粘弹性流体非等温本构方程
- 格式:pdf
- 大小:520.68 KB
- 文档页数:9
第三章非线性粘弹流体的本构方程1.本构方程概念本构方程(constitutive equation),又称状态方程——描述一大类材料所遵循的与材料结构属性相关的力学响应规律的方程。
不同材料以不同本构方程表现其最基本的物性,对高分子材料流变学来讲,寻求能够正确描述高分子液体非线性粘弹响应规律的本构方程无疑为其最重要的中心任务,这也是建立高分子材料流变学理论的基础。
两种。
唯象性方法,一般不追求材料的微观结构,而是强调实验事实,现象性地推广流体力学、弹性力学、高分子物理学中关于线性粘弹性本构方程的研究结果,直接给出描写非线性粘弹流体应力、应变、应变率间的关系。
以本构方程中的参数,如粘度、模量、松弛时间等,表征材料的特性。
分子论方法,重在建立能够描述高分子材料大分子链流动的正确模型,研究微观结构对材料流动性的影响。
采用热力学和统计力学方法,将宏观流变性质与分子结构参数(如分子量,分子量分布,链段结构参数等)联系起来。
为此首先提出能够描述大分子链运动的正确模型是问题关键。
根据研究对象不同,象性方法和分子论方法虽然出发点不同,逻辑推理的思路不尽相同,而最终的结论却十分接近,表明这是一个正确的科学的研究基础。
目前关于高分子材料,特别浓厚体系本构方程的研究仍十分活跃。
同时,大量的实验积累着越来越多的数据,它们是检验本构方程优劣的最重要标志。
从形式上分,速率型本构方程,方程中包含应力张量或形变速率张量的时间微商,或同时包含这两个微商。
积分型本构方程,利用迭加原理,把应力表示成应变历史上的积分,或者用一系列松弛时间连续分布的模型的迭加来描述材料的非线性粘弹性。
积分又分为单重积分或多重积分。
判断一个本构方程的优劣主要考察:1)方程的立论是否科学合理,论据是否充分,结论是否简单明了。
2)一个好的理论,不仅能正确描写已知的实验事实,还应能预言至今未知,但可能发生的事实。
3)有承前启后的功能。
例如我们提出一个描写非线性粘弹流体的本构方程,当条件简化时,它应能还原为描写线性粘弹流体的本构关系。
第10章 粘弹性(固体)材料的本构方程(线性)1.概述a )基本的典型模型(根据流变学分类法)弹性:没有记忆(与历史无关,没有耗散),可逆的,没有时效,瞬时响应,与加载速率无关。
塑性:有记忆(与历史有关,有耗数),不可逆,没有时效,瞬时响应,与加载速率无关,比拟元件粘性:有记忆,有耗散,不可逆,有时效,比拟元件多数的工程材料,可用上述三者之一,或三者中的某种组合来描述(在一定的条件下)。
b )粘弹性材料该材料既有粘性,又有弹性。
变形=瞬时效应+随时间而变化的变形(后效变,滞后部分)(弹性)(粘性流动) c )两种典型的特性试验弹性:E / ,00σεσσ==,若,10=σ 则 F E ==/1ε(柔度)0 ,εσεεE ==0,若 10=ε,则 E =σ(模量)粘弹性:)() ,t E t 00=(=σεσσ (由于)t (ε增加,则)(t E 减小,材料软化))() ,10t F t =(=εσ蠕变柔量松驰实验:0)()( ,εσεεt E t ==0)() ,10t E t =(=σε 松驰模量线性粘弹性本构方程,用叠加原理。
有三种表述形式:微分算子型,积分型——遗传积分,复数型(本次不介绍)。
2.微分算子型:(a )两个基本的比拟模型(非其正的材料模型,用于定性的说明) ①Maxwell 模型γγεησεσ == e e E 为元件的本构方程 系统的本构方程:(σ与ε的关系)γγεεεσσσ====e e γγεεεεησεσ +===e e E , , 则: ησσε+=E (接近于粘弹性流体) ② Kelvin (V oigt )模型元件的本构方程:γγεησεσ == e e E γγεεεσσσ==+=e e系统的本构方程:则:εηεσ +=E (接近于粘弹性固体) (b )推广到一般情况:定义:0d :d P r pr r p t =∑ 0d :dt Q rpr r q =∑[)][)]P Q t t σε(=(为微分算子型本构方程。
黏弹流体挤出胀大行为的研究进展樊斌斌【摘要】介绍了聚合物挤出胀大的理论机理及数值模拟,并综述了最近几年黏弹流体挤出胀大行为的研究进展。
最后指出目前存在的一些问题,并展望发展前景。
%The theory mechanism and numerical simulation of viscoelastic fluid are introduced.Meanwhile the research in extrusion swell of viscoelastic fluid are reviewed.In the end,some problems are pointed out and development prospects are predicted.【期刊名称】《上海塑料》【年(卷),期】2011(000)003【总页数】4页(P18-21)【关键词】黏弹性流体;挤出胀大;数值模拟【作者】樊斌斌【作者单位】河南理工大学材料科学与工程学院,河南焦作454000【正文语种】中文【中图分类】TQ320.6630 前言挤出胀大是高分子流变学研究的热点。
挤出胀大是指聚合物熔体经口模挤出时,在未受到足够的牵引拉伸作用下,挤出物的截面积比口模出口截面积大的现象。
挤出胀大是黏弹流体共有的特性,聚合物熔体在很低的剪切速率下(如0.1 s-1)就有非常明显的胀大行为。
挤出胀大通常与聚合物的物理性质、生产工艺、口模构型和挤出设备等影响因素有关;而且最终的形状和尺寸还和停放、冷却等后续工序有关。
目前,聚合物的挤出成型加工占很大比重,同时挤出胀大在很大程度上还决定了挤出制品的尺寸和质量。
本文主要总结了挤出胀大的理论机理及数值模拟研究,并对最近几年黏弹流体挤出胀大行为的研究进行论述。
1 挤出胀大理论机理挤出胀大是非牛顿力学和聚合物流变学的一个重要课题。
早期挤出胀大理论主要采用宏观的动量守恒和能量守恒定律进行研究。
但那些早期研究只在雷诺数高和弹性形变相对小的情况下有效,仅仅适用于聚合物溶液。
第三章非线性粘弹流体的本构方程1.本构方程概念本构方程(constitutive equation),又称状态方程——描述一大类材料所遵循的与材料结构属性相关的力学响应规律的方程。
不同材料以不同本构方程表现其最基本的物性,对高分子材料流变学来讲,寻求能够正确描述高分子液体非线性粘弹响应规律的本构方程无疑为其最重要的中心任务,这也是建立高分子材料流变学理论的基础。
两种。
唯象性方法,一般不追求材料的微观结构,而是强调实验事实,现象性地推广流体力学、弹性力学、高分子物理学中关于线性粘弹性本构方程的研究结果,直接给出描写非线性粘弹流体应力、应变、应变率间的关系。
以本构方程中的参数,如粘度、模量、松弛时间等,表征材料的特性。
分子论方法,重在建立能够描述高分子材料大分子链流动的正确模型,研究微观结构对材料流动性的影响。
采用热力学和统计力学方法,将宏观流变性质与分子结构参数(如分子量,分子量分布,链段结构参数等)联系起来。
为此首先提出能够描述大分子链运动的正确模型是问题关键。
根据研究对象不同,象性方法和分子论方法虽然出发点不同,逻辑推理的思路不尽相同,而最终的结论却十分接近,表明这是一个正确的科学的研究基础。
目前关于高分子材料,特别浓厚体系本构方程的研究仍十分活跃。
同时,大量的实验积累着越来越多的数据,它们是检验本构方程优劣的最重要标志。
从形式上分,速率型本构方程,方程中包含应力张量或形变速率张量的时间微商,或同时包含这两个微商。
积分型本构方程,利用迭加原理,把应力表示成应变历史上的积分,或者用一系列松弛时间连续分布的模型的迭加来描述材料的非线性粘弹性。
积分又分为单重积分或多重积分。
判断一个本构方程的优劣主要考察:1)方程的立论是否科学合理,论据是否充分,结论是否简单明了。
2)一个好的理论,不仅能正确描写已知的实验事实,还应能预言至今未知,但可能发生的事实。
3)有承前启后的功能。
例如我们提出一个描写非线性粘弹流体的本构方程,当条件简化时,它应能还原为描写线性粘弹流体的本构关系。
粘弹性流体力学的理论与实验研究引言粘弹性流体力学是研究流体在同时具有粘性和弹性特性时的行为的学科。
这一领域的研究在多个领域具有重要的应用,包括材料科学、生物医学以及地球科学等领域。
本文将深入探讨粘弹性流体力学的理论基础,并介绍一些经典的实验研究。
理论基础粘弹性流体的概念粘弹性流体是指既具有粘性又具有弹性的液体或软固体。
粘性是指流体内部分子之间相互摩擦的现象,而弹性是指流体内部分子在外力作用下出现回弹的现象。
粘弹性流体的宏观性质在很大程度上取决于物质的微观结构与分子间力的相互作用。
粘弹性流体的模型粘弹性流体的模型通常基于两种基本模型:弹性体模型和粘性流体模型。
弹性体模型可以用弹簧和阻尼器串联的方式来描述,而粘性流体模型则可以用牛顿黏滞定律来表示。
实际的粘弹性流体通常需要综合考虑这两种模型。
粘弹性流体的本构方程粘弹性流体的本构方程用于描述物质的应力-应变关系。
最常用的本构方程是Maxwell模型和Kelvin模型。
Maxwell模型将弹性元素和粘性元素串联起来,可以较好地描述物质的粘弹性行为。
而Kelvin模型通过并联弹性元素和粘性元素来描述物质的行为。
粘弹性流体的流变特性粘弹性流体的流变特性包括黏度、屈服应力、流变曲线等。
黏度是指流体流动时所表现出的阻力大小,是刻画流体流动难易程度的物理量。
屈服应力是指流体在外力作用下开始产生可观测的流动行为所需要的最小应力。
流变曲线则是描述流体在剪切应力施加下产生的剪切应变与时间的关系。
实验研究粘弹性流体的流变性能测试粘弹性流体的流变性能可以通过实验测试来获得。
常见的实验方法有旋转粘度计法、振荡剪切法、迎风试验法等。
旋转粘度计法是通过测量粘弹性流体在旋转圆盘上产生的剪切应力与剪切速率的关系来确定其黏度。
振荡剪切法则是通过频率和振幅的变化来研究粘弹性流体的流变特性。
迎风试验法则是在流体流动中施加外界气流压力来研究粘弹性流体的变形和流动行为。
粘弹性流体的微观结构表征粘弹性流体的微观结构对其宏观行为具有重要影响。
第7 章聚合物的粘弹性形变对时间不存在依赖性εσE =虎克定律理想弹性体外力除去后完全不回复dt d εηγησ==.牛顿定律理想粘性体弹性与粘性弹性粘性储能性可逆性σ与ε的关系与t 关系瞬时性依时性储存耗散回复永久形变εσE =dt d εηγησ==.虎克固体牛顿流体粘弹性力学性质兼具有不可恢复的永久形变和可恢复的弹性形变小分子液体–粘性小分子固体–弹性在时间内,任何物体都是弹性体在时间内,任何物体都是粘性体在的时间范围内,任何物体都是粘弹体超短超长一定高分子材料具有显著的粘弹性粘弹性分类静态粘弹性动态粘弹性蠕变、应力松弛滞后、内耗7.1 粘弹性现象7.1.1 蠕变(creep)在一定的温度下,软质PVC丝钩一定的砝码,会慢慢伸长蠕变:指在一定的温度和较小的恒定外力作用下,材料的形变随时间的增加而逐渐增大的现象蠕变反映了材料的尺寸稳定性及长期负荷能力从分子运动和变化的角度分析线性PVC的形变—时间曲线,除去外力后,回缩曲线?11E σε=1ε1t 2t t键长和键角发生变化引起,形变量很小,瞬间响应σ:应力E 1:普弹形变模量1.普弹形变链段运动使分子链逐渐伸展发生构象变化引起τ:松弛时间,与链段运动的粘度η2和高弹模量E 2有关,τ=η2/ E 2)1(/22τσεt eE --=2ε1t t2t 2.高弹形变3ε2t 1t t外力作用造成分子间的相对滑移(线型高聚物)t33ησε=η3——本体粘度3.粘性流动t eE E t t 3/21321)1()(ησσσεεεετ+-+=++=-线型高聚物的蠕变曲线总应变交联聚合物的蠕变曲线1.由于分子链间化学键的键合,分子链不能相对滑移,在外力作用下不产生粘性流动,蠕变趋于一定值2. 无粘性流动部分,能完全回复T<T g 时,主要是(),T>T g 时,主要是()A ε1B ε2C ε3三种形变的相对比例依具体条件不同而不同下列情况那种形变所占比例大?A B聚合物蠕变的危害性蠕变降低了聚合物的尺寸稳定性抗蠕变性能低不能用作工程塑料如:PTFE不能直接用作有固定尺寸的材料硬PVC抗蚀性好,可作化工管道,但易蠕变影响蠕变的因素1.温度2.外力3.分子结构蠕变与T,外力的关系温度外力蠕变T过低外力过小T过高外力过大T g附近适当外力很小很慢,不明显很快,不明显明显(链段能够缓慢运动)23℃时几种高聚物蠕变性能10002000(%)小时2.01.51.00.512345t链的柔顺性主链含芳杂环的刚性高聚物,抗蠕变性能较好12345聚苯醚PCABS(耐热)POM尼龙如何防止蠕变?◆交联橡胶通过硫化来防止由蠕变产生不可逆的形变◆结晶微晶体可起到类似交联的作用◆提高分子间作用力7.1.2 应力松弛(stress relaxation)在一定温度、恒定应变的条件下,试样内的应力随时间的延长而逐渐减小的现象应力松弛的本质加力链段运动使分子链间相对位置的变化分子重排,以分子运动来耗散能量,从而维持一定形变所需要的力逐渐减小交联聚合物和线形聚合物的应力松弛t交联线性高聚物的应力松弛曲线t不同温度下的应力松弛曲线应力松驰与温度的关系温度过高应力松驰很快温度过低内摩擦力很大,应力松驰极慢T g 附近应力松驰最为明显123应力松弛的应用对密封制件,应力松弛行为决定其使用寿命高分子制件加工中,应力松弛行为决定残余应力的大小不变的量变化的量蠕变应力松弛蠕变与应力松弛比较温度力形变根本原因高分子链的构象重排和分子链滑移应力温度形变动态粘弹性在交变应力或交变应变作用下材料的力学行为σωtπ2πεωtδεωtδ正交变化的应力:t sin )t (0ωσσ=无相位差,无能量损耗理想弹性体tsin )t (0ωεε=有相位差,功全部损耗成热理想粘性液体)2-t sin( )t (0πωεε=相位差δ,损耗部分能量)-t sin( )t (0δωεε=聚合物(粘弹性)高聚物在交变应力作用下的应变变化落后于应力变化的现象tt o ωσσsin )(=)sin()(δωεε-=t t o 0<δ<π/2滞后现象原因链段运动时受到内摩擦阻力, 外力变化时,链段运动跟不上外力的变化内摩擦阻力越大,δ 也就越大,滞后现象越严重外力对体系做的功每次形变所作的功= 恢复形变时所作的功无滞后时没有功的消耗每一次循环变化会有功的消耗,称为内耗有滞后时产生形变提供链段运动时克服内摩擦阻力所需要的能量滞后现象的危害σεσ0ε1拉伸硫化橡胶拉伸—回缩应力应变曲线拉伸曲线下面积为外力对橡胶所作的功回缩曲线下面积为橡胶对外力所作的功滞后环面积越大,损耗越大ε0回缩ε2面积之差损耗的功δεπσsin o o W =∆δ :力学损耗角,常用tanδ来表示内耗大小)]dt-t cos(t)[sin ()t (d )t (W Δ020200δωωεωσεσωπωπ⎰⎰==σεσ0回缩拉伸内耗角δεπσsin o o W =∆δ=0,△W=0,所有能量都以弹性能量的形式存储起来滞后的相角δ决定内耗δ=900,△W→max , 所有能量都耗散掉了滞后和内耗对材料使用的利弊?用作轮胎的橡胶制品要求内耗小(内耗大,回弹性差)隔音材料和吸音材料要求在音频范围内有较大的力学损耗防震材料要求在常温附近有较大的力学损耗温度内耗很高很低T g 附近1. 温度影响滞后和内耗的因素高小小小小大大2.外力变化的频率高聚物的内耗与频率的关系频率 内耗很高很低适中小小小小大大橡胶品种内耗顺丁丁苯丁腈3.内耗与分子结构的关系对于作轮胎的橡胶,则选用哪种?内耗大的橡胶,吸收冲击能量较大,回弹性较差较小较大较大7.1.3 粘弹性参数静态粘弹性蠕变应力松弛模量柔量应力,应变与时间的关系模量、柔量与时间的关系蠕变柔量)()(σεt t D =应力松弛模量)()(εσt t E =tsin (t)0ωεε=t cos sin t sin cos (t)00ωδσωδσσ+=)t sin( (t)0δωσσ+=δεσcos '00=E δεσsin "00=E E ′—储能模量,反映材料形变时的回弹能力(弹性)E ″—耗能模量,反映材料形变时内耗的程度(粘性)1.力学损耗角,tg δ动态粘弹性2.动态模量用复数模量的绝对值表示(绝对模量)2''2'*||E E E E +==通常E ″<<E ′,常直接用E ′作为材料的动态模量。
第三章非线性粘弹流体的本构方程1.本构方程概念本构方程(constitutive equation),又称状态方程——描述一大类材料所遵循的与材料结构属性相关的力学响应规律的方程。
不同材料以不同本构方程表现其最基本的物性,对高分子材料流变学来讲,寻求能够正确描述高分子液体非线性粘弹响应规律的本构方程无疑为其最重要的中心任务,这也是建立高分子材料流变学理论的基础。
两种。
唯象性方法,一般不追求材料的微观结构,而是强调实验事实,现象性地推广流体力学、弹性力学、高分子物理学中关于线性粘弹性本构方程的研究结果,直接给出描写非线性粘弹流体应力、应变、应变率间的关系。
以本构方程中的参数,如粘度、模量、松弛时间等,表征材料的特性。
分子论方法,重在建立能够描述高分子材料大分子链流动的正确模型,研究微观结构对材料流动性的影响。
采用热力学和统计力学方法,将宏观流变性质与分子结构参数(如分子量,分子量分布,链段结构参数等)联系起来。
为此首先提出能够描述大分子链运动的正确模型是问题关键。
根据研究对象不同,象性方法和分子论方法虽然出发点不同,逻辑推理的思路不尽相同,而最终的结论却十分接近,表明这是一个正确的科学的研究基础。
目前关于高分子材料,特别浓厚体系本构方程的研究仍十分活跃。
同时,大量的实验积累着越来越多的数据,它们是检验本构方程优劣的最重要标志。
从形式上分,速率型本构方程,方程中包含应力张量或形变速率张量的时间微商,或同时包含这两个微商。
积分型本构方程,利用迭加原理,把应力表示成应变历史上的积分,或者用一系列松弛时间连续分布的模型的迭加来描述材料的非线性粘弹性。
积分又分为单重积分或多重积分。
判断一个本构方程的优劣主要考察:1)方程的立论是否科学合理,论据是否充分,结论是否简单明了。
2)一个好的理论,不仅能正确描写已知的实验事实,还应能预言至今未知,但可能发生的事实。
3)有承前启后的功能。
例如我们提出一个描写非线性粘弹流体的本构方程,当条件简化时,它应能还原为描写线性粘弹流体的本构关系。