第二章 有机结构理论
- 格式:ppt
- 大小:1.00 MB
- 文档页数:34
结构化学第二章在结构化学中,化合物的结构是研究的基础。
本章将介绍有机化合物的结构和命名法,以及一些重要的有机化合物。
有机化合物由碳和氢组成,并可能包含氧、氮、硫、磷等其他元素。
有机化合物的结构主要包括原子之间的相互连接方式和它们的立体构型。
原子之间的连接有两种常见的方式:共价键和离子键。
共价键是通过共享电子对而形成的,离子键是通过电子转移而形成的。
有机化合物的立体构型指的是原子或取代基之间的空间排列方式。
常见的立体构型包括手性和立体异构。
手性指的是分子不重合的镜像图像。
手性分子的一个典型例子是氨基酸和糖类分子。
手性分子的两种镜像结构称为对映异构体,它们的化学性质和物理性质可能不同。
手性分子对于生物体的功能和活性至关重要,因此手性在药物研究和生物化学中具有重要的意义。
立体异构是指分子中原子的相对位置不同。
立体异构分为构象异构和光学异构。
构象异构是由于键轴的自由旋转而引起的不同构象之间的差异。
光学异构是由于分子的手性而引起的不同异构体。
命名有机化合物的方法包括命名根据碳链的长度和取代基的类型,以及根据它们的立体构型来命名。
有机化合物的命名根据碳链的长度分为简单化合物和复杂化合物。
简单化合物的命名基于它们的碳链长度,如甲烷、乙烷、丙烷等。
复杂化合物的命名基于主要碳链和取代基的位置。
通常,主要碳链中的碳原子被编号,然后取代基被命名为前缀,并标明它们的位置。
根据立体构型来命名有机化合物时,常用的方法是使用R和S系统。
这种系统基于分子中所有原子的优先级,其中原子的优先级基于原子的原子序数和它们所连接的原子的数目。
然后,分子中连接到主要碳原子上的取代基按照次优先级和优先级顺序命名。
在结构化学中,有一些重要的有机化合物需要特别关注。
其中,醛类化合物、酮类化合物、羧酸和酯类化合物、胺类化合物、醇类化合物和脂类化合物是最常见的有机化合物。
醛是一个具有碳氧双键和至少一个氢原子的化合物。
酮是具有碳氧双键的化合物,而羧酸是具有羧基(-COOH)的化合物。
有机化合物的结构理论:1、原子轨道:用薛定谔方程描述电子的能量和运动状态,薛定谔方程的解即是描述电子状态的波函数,称为原子轨道,即能量为E的电子在相应能级轨道中出现的几率.一个原子有许多原子轨道。
有机化学中涉及的主要是1S,2S,2P,轨道。
S轨道的形状是以原子核为中心的圆球,轨道是两瓣互不接触的椭球体(纺锤形).电子在整个空间出现的几率为1,在单位微体积内出现的几率为电子密度。
电子密度在空间不是均匀分布的,如果用一个小点表示电子密度的分布,则可以看到有的地方比较密集。
有的地方比较稀疏,象一团云雾,称为电子云。
原子轨道就是电子云相对比较密集的空间范围.A B CD E按照能量最低原则,互不相容原理和最多轨道规则,基态时电子尽量占据最低轨道,每个轨道只能容纳两个自旋相反的电子,电子尽可能多地占据原子轨道。
最外层为价层轨道,如2S,2P。
已有一对电子的称孤对电子,一个电子称单电子,没有电子称为空轨道。
各种轨道能量不同,在成键时,电子可以得到能量从低能级跃迁到高能量轨道。
1S22S22P2 ——→1S22S12P32、价键理论:价键理论认为,两个原子各有成单电子且自旋方向相反,则这两个单电子可以通过原子轨道重叠而配成一对形成共价键。
轨道重叠后,电子密度更多地集中在量重叠范围内,即两个原子核间,同时吸引着两个原子核,并且屏蔽两原子核间的斥力,于是两个原子结合在一起形成共价键。
轨道重叠或电子配对后,体系能量降低,所以是一种稳定的结合。
一个原子的单电子与另一个原子的单电子配对后,就不能与第三个电子配对,所以原子的成单电子个数就等于它所能形成的共价键数,即共价键的饱和性.形成共价键时轨道要实现最大重叠,原子轨道在看空间伸展的方向不同,电子云密度不同,要实现最大重叠,只有在原子轨道的一定方向上即电子云密度最大的地方重叠,所以共价键具有方向性.若一个原子的价层轨道有孤对电子,而另一个原子或离子有空的轨道,两个原子也可以成键而共用电子对,称为配位键。