氩离子激光器
- 格式:pptx
- 大小:343.28 KB
- 文档页数:17
激光器的分类自从上世纪60年代以来,激光器已经发展出了众多类型,主要包括不同的工作介质、不同的脉宽,因此我们按照激光器的工作介质和输出脉冲两个思路对目前主要的激光器进行分类,并且介绍相关的激光术语。
按激光工作介质,激光器可以分为固体激光器、气体激光器、半导体激光器、光纤激光器、染料激光器和自由电子激光器。
固体激光器(晶体,玻璃):在基质材料中掺入激活离子而制成,都是采用光泵浦的方式激励。
1)钕玻璃激光器:在玻璃中掺入稀土元素钕做工作物质,输出波长:λ=1.053μm2)红宝石激光器:输出波长:λ=694.3nm,输出线宽:∆λ=0.01∼0.1nm工作方式:连续,脉冲3)掺钕钇铝石榴石(Nd:YAG):YAG晶体内掺进稀土元素钕,输出波长:λ=1064nm,914nm,1319nm工作方式:连续,高重复率脉冲连续波可调谐钛蓝宝石激光器:输出波长:λ=675∼1100nm气体激光器:在单色性/光束稳定性方面比固体/半导体/液体激光器优越,频率稳定性好,是很好的相干光源,可实现最大功率连续输出,结构简单,造价低,转换效率高。
谱线丰富,多达数千种(160nm--4mm)。
工作方式:连续运转(大多数)1)氦-氖激光器:常用的为λ=632.8nm根据选择的工作条件激光器可以输出近红外,红光,黄光,绿光(λ=3.39μm,1.15μm)2)CO2激光器:λ=10.6μm3)氩离子气体激光器:λ=488nm,514.5nm4)氦-镉激光器:波长为325nm的紫外辐射和441.6nm的蓝光5)铜蒸汽激光器:波长510.5nm的绿光和578.2nm的黄光6)氮分子激光器:紫外光,常见波长:337.1nm,357.7nm半导体激光器:由不同组分的半导体材料做成激光有源区和约束区的激光器;体积最小,重量最轻,使用寿命长,有效使用时间超过10万小时。
工作物质包括GaAS(砷化镓),InAS(砷化铟),Insb(锑化铟),CdS(硫化镉)。
激光器的分类介绍实际应用的激光器种类很多,如以组成激光器的工作物质来说可分为气体激光器、液体激光器、固定激光器、半导体激光器、化学激光器等。
在同一类型的激光器中又包括有许多不同材料的激光器。
如固体激光器中有红宝石激光器、钇铝石榴石(Nd:YAG)激光器。
气体型的激光器主要有He-Ne(氦-氖)、CO2及氩离子激光器等。
由于工作物质不同,产生不同波长的光波不同,因而应用范围也不相同。
最常用而范围广的有CO2laser及Nd:YAG激光。
有的激光器可连续工作,如He-Ne laser;有的以脉冲形式发光工作。
如红宝石激光。
而另一些激光器既可连续工作,又可以脉冲工作的有CO2laser及Nd:YAG laser。
(一)固体激光器实现激光的核心主要是激光器中可以实现粒子数反转的激光工作物质(即含有亚稳态能级的工作物质)。
如工作物质为晶体状的或者玻璃的激光器,分别称为晶体激光器和玻璃激光器,通常把这两类激光器统称为固体激光器。
在激光器中以固体激光器发展最早,这种激光器体积小,输出功率大,应用方便。
由于工作物质很复杂,造价高。
当今用于固体激光器的物质主要有三种:掺钕铝石榴石(Nd:YAG)工作物质,输出的波长为1.06μm呈白蓝色光;钕玻璃工作物质,输出波长 1.06μm呈紫蓝色光;红宝石工作物质,输出波长为694.3nm,为红色光。
主要用光泵的作用,产生光放大,发出激光,即光激励工作物质。
固定激光器的结构由三个主要部分组成:工作物质,光学谐振腔、激励源。
聚光腔是使光源发出的光都会聚于工作物质上。
工作物质吸收足够大的光能,激发大量的粒子,促成粒子数反转。
当增益大于谐振腔内的损耗时产生腔内振荡并由部分反射镜一端输出一束激光。
工作物质有2条主要作用:一是产生光;二是作为介质传播光束。
因此,不管哪一种激光器,对其发光性质及光学性质都有一定要求。
(二)气体激光器工作物质主要以气体状态进行发射的激光器在常温常压下是气体,有的物质在通常条件下是液体(如非金属粒子的有水、汞),及固体(如金属离子结构的铜,镉等粒子),经过加热使其变为蒸气,利用这类蒸气作为工作物质的激光器,统归气体激光器之中。
医学中常用的激光器自第一台激光器问世后,人们对激光器件及技术进行了大量的研制工作,取得了相当可观的成果。
目前能实现激光运转的工作物质达数百种以上,大体上分为气体、固体、半导体、染料等几大类。
人们在探索激光产生机理的同时,扩展了激光的频谱范围,几千条谱线遍布于真空紫外到远红外的广阔光谱区域。
激光方向性好、强度大,可以使被照物体在1/1000s 内产生几千度的高温,瞬间发生汽化。
由于激光的物理特性决定了其具有明显的生物学效应,。
各种不同的激光具有不同的特性和组织效应,正确认识激光的这些特点,是选择和合理利用激光的基础。
一.气体激光器气体激光器,按工作物质的性质,大致可分成下列三种:1原子激光器:利用原子跃迁产生激光振荡,以氦氖激光器为代表。
氩、氪、氙等惰性气体,铜、镉、汞等金属蒸气,氯、溴、碘等卤素,它们的原子均能产生激光。
原子激光器的输出谱线在可见和红外波段,典型输出功率为10 毫瓦数量级。
2分子激光器:利用分子振动或转动状态的变化产生辐射制成的,输出的激光是分子的振转光谱。
分子激光器以二氧化碳CO2激光器为代表,其他还有氢分子H2,氮分子N2和一氧化碳CO分子等激光器。
分子激光器的输出光谱大多在近红外和远红外波段,输出功率从数十瓦到数万瓦。
3离子激光器:+这类激光器的激活介质是离子,由被激发的离子产生激光放大作用,如氩离子激活介质为Ar 激光器。
+氦镉激光器激活介质为Cd 等。
离子激光器的输出光谱大多在可见光和紫外波段,输出功率从几毫瓦到几十瓦。
气体激光器是覆盖波谱范围最广的一类器件,能产生连续输出。
其方向性、单色性也比其他类型器件好,加之制造方便、成本低、可靠性高,因此成为目前应用最广的一类器体。
1、氦氖激光器氦氖激光器能输出波长为632.8nm 的可见光,具有连续输出的特性。
它的光束质量很好发散角小,单色性好,单色亮度大。
激光器结构简单,成本低,但输出功率较小。
氦氖激光器在工业、科研、国防上应用很广,医疗上主要用于照射,有刺激、消炎、镇痛、扩张血管和针灸等作用,广泛用于内科、皮肤科、口腔科及细胞的显微研究。
《激光器件》作业(1)1.说明激光产生的必要和充分条件。
简述激光器的基本组成部分及其功能。
激光器基本构成:1)工作物质:激光器的核心。
谱线波段,增益,结构形态。
2)泵浦源:电、光、热、化学能、核能激励。
激光电源,控制电路,能量转换效率。
3)光学谐振腔:为激光振荡建立提供正反馈;其参数影响输出激光束的质量。
稳定性,模式;镜片加工和镀膜工艺,调整精度4)辅助设施:散热系统,滤光设施。
调Q ,锁模,稳频,选模,放大。
产生激光的必要条件——粒子数反转:受激辐射要得到放大,必须辐射作用大于吸收作用。
要求上能级的粒子数大于下能级粒子数. 理想能级结构:上能级:亚稳态(长寿命),粒子数积累。
下能级:尽量清空。
产生激光的充分条件——阈值条件:激活介质的增益不小于损耗,才能产生激光振荡。
21G R ≥2. 判断谐振腔的稳定性(单位:mm) (1)R1=90, R2=40, L=100 (2)R1=20, R2=10, L=45 (3) R1=-40, R2=75, L=60 (4) R1=∞, R2=-10, L=501、稳定腔——傍轴光线在腔内任意多次往返不会横向逸出腔外 ()2211211,1101211R L g R L g g g D A -=-=<<<+<-其中或2、非稳腔——傍轴光线在腔内有限次往返必然从侧面溢出腔外 ()()121012112121-<+<>+>D A g g D A g g 即或即3.某稳定腔两面反射镜的曲率半径分别R1=-1.25m 及 R2=1.6m 。
(1)这是哪一类型谐振腔?(2)试确定腔长L 的可能取值范围, 并作出谐振腔的简单示意图。
凹凸镜;|g 1g 2|<14、画出下图所示谐振腔的等效透镜光路,并写出往返矩阵。
⎪⎪⎭⎫ ⎝⎛⋅=⎪⎪⎭⎫⎝⎛⋅⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫⎝⎛⋅⎥⎦⎤⎢⎣⎡⋅⎥⎥⎦⎤⎢⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡⋅⎥⎥⎦⎤⎢⎢⎣⎡-=⎪⎪⎭⎫ ⎝⎛000000211110111011011101θθθθr T r D C B A r L f L f r注意:相乘时要反序乘;5. 某CO 2激光器采用平凹腔,L=50cm ,R=2m ,2a=1cm ,λ=10.6μm 。
YAG激光器技术原理及应用YAG 激光器是以钇铝石榴石晶体为基质的一种固体激光器。
钇铝石榴石的化学式是Y3 Al5 O15 ,简称为YAG。
在YAG基质中掺入激活离子Nd3+ (约1%)就成为Nd:YAG。
实际制备时是将一定比例的Al2 O3 、Y2 O3 和NdO3 在单晶炉中熔化结晶而成。
Nd:YAG属于立方晶系, 是各向同性晶体。
由于Nd:YAG属四能级系统, 量子效率高, 受激辐射面积大, 所以它的阈值比红宝石和钕玻璃低得多。
又由于Nd:YAG晶体具有优良的热学性能, 因此非常适合制成连续和重频器件。
它是目前在室温下能够连续工作的唯一固体工作物质,在中小功率脉冲器件中, 目前应用Nd:YAG的量远远超过其他工作物质。
和其他固体激光器一样, YAG 激光器基本组成部分是激光工作物质、泵浦源和谐振腔。
不过由于晶体中所掺杂的激活离子种类不同, 泵浦源及泵浦方式不同, 所采用的谐振腔的结构不同,以及采用的其他功能性结构器件不同,YAG激光器又可分为多种, 例如按输出波形可分为连续波YAG激光器、重频YAG激光器和脉冲激光器等; 按工作波长分为1.06μmYAG 激光器、倍频YAG激光器、拉曼频移YAG 激光器(λ=1.54μm)和可调谐YAG 激光器(如色心激光器)等; 按掺杂不同可分为Nd:YAG激光器、掺Ho、Tm、Er等的YAG激光器; 以晶体的形状不同分为棒形和板条形YAG 激光器;根据输出功率(能量)不同, 可分为高功率和中小功率YAG激光器等。
形形色色的YAG 激光器, 成为固体激光器中最重要的一个分支。
[相关技术]激光材料;泵浦技术;固体激光器技术;电子技术[技术难点]尽管以YAG晶体为基质的YAG 激光器从问世迄今已经20多年, 技术和工艺都比较成熟并得到广泛应用, 但随着相关技术的进步, YAG激光器的研究工作仍旧方兴未艾, 依然是目前激光器研究的热点。
为了提高YAG 激光器的效率、输出功率和光束质量, 扩展其频谱范围, 人们在激光材料、结构和泵浦源及泵浦方式等技术和工艺方面继续开展研究和改进工作, 要解决的关键技术主要有:1、寻求新的激光材料。
首页氩离子激光器作者:许鑫杨皋·摘自:《防伪印刷》·第十九章印刷中常用的激光器时间:2001-11-17第二节氩离子激光器氩离子(Ar+)激光器是一种惰性气体离子激光器,是目前在可见光区域输出功率最高的一种连续工作的激光器。
一般输出功率为几瓦或几十瓦,在可见光区域可发射多条振荡谱线,其中以波长5 14.5nm(绿色)和488nm(蓝色)的最强,是目前激光制版印刷的重要光源之一。
一、氩离子激光器结构和激发机理1.氩离子激光器结构。
氩离子激光器由放电管、磁场和谐振腔组成。
其中最关键的部分是放电管。
氩离子激光器放电管的核心是放电毛细管,由于氩离子激光器的工作电流密度高达数百安/平方厘米,放电毛细管的管壁温度往往在1000℃以上。
因此需采用耐高温、导热性能好、气体清除速率低的材料制成,如采用石英管、氧化铍陶瓷管、分段石墨管等。
高纯质密石墨是目前广泛使用的一种放电毛细管材料。
由于石墨是良导体,为维持放电,石墨放电毛细管必须采用分段结构,段与段间彼此绝缘。
图19-9是一种分段石墨片结构的氩离子激光器的结构示意图。
其中,放电毛细管由分段石墨片组成,石墨片由两根直径约3.5mm的氧化铝陶瓷杆串起来,并用小石英环使其每片隔开,彼此绝缘。
整个组合体置于水冷套的石英管内,两端分别为提供电子发射的阴极和收集电子的石墨阳极,阴极选用钡钨材料。
此外,氩离子激光管内设有回气管,使放电管气压平衡,有助于激光输出。
图19-91-石墨阳极 2-石墨片 3-石英环 4-水冷套 5-放电毛细管 6-阴极 7-保热屏 8-加热灯丝9-布氏窗 10-磁场 11-贮气瓶 12-电磁真空充气阈 13-镇气瓶 14-波纹管 15-气压检测器在石墨管氩离子激光器中,管内的气体清除效应引起管内气压降低,使输出降低。
为了延长激光管的使用寿命,在激光管上常常配备有贮气和充气装置。
氩离子激光器的谐振腔由两个镀有多层介质膜的反射镜组成。
yag工作原理YAG激光器工作原理解析激光器作为一种重要的光学设备,广泛应用于医疗、军事、通信等领域。
其中,YAG激光器是一种常见的固体激光器,具有较高的功率输出和较长的寿命。
本文将重点解析YAG激光器的工作原理,让读者对其工作过程有更清晰的了解。
YAG激光器是基于YAG晶体的激光器,其中YAG指的是钇铝石榴石(Yttrium Aluminum Garnet)晶体。
YAG晶体是一种具有高硬度、高熔点和优良的光学性能的材料。
它的基本化学式为Y3Al5O12,晶体结构为立方晶系。
YAG激光器的工作原理是通过外界能量的输入使YAG晶体产生受激辐射,进而实现激光的发射。
其工作过程主要包括泵浦、能级跃迁和激光放大三个阶段。
首先是泵浦阶段。
在YAG激光器中,通常采用氙灯或Nd:YAG激光器作为泵浦源。
当泵浦源提供足够的能量时,YAG晶体中的铒原子(Er)将被激发到高能级。
这种高能级通常称为激发态。
接下来是能级跃迁阶段。
在YAG晶体中,铒原子的能级结构较为复杂,其中最重要的能级是4I13/2和4I15/2。
铒原子从激发态跃迁到基态时,会经历一系列的能级跃迁。
在这个过程中,铒原子会释放出能量,并且放射出相应波长的光。
这种光具有高度相干性和单色性,即激光。
最后是激光放大阶段。
在YAG激光器中,激光需要经过放大器的增益介质进行放大,才能得到足够的功率输出。
YAG晶体作为放大介质,通过受激辐射的作用,使激光得到放大。
在激光放大器中,YAG晶体通常被制成棒状或片状形式,以便增加光程和提高激光输出功率。
总结起来,YAG激光器的工作原理可以简单概括为:通过泵浦源的作用,将YAG晶体中的铒原子激发到高能级,然后通过能级跃迁,释放出激光光子。
最后,激光光子在放大器中得到放大,形成高功率的激光输出。
YAG激光器具有许多优点,如高功率输出、较长的使用寿命、较高的光束质量等。
因此,它被广泛应用于材料加工、激光医疗、通信等领域。
同时,YAG晶体也可以掺杂其他稀土元素,如钆、铽等,以实现不同波长的激光输出。
yag激光器工作原理激光器是一种能够产生高强度、单色、相干光的装置,而YAG激光器则是其中一种常见的激光器。
YAG激光器是以三氧化二铝(YAG)晶体为激发介质的固态激光器,其工作原理涉及能级结构和激光放大过程。
我们来了解一下YAG晶体的能级结构。
YAG晶体是由氧化铝(Al2O3)和三氧化二铝(Y2O3)组成的晶体,其晶格结构具有高熔点、高硬度和良好的光学性能。
YAG晶体的能级结构包括基态和激发态两个能级。
基态是指晶体中原子或离子的最低能级,而激发态则是指晶体中原子或离子被外界能量激发后跃迁到的高能级。
YAG激光器的工作原理基于激光放大过程。
首先,通过外界能量的输入,YAG晶体中的铥离子(Tm3+)被激发到激发态能级。
这种能量输入可以是光的照射、电流的通入或者其他方式。
当铥离子处于激发态时,它们会在短时间内跃迁回基态,并放出能量。
这个过程称为自发辐射。
自发辐射放出的能量以光子的形式发射出来,形成光子流。
然后,这些光子会在YAG晶体中与其他铥离子发生受激辐射的相互作用。
受激辐射是指一个光子与一个处于激发态的原子或离子相互作用,导致原子或离子跃迁到低能级并放出另一个光子。
在YAG激光器中,受激辐射导致铥离子跃迁到基态并放出能量,这些能量被放大并产生更多的光子。
这样,一个光子的输入可以引发一系列的受激辐射,最终导致光子数目的指数级增加。
这就是激光放大的过程。
在放大过程中,YAG晶体中的铥离子充当了放大介质的角色,起到放大光信号的作用。
为了实现激光输出,YAG激光器还需要光学谐振腔。
光学谐振腔是由两个反射镜构成的空腔,其中一个镜子是半透明的,可以允许一部分光子透出。
当光子在两个反射镜之间来回反射时,会与激发态的铥离子发生相互作用,进一步放大。
最终,一部分光子会从半透明镜射出,形成激光输出。
总结一下,YAG激光器的工作原理是基于YAG晶体的能级结构和激光放大过程。
外界能量激发YAG晶体中的铥离子进入激发态能级,然后通过自发辐射和受激辐射的相互作用,光子被放大并产生更多的光子。
思考练习题31.腔长为0.5m 的氩离子激光器,发射中心频率0ν=5.85⨯l014Hz ,荧光线宽ν∆=6⨯l08 Hz ,问它可能存在几个纵模?相应的q 值为多少? (设μ=1)答:Hz L cq 881035.0121032⨯=⨯⨯⨯==∆μν, 210310688=⨯⨯=∆∆=q n νν,则可能存在的纵模数有三个,它们对应的q 值分别为: 68141095.11031085.522⨯=⨯⨯=⨯=⇒=νμμνc L q L qc ,q +1=1950001,q -1=19499992.He —Ne 激光器的中心频率0ν=4.74×1014Hz ,荧光线宽ν∆=1.5⨯l09Hz 。
今腔长L =lm ,问可能输出的纵模数为若干?为获得单纵模输出,腔长最长为多少?答:Hz L cq 88105.11121032⨯=⨯⨯⨯==∆μν,10105.1105.189=⨯⨯=∆∆=q n νν 即可能输出的纵模数为10个,要想获得单纵模输出,则:m c L Lcq 2.0105.1103298=⨯⨯=∆<∴=∆<∆νμμνν 故腔长最长不得大于m 2.0。
3.(1)试求出方形镜对称共焦腔镜面上30TEM 模的节线位置的表达式(腔长L 、光波波长λ、方形镜边长a )(2)这些节线是否等间距?答:(1)πλλπ43,02128)1()(0)(X F 213333323322L x x LxX X X e dX d eX H eX H X XX ±==⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫=-=-==--)=((2)这些节距是等间距的4.连续工作的CO 2激光器输出功率为50W ,聚焦后的基模有效截面直径2w =50μm ,计算(1)每平方厘米平均功率(50W 为有效截面内的功率) (2)试与氩弧焊设备(104W /cm 2)及氧乙炔焰(103W /cm 2)比较,分别为它们的多少倍? 答:(1)每平方厘米的平均功率为:26242/10546.2)1025(50W50cm W ⨯=⨯=-ππω(2)6.2541010546.246=⨯;是氩弧焊的6.254倍。