下, 平均错误概率为
Pe P(D0 / H1) P(D1 / H0 ) erfc[
E(1 r) ]
N0
E为两个信号的平均能量,r两信号之间的相关系数 E/N0为信噪比
计算三种常用的二元通信系统的性能:
1 相干相移键控系统(CPSK)
s0 (t) Asin ct (0 t T ) s1(t) Asin( ct ) Asin ct (0 t T )
若代价因子与随机参量矢量无关, 则其判决规 则与简单假设下的贝叶斯准则判决式相同
在代价因子与随机参量无关的条件下,求 似然比的步骤: 1 计算 p(x / α, H1 )
2 计算 p(x / H1 ) p(x / α, H1 ) p(α)d α {α}
3 计算似然比 (x) p(x / H1 ) p(x / H 0 )
大, 所付出的代价越大
2 几种常用的代价函数
| ˆ |
a
ˆ
(a)
( ˆ )2
( ˆ )2
ˆ
a (b)
C( ,ˆ ) K ,| | C( ,ˆ ) 0,| |
a1
a2
ˆ
( c)
ˆ
( d)
(a)误差绝对值代价函数 (b)误差平方代 价函数(c)相对误差的平方代价函数 (d) 均匀代价函数
H0—无信号,没有随机参量,简单假设 H1---有信号,有随机参量,复合假设
§1.5.1 贝叶斯准则
设 α (1,2,,m )T 是与H1有关的随机参量矢 量
p(α) 是随机参量矢量的m维联合先验概率 密度
代价因子为 C00 , C10 , C01(α), C11(α)
似然函数为 p(x / H0 ),
唯一
p(x / α, H1) 不唯一