氩离子激光器
- 格式:ppt
- 大小:1.89 MB
- 文档页数:35
激光器的分类自从上世纪60年代以来,激光器已经发展出了众多类型,主要包括不同的工作介质、不同的脉宽,因此我们按照激光器的工作介质和输出脉冲两个思路对目前主要的激光器进行分类,并且介绍相关的激光术语。
按激光工作介质,激光器可以分为固体激光器、气体激光器、半导体激光器、光纤激光器、染料激光器和自由电子激光器。
固体激光器(晶体,玻璃):在基质材料中掺入激活离子而制成,都是采用光泵浦的方式激励。
1)钕玻璃激光器:在玻璃中掺入稀土元素钕做工作物质,输出波长:λ=1.053μm2)红宝石激光器:输出波长:λ=694.3nm,输出线宽:∆λ=0.01∼0.1nm工作方式:连续,脉冲3)掺钕钇铝石榴石(Nd:YAG):YAG晶体内掺进稀土元素钕,输出波长:λ=1064nm,914nm,1319nm工作方式:连续,高重复率脉冲连续波可调谐钛蓝宝石激光器:输出波长:λ=675∼1100nm气体激光器:在单色性/光束稳定性方面比固体/半导体/液体激光器优越,频率稳定性好,是很好的相干光源,可实现最大功率连续输出,结构简单,造价低,转换效率高。
谱线丰富,多达数千种(160nm--4mm)。
工作方式:连续运转(大多数)1)氦-氖激光器:常用的为λ=632.8nm根据选择的工作条件激光器可以输出近红外,红光,黄光,绿光(λ=3.39μm,1.15μm)2)CO2激光器:λ=10.6μm3)氩离子气体激光器:λ=488nm,514.5nm4)氦-镉激光器:波长为325nm的紫外辐射和441.6nm的蓝光5)铜蒸汽激光器:波长510.5nm的绿光和578.2nm的黄光6)氮分子激光器:紫外光,常见波长:337.1nm,357.7nm半导体激光器:由不同组分的半导体材料做成激光有源区和约束区的激光器;体积最小,重量最轻,使用寿命长,有效使用时间超过10万小时。
工作物质包括GaAS(砷化镓),InAS(砷化铟),Insb(锑化铟),CdS(硫化镉)。
激光器的分类介绍实际应用的激光器种类很多,如以组成激光器的工作物质来说可分为气体激光器、液体激光器、固定激光器、半导体激光器、化学激光器等。
在同一类型的激光器中又包括有许多不同材料的激光器。
如固体激光器中有红宝石激光器、钇铝石榴石(Nd:YAG)激光器。
气体型的激光器主要有He-Ne(氦-氖)、CO2及氩离子激光器等。
由于工作物质不同,产生不同波长的光波不同,因而应用范围也不相同。
最常用而范围广的有CO2laser及Nd:YAG激光。
有的激光器可连续工作,如He-Ne laser;有的以脉冲形式发光工作。
如红宝石激光。
而另一些激光器既可连续工作,又可以脉冲工作的有CO2laser及Nd:YAG laser。
(一)固体激光器实现激光的核心主要是激光器中可以实现粒子数反转的激光工作物质(即含有亚稳态能级的工作物质)。
如工作物质为晶体状的或者玻璃的激光器,分别称为晶体激光器和玻璃激光器,通常把这两类激光器统称为固体激光器。
在激光器中以固体激光器发展最早,这种激光器体积小,输出功率大,应用方便。
由于工作物质很复杂,造价高。
当今用于固体激光器的物质主要有三种:掺钕铝石榴石(Nd:YAG)工作物质,输出的波长为1.06μm呈白蓝色光;钕玻璃工作物质,输出波长 1.06μm呈紫蓝色光;红宝石工作物质,输出波长为694.3nm,为红色光。
主要用光泵的作用,产生光放大,发出激光,即光激励工作物质。
固定激光器的结构由三个主要部分组成:工作物质,光学谐振腔、激励源。
聚光腔是使光源发出的光都会聚于工作物质上。
工作物质吸收足够大的光能,激发大量的粒子,促成粒子数反转。
当增益大于谐振腔内的损耗时产生腔内振荡并由部分反射镜一端输出一束激光。
工作物质有2条主要作用:一是产生光;二是作为介质传播光束。
因此,不管哪一种激光器,对其发光性质及光学性质都有一定要求。
(二)气体激光器工作物质主要以气体状态进行发射的激光器在常温常压下是气体,有的物质在通常条件下是液体(如非金属粒子的有水、汞),及固体(如金属离子结构的铜,镉等粒子),经过加热使其变为蒸气,利用这类蒸气作为工作物质的激光器,统归气体激光器之中。
拉曼光谱仪的结构
拉曼光谱仪的结构主要包括以下组成部分:
1. 激光器:用于提供单色、高能量的激光光束。
常用的激光器包括氩离子激光器、二极管激光器等。
2. 样品台:用于放置待测试的样品,通常是一个可调节的平台,可以调整样品与光束的相对位置和角度。
3. 过滤器:用于去除来自激光器的散射光或非拉曼散射光。
4. 光栅:用于将进入的光分散成不同波长的成分。
5. 光电探测器:用于将拉曼散射光转换成电信号。
常用的光电探测器包括光电二极管、CCD等。
6. 分光器:将进入光栅的光线引导到光电探测器。
7. 数据采集系统:用于接收和分析光电探测器输出的信号,通常包括放大器、模数转换器和计算机。
总体来说,拉曼光谱仪的结构包括激光器、样品台、过滤器、光栅、光电探测器、分光器和数据采集系统等组成部分,能够实现对样品的拉曼散射光信号的测量和分析。
《激光器件》作业(1)1.说明激光产生的必要和充分条件。
简述激光器的基本组成部分及其功能。
激光器基本构成:1)工作物质:激光器的核心。
谱线波段,增益,结构形态。
2)泵浦源:电、光、热、化学能、核能激励。
激光电源,控制电路,能量转换效率。
3)光学谐振腔:为激光振荡建立提供正反馈;其参数影响输出激光束的质量。
稳定性,模式;镜片加工和镀膜工艺,调整精度4)辅助设施:散热系统,滤光设施。
调Q ,锁模,稳频,选模,放大。
产生激光的必要条件——粒子数反转:受激辐射要得到放大,必须辐射作用大于吸收作用。
要求上能级的粒子数大于下能级粒子数. 理想能级结构:上能级:亚稳态(长寿命),粒子数积累。
下能级:尽量清空。
产生激光的充分条件——阈值条件:激活介质的增益不小于损耗,才能产生激光振荡。
21G R ≥2. 判断谐振腔的稳定性(单位:mm) (1)R1=90, R2=40, L=100 (2)R1=20, R2=10, L=45 (3) R1=-40, R2=75, L=60 (4) R1=∞, R2=-10, L=501、稳定腔——傍轴光线在腔内任意多次往返不会横向逸出腔外 ()2211211,1101211R L g R L g g g D A -=-=<<<+<-其中或2、非稳腔——傍轴光线在腔内有限次往返必然从侧面溢出腔外 ()()121012112121-<+<>+>D A g g D A g g 即或即3.某稳定腔两面反射镜的曲率半径分别R1=-1.25m 及 R2=1.6m 。
(1)这是哪一类型谐振腔?(2)试确定腔长L 的可能取值范围, 并作出谐振腔的简单示意图。
凹凸镜;|g 1g 2|<14、画出下图所示谐振腔的等效透镜光路,并写出往返矩阵。
⎪⎪⎭⎫ ⎝⎛⋅=⎪⎪⎭⎫⎝⎛⋅⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫⎝⎛⋅⎥⎦⎤⎢⎣⎡⋅⎥⎥⎦⎤⎢⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡⋅⎥⎥⎦⎤⎢⎢⎣⎡-=⎪⎪⎭⎫ ⎝⎛000000211110111011011101θθθθr T r D C B A r L f L f r注意:相乘时要反序乘;5. 某CO 2激光器采用平凹腔,L=50cm ,R=2m ,2a=1cm ,λ=10.6μm 。
首页氩离子激光器作者:许鑫杨皋·摘自:《防伪印刷》·第十九章印刷中常用的激光器时间:2001-11-17第二节氩离子激光器氩离子(Ar+)激光器是一种惰性气体离子激光器,是目前在可见光区域输出功率最高的一种连续工作的激光器。
一般输出功率为几瓦或几十瓦,在可见光区域可发射多条振荡谱线,其中以波长5 14.5nm(绿色)和488nm(蓝色)的最强,是目前激光制版印刷的重要光源之一。
一、氩离子激光器结构和激发机理1.氩离子激光器结构。
氩离子激光器由放电管、磁场和谐振腔组成。
其中最关键的部分是放电管。
氩离子激光器放电管的核心是放电毛细管,由于氩离子激光器的工作电流密度高达数百安/平方厘米,放电毛细管的管壁温度往往在1000℃以上。
因此需采用耐高温、导热性能好、气体清除速率低的材料制成,如采用石英管、氧化铍陶瓷管、分段石墨管等。
高纯质密石墨是目前广泛使用的一种放电毛细管材料。
由于石墨是良导体,为维持放电,石墨放电毛细管必须采用分段结构,段与段间彼此绝缘。
图19-9是一种分段石墨片结构的氩离子激光器的结构示意图。
其中,放电毛细管由分段石墨片组成,石墨片由两根直径约3.5mm的氧化铝陶瓷杆串起来,并用小石英环使其每片隔开,彼此绝缘。
整个组合体置于水冷套的石英管内,两端分别为提供电子发射的阴极和收集电子的石墨阳极,阴极选用钡钨材料。
此外,氩离子激光管内设有回气管,使放电管气压平衡,有助于激光输出。
图19-91-石墨阳极 2-石墨片 3-石英环 4-水冷套 5-放电毛细管 6-阴极 7-保热屏 8-加热灯丝9-布氏窗 10-磁场 11-贮气瓶 12-电磁真空充气阈 13-镇气瓶 14-波纹管 15-气压检测器在石墨管氩离子激光器中,管内的气体清除效应引起管内气压降低,使输出降低。
为了延长激光管的使用寿命,在激光管上常常配备有贮气和充气装置。
氩离子激光器的谐振腔由两个镀有多层介质膜的反射镜组成。
几种常用激光器的概述一、CO2激光器1、背景气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。
特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。
二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。
1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。
在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。
不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。
最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。
2、工作原理CO2激光器中,主要的工作物质由CO₂,氮气,氦气三种气体组成。
其中CO₂是产生激光辐射的气体、氮气及氦气为辅助性气体。
加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。
氮气加入主要在CO₂激光器中起能量传递作用,为CO₂激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。
CO₂分子激光跃迁能级图CO₂激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。
放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。
这时受到激发的氮分子便和CO₂分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO₂分子从低能级跃迁到高能级上形成粒子数反转发出激光。
3、特点二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点:(1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。
(2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。