间序列。
时间序列中的每一时期的数值都是由许许多多不同的因素同时发生作用后的综合结果。
第三步求时间序列的长期趋势(T)季节变动(s)和不规则变动(I)的值,并选定近似的数学模式来代表它们。
对于数学模式中的诸未知参数,使用合适的技术方法求出其值。
第四步利用时间序列资料求出长期趋势、季节变动和不规则变动的数学模型后,就可以利用它来预测未来的长期趋势值T和季节变动值s,在可能的情况下预测不规则变动值I。
时间序列预测法时间序列预测方法是一种用于预测未来时间点上特定变量值的统计模型。
它基于时间序列数据的历史信息,通过建立模型来分析趋势、周期和季节性等因素,并预测未来的数值。
以下是一些常用的时间序列预测方法:1. 移动平均模型(MA):移动平均模型是一种简单的预测方法,利用历史数据的平均值来预测未来值。
它基于平滑的概念,通过计算不同时间窗口内的数据均值来减少噪声。
2. 自回归模型(AR):自回归模型是一种利用过去时间点上的变量值来预测未来时间点上的值的方法。
它基于假设,即未来的值与过去的值相关,通过计算时间序列的自相关性来进行预测。
3. 移动平均自回归模型(ARMA):移动平均自回归模型是自回归模型和移动平均模型的结合。
它同时考虑了过去时间点上的变量值和噪声项的影响,通过将两者进行加权平均来预测未来值。
4. 季节性自回归移动平均模型(SARMA):季节性自回归移动平均模型是ARMA模型的扩展,考虑了季节性因素对时间序列的影响。
它通过引入季节性参数来捕捉周期性变化,从而提高预测精度。
5. 季节性自回归综合移动平均模型(SARIMA):季节性自回归综合移动平均模型是SARMA模型的进一步扩展。
它除了考虑季节性外,还同时考虑了趋势和噪声项的影响,通过引入差分操作来消除线性趋势和季节性差异,从而进一步提高预测准确度。
以上是一些常用的时间序列预测方法,每种方法都有其适用的场景和优缺点。
选择合适的方法需要对数据特点和预测目标进行分析,并结合模型评估指标进行选择。
时间序列预测方法是指在一串连续的时间点上收集到的数据样本中,通过分析各时间点之间的关系来预测未来时间点上的变量值的方法。
这些时间序列数据通常具有以下特征:趋势(如上涨或下跌的趋势)、周期性(如季节变化)、周期(如每月、每年的循环)和随机噪声(如突发事件的影响)。
时间序列预测常用于经济预测、股票预测、天气预测等领域。
在时间序列预测中,最简单的方法是移动平均模型(MA)。
时间序列预测法概述时间序列预测是根据过去的数据推断未来的趋势和模式的一种方法。
它是在时间方向上观察数据点之间的关系,并据此预测未来的数值。
时间序列预测在很多领域都有应用,例如经济预测、股市预测、天气预测等。
时间序列预测的目的是根据历史数据的规律性和趋势性,发现变量之间的关系,并预测未来一段时间内的数值变化趋势。
为了达到这个目标,需要对时间序列数据进行分析和建模,然后使用模型进行预测。
时间序列预测方法可以分为传统方法和机器学习方法。
传统方法包括统计学方法和时间序列建模方法,如移动平均法、指数平滑法、自回归移动平均模型(ARMA)、季节性自回归移动平均模型(SARIMA)等。
这些方法基于一些模型假设,如平稳性、线性关系等,通过对时间序列进行平滑和分解,找出趋势、季节和残差等组成部分,然后根据这些分量进行预测。
移动平均法是一种简单的时间序列预测方法,它通过计算一定时间区间内数据点的平均值来预测未来的数值。
移动平均法的优点是简单易用,但它忽略了趋势的变化和季节性的影响。
指数平滑法是另一种常用的时间序列预测方法,它通过对数据赋予不同的权重来预测未来的数值。
指数平滑法的优点是可以对趋势进行较好的拟合,但它也忽略了季节性的影响。
自回归移动平均模型(ARMA)是一种广泛应用的时间序列预测方法,它可以对非平稳数据进行建模和预测。
ARMA模型基于自回归(AR)和移动平均(MA)两个部分,其中AR 部分通过当前观测值和过去观测值的线性组合来预测未来的数值,MA部分通过当前观测值和过去残差的线性组合来预测未来的数值。
ARMA模型可以通过最大似然估计或最小二乘法来求解模型参数。
季节性自回归移动平均模型(SARIMA)是ARMA模型的一种扩展形式,它考虑了时间序列数据的季节性模式。
SARIMA 模型包括四个部分:季节性差分、自回归、移动平均和非季节性差分。
季节性差分用于去除季节性成分,自回归和移动平均用于建立模型和预测,非季节性差分用于还原季节性成分。