钢结构稳定理论-1
- 格式:ppt
- 大小:1.74 MB
- 文档页数:43
在建筑中钢结构的稳定性探讨一、钢结构建筑主要的特点钢结构的一些自身特点之前一直应用与非居住的建筑研究中。
其中我们所要论述的钢结构相对来说非常适用于现代的住宅建筑,下面就详细的介绍下钢结构的主要特点。
钢结构具有良好的抗震性,我们都知道在地震的时候,能量的释放就在一瞬间内,它的破坏性是非常大的主要的破坏方式包括有非延性破坏、延性破坏和脆性破坏。
之前常用的钢筋混凝土结构在抗震方面,存在着各种各样的不足,钢结构本身就具有重量轻的特点,拿一个六层轻钢的住宅来说它的重量同一个四层的砖混结构住宅的重量几乎相同,所以说,自身承受地震的力量相对较小;同时,钢材他本身的高延性,可以很好的将地震的能量消耗一些,较少抗震产生的危害我们可以说钢结构住宅具有良好的抗震性。
钢结构可以根据客户需求,进行功能区间的布置,之前的传统住宅使用材料大部分都是钢筋混凝土所以对空间的布置有了很多限制。
例如说我们希望开间大一些,那么相应的楼板厚度就有增大,也就是说梁柱的截面积就要增大,这样对室内的美观程度会产生影响,土建方面的投资也增加了。
而钢钢材就有强度高这样的特点,这样就在布置上可以采用大空间柱网的方式,将建筑平面进行灵活分割;钢结构还具有连接简单这样的特点,跃层、错层结构也变得更加方便;钢结构的构件截面相对较小,使使用面积提高,得房率也就相应提高了;钢结构墙体相对较薄,也就是说墙体的占用面积相对也小,墙体占有面积同之前的砖混结构进行对比,大概减少了60%,也就是说使用面积增加了。
二、设计稳固性质的钢结构设计稳固性质的钢结构,在不同类别的钢结构里,因为结构失去稳定性而引起的事故伤亡等危险经常发生,便于更好地确保钢结构稳固设计里构成要件不至于失去稳固性,确保工程质量与安全生产,对于设计稳固性质的钢结构,进行具体的探索与讨论有着非常的必要。
1.稳固性质的钢结构的定义。
钢结构的强硬度不够或者失去稳固性,都会引起其结构的损坏,可是强硬度与稳固是两个不同的定义,前者是指力度问题,是在稳固均衡的情形下单一构成元件或者架构因其负荷而产生的最大性的应对力度是不是有大于建材本身的极限受力度,钢材一般都以征服点当成是其极限的受力度。
钢结构设计稳定性原则和设计要点摘要:钢结构广泛应用于工程领域。
由于它的强度、韧性和塑性、便携性和节省施工时间,在建筑行业中发挥着重要作用。
但钢结构施工过程中如果稳定性和强度不匹配,其稳定性无法保证,不仅可能给施工队伍造成经济损失,还可能危及生命。
由于建筑工程的钢结构设计关系到建筑物的稳定性,对建筑物的质量有很大的影响,所以在实践中研究稳定性设计的原则和要点是非常重要的。
本文通过以建筑工程学视角分析钢结构在建筑工程中的稳定性与要点,解决我国目前领域内钢结构的应用安全隐患等问题。
关键词:钢结构;建筑工程;稳定性引言:自上世纪八十年代改革开放以来,我国经济步入兴盛时期,其中随着农村城市建设化的发展,我国建筑行业也随之在市场内繁荣。
钢材是我国建筑行业不可或缺的主要原材料,为了减少安全隐患,加强工程质量,行业有必要进行钢结构分析,提高钢结构性能。
一、钢结构的特点概述(一)钢结构特质简述在建筑工程应用中以钢材为主的建筑结构类型统称钢结构,传统设计中的钢结构具有刚性强、硬度强、韧性强、变形能力较好等优点[1]。
相较于钢材,钢结构具有多样性、整体性、相关性、稳定性等特质。
我国目前主流的钢结构设计主要应用钢结构的相关性与稳定性:将钢材通过合理设计搭建承压,从而在整个结构整体上维持建筑的稳定性。
(二)钢结构设计通过计算简图搭建钢结构的稳定性与关联性一旦被破坏将对建筑工程造成毁灭性打击,因此,为了避免不必要的人力浪费与时间损耗,我国目前的建设工程设计主流中不论单层结构框架还是多层结构框架均以稳定计算为前提。
遵循稳定计算的提前,为了避免钢结构在构建过程中失衡,行业要求将钢结构设计与计算图纸保持高度一致。
在现代化高维超级计算机的帮助下,建筑工程以计算简图代替了传统分析,得出数据化长宽高、受力点与受压部分,通过三维视图进行分析、调整、计算、核对等步骤使得计算简图在数据上保持准确性,也让钢结构框架在设计上、实施过程中保持稳定性、相关性。
建筑工程中钢结构的稳定性与设计要点[wl1]摘要:在建筑工程中,利用钢结构能够促使建筑工程的稳定性获得显著提升。
基于此,本文主要讨论了建筑工程当中钢结构设计[wl2]的稳定性以及设计的要点。
以供相关工作人员参考。
关键词:建筑工程;钢结构设计;稳定性;要点[wl3]引言:根据目前我国建筑业发展的情况来看,钢结构建筑[wl4]的规模在不断地扩张,数量也有所增加,因此建筑业对于钢结构涉及的要求也将会越来越高。
钢结构可应用于大跨及超高层建筑,优势比较明显,当然,也存在一定的问题,有很多设计人员考虑问题不够全面,因此导致其稳定性受到了影响。
一、钢结构设计稳定性原则(一)保障结构的稳定性原则在进行建筑工程施工时,钢结构的复杂程度往往比较高,设计难度也是有目共睹的。
目前是一个信息化时[wl5]代,任何行业都需要与时俱进使用信息化技术,钢结构设计也是如此。
比如可以使用BIM技术,在设计的过程当中,要和相关的工作人员反复地进行沟通以及交流,要让业主的想法都能够有所体现,尽量减少在设计过程当中产生的误差。
对于在设计的时候所产生的不同问题,以及问题出现的不同环节,都需要专业的设计人员将信息技术的效能尽量发挥出来,利用反复检测的方式,可以获取更加准确的数据以供参考,让设计能够满足稳定性的基础要求。
不但要由专业的工作人员分析施工环境和建筑物的承载能力,而且对于建筑物的水平稳定性等也要有一定的认知,还需要对于建筑所在区域抗震的烈度有所考量,让钢结构抗震性获得显著提升。
在施工过程中,想要使其更加稳定,就需要尽量让设计合理,从而促使钢结构的设计可以符合使用的要求[1]。
(二)强剪弱弯原则目前,我国的建筑工程形态逐渐变得更加复杂,在结构里的设计对称性明显较弱的情况仍然存在,并且很有可能因此形成一种建设趋势,这对斜柱的使用将会变得更加依赖。
和垂直的构建比起来,斜柱可以有效地提升剪力的价值,设计人员通过标注构建,可以让工作量大幅度减少,而利用更多的倾斜柱并将其标注为斜杆,是一种目前使用较为频繁的方式。
建筑工程中钢结构设计的稳定性原则及设计摘要:在建筑工程中,钢结构设计的稳定性原则是确保结构在受力条件下不会发生失稳和破坏。
为此,设计人员需要考虑结构的整体稳定性、局部稳定性和变形控制等因素,并采取相应的设计措施,如设置剪力墙、调整构件尺寸、加强节点设计等,以保证钢结构的稳定性和安全可靠性。
关键词:建筑工程;钢结构设计;稳定性原则引言钢结构在建筑工程中具有广泛的应用,其高强度、轻质化和可塑性等特点使其成为一种优秀的结构材料。
然而,在钢结构设计过程中,稳定性是一个至关重要的考虑因素。
稳定性问题可能导致结构失效和破坏,对人身安全和财产造成巨大威胁。
1.结构稳定性的重要性和影响因素1.1结构稳定性的重要性(1)人身安全保障建筑结构稳定性的确保是为了保护人们在其内部生活、工作和活动的安全。
如果结构失去稳定性,会导致部分或整个建筑发生破坏或倒塌,对居民和工作人员的生命安全构成严重威胁。
(2)财产保护建筑物往往是人们重要的资产之一,如果结构不稳定,会导致房屋损毁、财产损失,给住户和业主带来经济上的重大损失。
(3)建筑品质和功能保证:稳定的结构设计可以保证建筑物长时间内保持原有的形态和功能,并具备正常使用条件。
只有结构稳定,建筑才能耐久、安全地发挥其所需的功能。
1.2结构稳定性影响因素(1)结构几何形状结构的几何形状对其稳定性有重要影响。
一般来说,更高、更狭长、更不规则的结构更容易受到稳定性问题的困扰。
(2)材料特性材料的强度和刚度也对结构的稳定性产生影响。
材料的抗压、抗拉、抗弯等特性决定了结构在受力时的稳定性。
(3)荷载类型和施加位置结构在受到不同类型荷载的作用下,其稳定性表现会有所不同。
例如,水平荷载(如风荷载和地震荷载)会产生横向推力,而垂直荷载(如重力荷载)会产生压缩力。
荷载施加的位置也会对结构稳定性产生重要影响。
(4)支撑和连接方式结构中支撑和连接的方式对稳定性起到重要作用。
适当的支撑和合理的连接设计可以增加结构的稳定性。
谈钢结构设计中整体稳定和局部稳定摘要:建筑行业在发展过程中,规模比较大,所使用的钢结构应用比较广泛,钢结构构件的稳定性直接影响整个建筑结构的安全,所以在建筑设计过程中需要稳定钢结构,实现整体建筑符合施工标准,但是钢结构在使用过程中自身存在不稳定性,容易出现安全事故,所以本文主要研究钢结构在使用过程中,使用一定方式提升整体以及局部的稳定性,提升建筑质量。
关键词:钢结构;整体稳定;局部稳定引言:建筑工程在施工中需要使用钢结构完成建筑,城市的发展,高层建筑物的兴起,都需要使用稳定的钢结构,保证建设安全,但是因为钢结构自身缺陷,会出现各种安全问题,影响人们的居住环境。
工作人员需要使用恰当的技术对钢结构进行处理,提升稳定性,根据实际情况使用合适的加固方法完成建设。
1 钢结构稳定性概述在建设中强度主要是指构件在平稳状态中出现的应力,是否在材料的强度设计值限制范围中,所以强度可以称之为应力作用,强度的大小与材料有关[1]。
针对于稳定性,所呈现的特点与强度不一样,主要是外部荷载与内部结构出现碰撞,出现不稳定现象,产生变形等情况,所以稳定性可以称之为变形作用,比如建筑结构中使用的轴压柱,在不平衡的状态下将会影响轴压柱出现弯曲,破坏建筑的整体结构。
图1钢结构首先钢结构构件强度计算,同时需要计算构件的整体稳定性和局部稳定性进行分析,构件的稳定性会不会影响整体的结构,需要从建筑的整体研究,同时在计算分析的时候,需要注意钢结构的其他特点,当所计算楼层各柱轴心压力设计值之和乘以按一阶弹性分析求得的所计算楼层的层间侧移的积与产生层间的所计算及以上各层的水平力之和乘以所计算楼层的高度的积的比值大于0.1时,应进行二阶弹性分析,此种分析过程中的作用性比较明显,最关键的是结构的柔性产生的大变形量,对结构内力的影响不能忽视,同时注意使用迭加原理,能够对结构的弹性进行计算。
在此过程中需要对失稳以及整体的刚性进行分析,使用轴心压杆的稳定计算法计算临界压力,在计算的过程中将相关概念理解,能够快速解决失稳现象,新型钢结构在市场中不断应用,所起的效果更加明显,提升结构的稳定性。
《结构稳定理论》复习思考题第一章1、两种极限状态是指哪两种极限状态?承载力极限状态和正常使用极限状态2、承载力极限状态包括哪些内容?(1)结构构件或链接因材料强度被超过而破坏(2)结构转变为机动体系(3)整个结构或者其中一部分作为缸体失去平衡而倾覆(4)结构或者构件是趋稳定(5)结构出现过度塑性变形,不适于继续承载(6)在重复荷载作用下构件疲劳断裂3、什么是一阶分析?什么是二阶分析?一介分析:对绝大数结构,常以为变形的结构作为计算简图进行分析,所得的变形和作用的关系是线性的。
二阶分析:而某些结构,入账啦结构,必须用变形后的结构作为计算依据,作用与变形成非线性关系。
4、强度和稳定问题有什么区别?强度和稳定问题问题虽然均属于承载力极限状态问题,但是两者之间的概念不同。
强度问题是盈利问题,而稳定问题要找出作用与结构内部抵抗力之间的不稳定平衡状态。
5、稳定问题有哪些特点?进行稳定分析时,需要区分静定和超静定结构吗?特点:1.稳定问题采用二阶分析,2.不能用叠加原理3.稳定问题不用区分静定和超净定6、结构稳定问题有哪三类?分支点失稳、极值点失稳、跃越失稳7、什么是分支点稳定?什么是极值点稳定?什么是跃越稳定?理想轴心压杆和理想的中缅内受压的平板失稳均属于分支点失稳当没有出现有直线平衡状态向玩去平衡状态过渡的分支点,构件弯曲变形的性质始终不变,成为极值点失稳这种结构有一个平衡位行突然跳到另一个非临近的平衡位行的失稳现象。
8、什么是临界状态?结构有稳定平衡到不稳定平衡的界限状态成为临界状态。
9、通过一个简单的例题归纳总结静力法的基本原理和基本方法?P8-P1010、什么能量守恒原理?什么是势能驻值原理?基于势能驻值原理的方法有哪些?保守体系处在平衡状态时,储存于结构体系中的应变能等于外力所做的功——能量守恒原理受外力作用的结构,当位移有微小变化而总势能不变,即总势能有驻值时,结构处于平衡状态——势能驻值原理。
探讨钢结构的稳定性【摘要】从新中国成立到现在,我国对于钢铁工业的发展就是非常重视的,如今,钢结构已经成为大部分行业不可或缺的施工材料了,文章对讨钢结构的稳定性进行探讨,具有一定的借鉴意义。
【关键词】钢结构;稳定性前言文章对钢结构稳定性的定义进行了介绍,对钢结构的稳定性进行分析,通过分析,并结合自身实践经验和相关理论知识,对加强钢结构稳定性施工的质量控制措施进行了探讨。
二、钢结构稳定性的定义1.强度与稳定的区别:稳定计算是在结构变形后的几何形状和位置上进行计算的。
稳定主要是找出外部荷载与结构内部抵抗力间不稳定的平衡状态,即变形开始急剧增长而需设法避免进入的状态,因此它是一个变形问题。
强度是指结构或者单个构件在稳定平衡状态下由荷载所引起的最大应力(或内力)是否超过建筑材料的极限强度,因此它是一个应力问题。
2.钢结构失稳是一个过程,是一个整体行为,和构件刚度有关,和轴心拉力作用无关。
即轴心拉杆不需要进行稳定计算,压弯杆需要进行稳定验算。
失稳可分为分支点失稳、极值点失稳。
3.分支点失稳也是有平衡分岔的问题,完善直杆在轴心受压的失稳以及平板在中心面受压的失稳都归属于这一类。
4.极值点失稳也是没有平衡分岔的问题,由建筑钢材做成的偏心受压构件,当塑性发展到一定程度后的极值点失稳都归属于这一类。
三、钢结构的稳定性分析1.稳定及失稳的含义和稳定相关的问题主要是找出外荷载与结构内部抵抗力间的不稳定平衡状态,即变形开始急剧增长的状态,之后设法防止进入该状态,所以从某种意义上讲,这属于一个变形问题。
失稳也被称为屈曲,是指钢结构或构件失去了整体的或局部的稳定性,一般在承载力极限状态范围之内。
另外,若对构件或板件因受压、受弯或受剪等产生的受压区域处理不当,钢结构可能会出现整体失稳或局部失稳的现象。
尽管钢结构在失稳前的变形量可能看起来微乎其微,但突然的失稳会使其因几何形状急剧变化而丧失抗压力,进而导致结构物整体塌落。
2.研究钢结构稳定性的方法(1)平衡法,亦即中性平衡法或静力平衡法,也就是根据已发生了微量变形后的钢结构的受力条件建立平衡微分方程,然后对其进行求解的方法,这是求解结构稳定极限荷载的最基本方法。
第二章钢结构稳定问题概述钢结构承载力极限状态的六种情况:(1)整个结构或其一部分作为刚体失去平衡(如倾覆);(2)结构构件或连接因材料强度被超过而破坏;(3)结构转变为机动体系(倒塌);(4)结构或构件丧失稳定(屈曲等);(5)结构出现过度的塑性变形,而不适于继续承载;(6)在重复荷载作用下构件疲劳断裂。
在这些极限状态中,稳定性、抗脆断和疲劳的能力都对钢结构设计有重要意义。
2.1钢结构的失稳破坏稳定性是钢结构的一个突出问题。
在各种类型的钢结构中,都会遇到稳定问题。
对这个问题处理不好,将造成不应有的损失。
现代工程史上不乏因失稳而造成的钢结构事故,其中影响很大的是1907年加拿大魁北克一座大桥在施工中破坏,9000t钢结构全部坠入河中,桥上施工的人员有75人遇难。
破坏是由悬臂的受压下弦失稳造成的。
下弦是重型格构式压杆,当时对这种构件还没有正确的设计方法。
缀条用得过小是出现事故的主要原因。
其他形式的结构,如贮气柜立柱,运载桥的受压上弦和输电线路支架等,也都出现过失稳事故。
设计经验不足、性能还不十分清楚的新结构形式,往往容易出现失稳破坏事故。
大跨度箱形截面钢梁桥就曾在1970年前后出现多次事故。
这些箱形梁设计上存在的主要问题之一是对有纵加劲的受压板件稳定计算没有考虑几何缺陷和残余应力的不利作用。
认真总结失败的教训,结合进行必要的研究工作,就能得出规律性的认识,以指导以后的设计。
轴心压杆的扭转屈曲,是人们了解得还不多的一个问题。
美国哈特福特城的体育馆网架结构,平面尺寸为92m x 110m,突然于1978年破坏而落到地上。
破坏起因虽然可以肯定是压杆屈曲,但究竟为何屈曲还是众说纷纭。
杆件的截面为四个角钢组成的十字形。
这种截面抗扭刚度低,有人认为扭转屈曲是起因,也有人认为起支撑作用的杆有偏心,未能起到预期的减少计算长度的作用才是起因。
文献[2.16]经过深入分析,阐明这两个因素都起相当作用,并提出了偏心支撑对增强压杆稳定性的计算方法。