信号检测与估计理论(复习题解)
- 格式:ppt
- 大小:2.09 MB
- 文档页数:64
一、概念:1. 匹配滤波器。
概念:所谓匹配滤波器是指输出判决时刻信噪比最大的最佳线性滤波器。
应用:在数字信号检测和雷达信号的检测中具有特别重要的意义。
在输出信噪比最大准则下设计一个线性滤波器是具有实际意义的。
2. 卡尔曼滤波工作原理及其基本公式(百度百科)首先,我们先要引入一个离散控制过程的系统。
该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:X(k)=A X(k-1)+B U(k)+W(k)再加上系统的测量值:Z(k)=H X(k)+V(k)上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。
A和B是系统参数,对于多模型系统,他们为矩阵。
Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。
W(k)和V(k)分别表示过程和测量的噪声。
他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。
下面我们来用他们结合他们的covariances 来估算系统的最优化输出(类似上一节那个温度的例子)。
首先我们要利用系统的过程模型,来预测下一状态的系统。
假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:X(k|k-1)=A X(k-1|k-1)+B U(k) (1)式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。
到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。
我们用P表示covariance:P(k|k-1)=A P(k-1|k-1) A’+Q (2)式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。
信号检测与估计理论简答题1.维纳滤波器与卡尔曼滤波器的区别维纳滤波器:1)只用于平稳随机过程。
2)该系统常称为最佳线性滤波器。
它根据全部过去和当前的观测信号来估计信号的波形,它的解是以均方误差最小条件所得到的系统的传递函数H(Z)的形式给出的。
3)信号和噪声是用相关函数表示的。
卡尔曼滤波器:1)平稳随机过程和不平稳随机过程均适用。
2)该系统常称为线性最优滤波器。
它不需要全部过去的观测数据,可根据前一个的估计值和最近的观察数据来估计信号的当前值,它是用状态方程和递推方法进行估计的,其解是以估计的形式给出的。
3)信号和噪声是用状态方程和测量方程表示的。
2.解释白噪声情况下正交函数集的任意性设)0)(()()(T t t n t s t x ≤≤+=中,噪声n(t)是零均值、功率谱密度为2/)(0N w P n =的白噪声,其自相关函数)(2)(0u t N u t r n -=-δ。
于是,任意取正交函数集)()},({t x t f k 的展开系数jx 和kx (k=1,2,…)的协方差为)])([(k k j j s x s x E --])()()()([00⎰⎰=Tk j Tdu u f u n dt t f t n E⎰⎰⎥⎦⎤⎢⎣⎡=T Tk j dt du u f u n t n E t f 00)()]()([)(⎰⎰⎥⎦⎤⎢⎣⎡-=TT k j dt du u f u t t f N 000)()()(2δjk k Tj N dt t f t f Nδ2)()(2==⎰当k j ≠时,协方差0)])([(=--k k j j s x s x E ,这说明,在n(t)是白噪声的条件下,取任意正交函数集)}({t f k 对平稳随机过程k x (k=1,2,…)之间都是互不相关的。
这就是白噪声条件下正交函数集的任意性。
3.请说明非随机参量的任意无偏估计量的克拉美-罗不等式去等号成立的条件和用途克拉美-罗不等式])),(ln [(1])ˆ[(22θθθθ∂∂≥-x p E E 或)]),(ln [(1])ˆ[(222θθθθ∂∂-≥-x p E E 当且仅当对所有的x 和θ都满足k x p )ˆ(),(ln θθθθ-=∂∂时,不等式去等号成立。
《信号检测与估计》总复习
第一章 绪 论
本章提要
本章简要介绍了信号检测与估计理论的地位作用、研究对象和发展历程,以及本课程的性能和主要内容等。
第二章 随机信号及其统计描述 本章提要
本章简要阐述了随机过程的基本概念、统计描述方法,介绍了高斯噪声和白噪声及其统计特性。
本章小结
(1)概率分布函数是描述随机过程统计特性的一个重要参数,既适用于离散随机过程,也适用于连续随机过程。
一维概率分布函数具有如下性质
1),(0≤≤t x F X ;
[]0)(),(=-∞<=-∞t X P t F X ;
[]1)(),(=+∞<=+∞t X P t F X ;
),(),())((1221t x F t x F x t X x P X X -=<≤;
若21x x <,则),(),(12t x F t x F X X ≥
概率密度函数可以直接给出随机变量取各个可能值的概率大小,仅适用于连续随机变量。
一维概率密度具有如下性质:
0),(≥t x f X ;
1
),(=⎰
+∞
∞
-dx t x f X ;
x d t x f t x F x X X '
'=⎰
∞
-),(),(;
[]⎰=-=<≤21
),(),(),()(1221x x X X X dx
t x f t x F t x F x t X x P。
2011《信号检测与估计》复习纲要“信号检测与估计”理论是现代信息科学的一个重要组成部分,它是把所要处理的问题,归纳为一定的“数学模型”→运用“概率论”、“随机过程”、“数理统计”等数学工具→以普遍化的形式提出,以寻求普遍化的答案和结论,并且理论与工程实践相结合,以雷达系统、通信系统、声纳系统为主要研究对象,主要内容包括:● 随机信号与噪声理论(The Theory of Random Signals and Noise)——分析随机信号与噪声的数学工具● 统计判决(检测)理论(Statistical Decision Theory)——研究在噪声干扰背景中,所关心的信号是属于哪种状态的最佳判决问题(Detection of Signals in Noise)● 参量估计理论(Estimation Theory of Signal Parameters)——研究在噪声干扰背景中,通过对信号的观测,如何构造待估计参数的最佳估计量问题(Estimation of Signal Parameters)● 滤波理论(Filtering Theory)——为了改善信号质量,研究在噪声干扰中所感兴趣信号波形的最佳恢复问题,或离散状态下表征信号在各离散时刻状态的最佳动态估计问题(Estimation of Signal Waveform) 复习重点:信号检测与参量估计 ● 信号检测:根据有限观测,“最佳”区分一个物理系统不同状态的理论 ● 参量估计:根据有限观测,“最佳”找出一个物理系统不同参数的理论如何选择一个估计量&估计量选择的决策过程信号处理否估计量LSE经典方法贝叶斯方法如何选择一个检测器-二元信号检测如何选择一个检测器-多元信号检测*注:ARMA:自回归滑动平均BLUE:最佳线性无偏估计CFAR:恒虚警率CRLB :Cramer-Rao下限EM:数学期望最大化GLRT:广义似然比检验IID:独立同分布LLR:对数似然比LMMSE:线性最小均方误差LMP:局部最大势LRT:似然比检验LSE:最小二乘估计LSI:线性时不变MAP:最大后验概率MLE:最大似然估计MMSE:最小均方误差估计MVU:最小方差无偏NP:Neyman-Pearson准则PRN:伪随机噪声RBLS:Rao-Blackwell-Lehmann-Scheffe定理ROC:接收机工作特性UMP:一致最大势WGN:白色高斯噪声WSS:广义平稳2011《信号检测与估计》复习参考题参数估计部分:1.基本概念理解:最小方差无偏估计,最佳线性无偏估计,最大似然估计,最小二乘估计,矩方法估计,最小均方误差估计,最大似然估计,线性最小均方误差估计,一般(经典)线性模型和贝叶斯线性模型。