ansys高级非线性分析五粘弹性
- 格式:ppt
- 大小:397.00 KB
- 文档页数:35
ANSYS结构非线性分析指南ANSYS是一个强大的工程仿真软件,能够对各种复杂的结构进行分析。
其中,结构非线性分析是其中一种重要的分析方法,它能够模拟结构在非线性载荷和变形条件下的行为。
本文将为您提供一个ANSYS结构非线性分析的指南,帮助您更好地理解和应用这个方法。
首先,我们需要明确结构非线性分析的目标。
一般来说,结构非线性分析主要用于研究结构在大变形、材料非线性、接触或摩擦等复杂条件下的响应。
例如,当结构受到极大的外力作用时,其产生的变形可能会导致材料的非线性行为,这时我们就需要进行非线性分析。
在进行非线性分析之前,我们需要进行准备工作。
首先,我们需要准备一个几何模型,可以通过CAD软件导入或者直接在ANSYS中绘制。
然后,我们需要选择合适的材料模型,这将直接影响分析结果的准确性。
ANSYS提供了多种材料模型,例如线弹性模型、塑性模型和粘弹性模型等。
接下来,我们需要定义边界条件和载荷。
边界条件指明了结构的固定边界和自由边界,这决定了结构的位移约束。
载荷是作用在结构上的外力或者外界约束,例如压力、点载荷或者摩擦力等。
在非线性分析中,载荷的大小和施加方式可能会导致结构的非线性响应,因此需要仔细选择。
接下来,我们需要选择适当的非线性分析方法。
ANSYS提供了多种非线性分析方法,例如几何非线性分析、材料非线性分析和接触非线性分析等。
几何非线性分析适用于大变形情况下的分析,材料非线性分析适用于材料的弹塑性行为分析,而接触非线性分析适用于多个结构之间的接触行为分析。
在进行非线性分析之前,我们需要对模型进行预处理,包括网格划分和解算控制参数的设置。
网格划分的精度会直接影响分析结果的准确性,因此需要进行适当的剖分。
解算控制参数的设置涉及到收敛性和稳定性的问题,需要进行合理的调整。
然后,我们可以进行非线性分析了。
ANSYS提供了多种求解器,例如Newton-Raphson方法和弧长法等。
这些求解器可以通过迭代算法来求解非线性方程组,得到结构的响应结果。
ANSYS 中粘弹材质属性参数输入和分析 (1)1.1 ANSYS 中表征粘弹性属性问题 ............................................................................................................... 1 1.2 Prony 级数形式 .......................................................................................................................................... 1 1.3 Maxwell 形式 .............................................................................................................................................. 3 1.3 建模与载荷条件 . (5)1.3.1 模型设计 .......................................................................................................................................... 5 1.3.2 有限元建模 ...................................................................................................................................... 5 1.3.3 理论解析解计算式 .......................................................................................................................... 6 1.4 有限元数值解与结果比较 . (6)1.4.1 Plane183,Prony 级数方式 ............................................................................................................. 6 1.4.5 算例结论 . (10)ANSYS 中粘弹材质属性参数输入和分析1.1 ANSYS 中表征粘弹性属性问题粘弹性材料的应力响应包括弹性部分和粘性部分,在载荷作用下弹性部分是即时响应的,而粘性部分需要经过一段时间才能表现出来。
ANSYS中粘弹性材料的参数意义:我用的材料知道时温等效方程(W.L.F.方程),ANSYS 中的本构模型用MAXWELL模型表示。
1.活化能与理想气体常数的比值(Tool-Narayanaswamy Shift Function)或者时温方程的第一个常数。
2.一个常数当用Tool-Narayanaswamy Shift Function的方程描述,或者是时温方程第2个常数3.定义体积衰减函数的MAXWELL单元数(在时温方程中用不到)4.时温方程的参考温度5.决定1、2、3、4参数的值6-15定义体积衰减函数的系数,16-25定义fictive temperature的松弛时间这20个数最终用来定义fictive temperature(在理论手册中介绍,不用在时温方程中)26-30和31-35分别定义了材料在不同物理状态时的热扩散系数36-45用来定义fictive temperature的fictive temperature的一些插值一类的数值,时温方程也用不到46剪切模量开始松弛的值47松弛时间无穷大的剪切模量的值48体积模量开始松弛的值49松弛时间无穷大的体积模量的值50描述剪切松弛模量的MAXWELL模型的单元数51-60拟合剪切松弛模量的prony级数的系数值61-70拟合剪切松弛模量的prony级数的指数系数值(形式参看理论手册)71描述体积松弛模量的MAXWELL模型的单元数76-85拟合体积松弛模量的prony级数的系数值85-95拟合体积松弛模量的prony级数的指数系数值(形式参看理论手册)进入ansys非线性粘弹性材料有两项:(1)maxwell(麦克斯韦)模型最多可以输入95个常数(2)prony(普朗尼)模型这个模型下面又有三项:(a)shear Responsea1: 即理论中的C1-Relative modulus: 相对剪切模量t1: 即理论中的C2-Relative time: 相对时间(b)V olumetric Response(容积响应)a1: 即理论中的C1-Relative modulus: 相对弹性模量t1: 即理论中的C2-Relative time: 相对时间(c)Shift function (转换函数)有三项可以选择:(I)William-Landel, ferry: 时温等效方程Tref: 即理论中的C1-Relative temperature: 相对温度(对应《粘弹性理论》中的时温等效方程(WFL方程)应该是玻璃化转变温度)C1,C2: 没有什么好说的了,就是WFL方程的常量,与材料有关;(II)Tool-Narayanaswamy 方程Tref: 即理论中的C1-Relative temperature: 相对温度(应该是玻璃化转变温度)C1: 没有什么好说的了,就是TN常量;(III)用户定义Tref: 即理论中的C1-Relative temperature: 相对温度(应该是玻璃化转变温度)C1: 没有什么好说的了,就是方程的常量;-------------------------------------------------------------------------《粘弹性理论》TB, Lab, MAT, NTEMP, NPTS, TBOPT, EOSOPT如果Lab:MATMaterial reference number (defaults to 1; maximum equals 100,000).NTEMP:Number of temperatures for which data will be provided. Default = 1; Max = 6.NPTS:Number of pairs of Prony series. Default = 1 pair; Max = 6 pairs.TBOPT:Defines the relaxation behavior for viscoelasticity.1--(or SHEAR) relaxation behavior of the shear response.2--(or BULK) relaxation behavior of the volumetric response.如果Lab:SHIFTNTEMP:Allows one temperature for which data will be provided.NPTS:Number of material constants to be entered as determined by the shift function specified by3--for TBOPT = WLF2--TBOPT = TNTBOPT:Defines the shift function1--( or WLF) William-Landel-Ferry shift function.2--(or TN) Tool-Narayanaswamy shift function.100--(or USER) User-defined shift function。
ANSYS结构⾮线性分析指南(⼀⾄三章)ANSYS结构⾮线性分析指南(⼀到三章)屈服准则概念:1.理想弹性材料物体发⽣弹性变形时,应⼒与应变完全成线性关系,并可假定它从弹性变形过渡到塑性变形是突然的。
2.理想塑性材料(⼜称全塑性材料)材料发⽣塑性变形时不产⽣硬化的材料,这种材料在进⼊塑性状态之后,应⼒不再增加,也即在中性载荷时即可连续产⽣塑性变形。
3.弹塑性材料在研究材料塑性变形时,需要考虑塑性变形之前的弹性变形的材料这⾥可分两种情况:Ⅰ.理想弹塑性材料在塑性变形时,需要考虑塑性变形之前的弹性变形,⽽不考虑硬化的材料,也即材料进⼊塑性状态后,应⼒不再增加可连续产⽣塑性变形。
Ⅱ.弹塑性硬化材料在塑性变形时,既要考虑塑性变形之前的弹性变形,⼜要考虑加⼯硬化的材料,这种材料在进⼊塑性状态后,如应⼒保持不变,则不能进⼀步变形。
只有在应⼒不断增加,也即在加载条件下才能连续产⽣塑性变形。
4.刚塑性材料在研究塑性变形时不考虑塑性变形之前的弹性变形。
这⼜可分两种情况:Ⅰ.理想刚塑性材料在研究塑性变形时,既不考虑弹性变形,⼜不考虑变形过程中的加⼯硬化的材料。
Ⅱ.刚塑性硬化材料在研究塑性变形时,不考虑塑性变形之前的弹性变形,但需要考虑变形过程中的加⼯硬化材料。
屈服准则的条件:1.受⼒物体内质点处于单向应⼒状态时,只要单向应⼒⼤到材料的屈服点时,则该质点开始由弹性状态进⼊塑性状态,即处于屈服。
2.受⼒物体内质点处于多向应⼒状态时,必须同时考虑所有的应⼒分量。
在⼀定的变形条件(变形温度、变形速度等)下,只有当各应⼒分量之间符合⼀定关系时,质点才开始进⼊塑性状态,这种关系称为屈服准则,也称塑性条件。
它是描述受⼒物体中不同应⼒状态下的质点进⼊塑性状态并使塑性变形继续进⾏所必须遵守的⼒学条件,这种⼒学条件⼀般可表⽰为f(σi j)=C⼜称为屈服函数,式中C是与材料性质有关⽽与应⼒状态⽆关的常数,可通过试验求得。
屈服准则是求解塑性成形问题必要的补充⽅程。
ANSYS结构非线性分析指南ANSYS是一款非常强大的有限元分析软件,广泛应用于各种工程领域的结构分析。
在常规的结构分析中,通常会涉及到线性分析,但一些情况下,结构出现了非线性行为,这时就需要进行非线性分析。
非线性分析可以更准确地模拟结构的真实行为,包括材料的非线性、几何的非线性和接触非线性等。
在进行ANSYS结构非线性分析时,需要考虑以下几个方面:1.材料的非线性:在材料的应力-应变关系中,材料的性质可能会发生变化,如塑性变形、损伤、软化等。
因此在非线性分析中,需要考虑材料的非线性特性,并正确选取材料模型。
2.几何的非线性:在一些情况下,结构本身的几何形态可能会发生较大变化,如大变形、屈曲等。
这需要考虑结构的几何非线性,并在分析中充分考虑结构的形变情况。
3.接触非线性:当结构中存在接触面时,接触面之间的接触力可能是非线性的,如摩擦力、法向压力等。
在进行非线性分析时,需要考虑接触面上的非线性行为,确保接触的可靠性。
在进行ANSYS结构非线性分析时,可以按照以下步骤进行:1.建立模型:首先需要根据实际情况建立结构的有限元模型,包括几何形状、边界条件和加载条件等。
在建立模型时,需要考虑到结构的材料、几何和接触情况,并进行合理的网格划分。
2.设置分析类型:在ANSYS中,可以选择静力分析、动力分析等不同的分析类型。
在进行非线性分析时,需要选择适合的非线性分析模块,并设置相应的参数。
3.设置材料模型:根据结构的材料特性,选择合适的材料模型,如弹塑性模型、本构模型等。
根据实际情况,设置材料的材料参数,确保材料的非线性行为能够得到准确的描述。
4.设置几何非线性:考虑结构的几何非线性时,需要选择合适的几何非线性选项,并设置合适的几何参数。
在进行大变形分析时,需要选择几何非线性选项,确保结构的形变情况能够得到准确的描述。
5.设置接触非线性:当结构存在接触面时,需要考虑接触面上的非线性行为。
在ANSYS中,可以设置接触类型、摩擦系数等参数,确保接触的可靠性。
ANSYS中粘弹性材料的参数意义:我用的材料知道时温等效方程(W.L.F.方程),ANSYS 中的本构模型用MAXWELL模型表示。
1.活化能与理想气体常数的比值(Tool-Narayanaswamy Shift Function)或者时温方程的第一个常数。
2.一个常数当用Tool-Narayanaswamy Shift Function的方程描述,或者是时温方程第2个常数3.定义体积衰减函数的MAXWELL单元数(在时温方程中用不到)4.时温方程的参考温度5.决定1、2、3、4参数的值6-15定义体积衰减函数的系数,16-25定义fictive temperature的松弛时间这20个数最终用来定义fictive temperature(在理论手册中介绍,不用在时温方程中)26-30和31-35分别定义了材料在不同物理状态时的热扩散系数36-45用来定义fictive temperature的fictive temperature的一些插值一类的数值,时温方程也用不到46剪切模量开始松弛的值47松弛时间无穷大的剪切模量的值48体积模量开始松弛的值49松弛时间无穷大的体积模量的值50描述剪切松弛模量的MAXWELL模型的单元数51-60拟合剪切松弛模量的prony级数的系数值61-70拟合剪切松弛模量的prony级数的指数系数值(形式参看理论手册)71描述体积松弛模量的MAXWELL模型的单元数76-85拟合体积松弛模量的prony级数的系数值85-95拟合体积松弛模量的prony级数的指数系数值(形式参看理论手册)进入ansys非线性粘弹性材料有两项:(1)maxwell(麦克斯韦)模型最多可以输入95个常数(2)prony(普朗尼)模型这个模型下面又有三项:(a)shear Responsea1: 即理论中的C1-Relative modulus: 相对剪切模量t1: 即理论中的C2-Relative time: 相对时间(b)V olumetric Response(容积响应)a1: 即理论中的C1-Relative modulus: 相对弹性模量t1: 即理论中的C2-Relative time: 相对时间(c)Shift function (转换函数)有三项可以选择:(I)William-Landel, ferry: 时温等效方程Tref: 即理论中的C1-Relative temperature: 相对温度(对应《粘弹性理论》中的时温等效方程(WFL方程)应该是玻璃化转变温度)C1,C2: 没有什么好说的了,就是WFL方程的常量,与材料有关;(II)Tool-Narayanaswamy 方程Tref: 即理论中的C1-Relative temperature: 相对温度(应该是玻璃化转变温度)C1: 没有什么好说的了,就是TN常量;(III)用户定义Tref: 即理论中的C1-Relative temperature: 相对温度(应该是玻璃化转变温度)C1: 没有什么好说的了,就是方程的常量;-------------------------------------------------------------------------《粘弹性理论》TB, Lab, MAT, NTEMP, NPTS, TBOPT, EOSOPT如果Lab:MATMaterial reference number (defaults to 1; maximum equals 100,000).NTEMP:Number of temperatures for which data will be provided. Default = 1; Max = 6.NPTS:Number of pairs of Prony series. Default = 1 pair; Max = 6 pairs.TBOPT:Defines the relaxation behavior for viscoelasticity.1--(or SHEAR) relaxation behavior of the shear response.2--(or BULK) relaxation behavior of the volumetric response.如果Lab:SHIFTNTEMP:Allows one temperature for which data will be provided.NPTS:Number of material constants to be entered as determined by the shift function specified by3--for TBOPT = WLF2--TBOPT = TNTBOPT:Defines the shift function1--( or WLF) William-Landel-Ferry shift function.2--(or TN) Tool-Narayanaswamy shift function.100--(or USER) User-defined shift function。
从半空间无限域取一4X2的矩形平面结构,顶部中间一定范围内受随时间变化的均布荷载,荷载如下p(t)=t 当0< DIV>p(t)=2-t 当1<=t<=2时p(t)=0 当t>2时材料弹性模量E=2.5,泊松比0.25,密度1网格尺寸0.1X0.1,在网格边界上所有结点加法向和切向combin14号单元用以模拟粘弹性人工边界(有关理论可参考刘晶波老师的相关文章)。
combine14单元的两个结点,其中一个与实体单元相连,另一个结点固定。
网格图如图1所示时程分析的时间步长为0.02秒,共计算16秒。
计算得到四个控制点位移时程图如图2所示,控制点坐标A(0,2)、B(0,1)、C(0,0)、D(2,2).计算所用命令流如下:/PREP7L=4 !水平长度H=2 !竖起深度E=2.5 !弹性模量density=1 !密度nu=0.25 !泊松比dxyz=0.1 !网格尺寸G = E/(2.*(1.+nu)) !剪切模量alfa = E*(1-nu)/((1.+nu)*(1.-2.*nu)) !若计算平面应力,此式需要修改Cp=sqrt(alfa/density) !压缩波速Cs=sqrt(g/density) !剪切波速R=sqrt(L*L/4.+H*H/4.) !波源到边界点等效长度KbT=0.5*G/R*dxyzKbN=1.0*G/R*dxyzCbT=density*Cs*dxyzCbN=density*Cp*dxyzET, 1, plane42,,,2 !按平面应变计算et, 2, combin14, ,, 2 !切向et, 3, combin14, ,, 2 !法向r, 2, KbT, CbTr, 3, KbN, CbNMP, EX, 1, EMP, PRXY, 1, nuMP, DENS, 1, densityrectng,-L/2.,L/2,0.,Hasel, allaesize, all, dxyzmshape,0,2Dmshkey,1amesh, all!以下建立底边界法向和切向弹簧阻尼单元nsel,s,loc,y,0.*get,np,node,,count !得到选中的结点数,存入np*get,npmax,node,,num,maxd !得到已经定义的最大结点数,存入npmax*do,ip,1,npnpnum=node((ip-1)*dxyz-L/2.,0.,0.)x=nx(npnum)y=ny(npnum)z=nz(npnum)npmax=npmax+1n,npmax,x.,y-dxyz/2,z !定义底边界法向结点以便与边界点形成法向单元type,3real,3e,npnum,npmaxd,npmax,all,0. !约束新生成的点npmax=npmax+1n,npmax,x-dxyz/2.,y,z !定义底边界切向结点以便与边界点形成切向单元type,2real,2e,npnum,npmaxd,npmax,all,0. !约束新生成的点*enddo!以下建立左边界法向和切向弹簧阻尼单元nsel,s,loc,x,-L/2*get,np,node,,count !得到选中的结点数,存入np*get,npmax,node,,num,maxd !得到已经定义的最大结点数,存入npmax*do,ip,2,np !侧边界最下面一个点按底边界上处理npnum=node(-L/2,(ip-1)*dxyz,0.)x=nx(npnum)y=ny(npnum)z=nz(npnum)npmax=npmax+1n,npmax,x-dxyz/2.,y,z !定义左边界法向结点以便与边界点形成法向单元type,3real,3e,npnum,npmaxd,npmax,all,0. !约束新生成的点npmax=npmax+1n,npmax,x,y-dxyz/2.,z !定义左边界切向结点以便与边界点形成切向单元type,2real,2e,npnum,npmaxd,npmax,all,0. !约束新生成的点*enddo!以下建立右边界法向和切向弹簧阻尼单元nsel,s,loc,x,L/2*get,np,node,,count !得到选中的结点数,存入np*get,npmax,node,,num,maxd !得到已经定义的最大结点数,存入npmax*do,ip,2,np !侧边界最下面一个点按底边界上处理npnum=node(L/2,(ip-1)*dxyz,0.)x=nx(npnum)y=ny(npnum)z=nz(npnum)npmax=npmax+1n,npmax,x+dxyz/2.,y,z !定义右边界法向结点以便与边界点形成法向单元type,3real,3e,npnum,npmaxd,npmax,all,0. !约束新生成的点npmax=npmax+1n,npmax,x,y-dxyz/2.,z !定义右边界切向结点以便与边界点形成切向单元type,2real,2e,npnum,npmaxd,npmax,all,0. !约束新生成的点*enddoallsel,all/pnum,type,1/number,1eplotfinish/soluANTYPE,trans!*TRNOPT,FULLLUMPM,0btime=0.02etime=16.00dtime=0.02*DO,itime,btime,etime,dtimeTIME,itimensel,s,loc,y,H !选中需要加荷载的点nsel,r,loc,x,-L/4,L/4*if,itime,lt,1.,thenf,all,fy,1*itime*elseif,itime,ge,1.0,and,itime,le,2.0f,all,fy,1*(2-itime)*elsef,all,fy,0.0*endifallsel,allSOLVE*ENDDO另外,还用自己编写的有限元程序计算了一下这个例子,并与ANSYS得到的结果进行了比较,结果非常吻合,这里给出A点的比较结果。