2020年常用激光器简介
- 格式:doc
- 大小:180.50 KB
- 文档页数:11
几种常用激光器的概述一、CO2激光器1、背景气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。
特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。
二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。
1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。
在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。
不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。
最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。
2、工作原理CO2激光器中,主要的工作物质由CO₂,氮气,氦气三种气体组成。
其中CO₂是产生激光辐射的气体、氮气及氦气为辅助性气体。
加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。
氮气加入主要在CO₂激光器中起能量传递作用,为CO₂激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。
CO₂分子激光跃迁能级图CO₂激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。
放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。
这时受到激发的氮分子便和CO₂分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO₂分子从低能级跃迁到高能级上形成粒子数反转发出激光。
3、特点二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点:(1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。
(2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。
常见激光器结构及器件功能介绍激光器是一种产生、放大和聚焦激光光束的器件。
它在现代科学、医疗、工业和战争等领域都有广泛的应用。
常见的激光器结构主要包括激光介质、泵浦源、光学谐振腔和输出窗口等部分。
下面将对这些部分的功能进行详细介绍。
1.激光介质:激光介质是激光器的核心部件,它能够使电能或光能转化为激光能量。
常见的激光介质包括气体(如二氧化碳、氩等)、固体(如Nd:YAG晶体)和液体(如染料溶液)等。
不同激光介质具有不同的特性,决定了激光器的输出特点。
2.泵浦源:泵浦源是激光器产生激光能量的能源,它对激光介质进行能量输入,使之达到激发态。
常见的泵浦源包括电子激发(如气体放电、闪光灯等)、光学激发(如半导体激光二极管、固体激光晶体等)和化学激发(如染料激光器)等。
泵浦源的选择决定了激光器的效率和波长等参数。
3.光学谐振腔:光学谐振腔是激光器中光的来回传播的空间,在谐振腔内激光能量发生倍增和光模式形成。
常见的光学谐振腔包括平面腔、球面腔和折射腔等。
谐振腔的结构和参数决定了激光器的输出特征,如脉冲宽度、线宽和波前质量等。
4.输出窗口:输出窗口是激光器中激光能量传出的接口,它具有透过激光的特性,并使激光尽量少损耗。
常见的输出窗口材料包括光学玻璃、光纤和光学晶体等。
输出窗口的选择和设计是影响激光器输出功率和光束质量的重要因素。
除了上述部分,激光器还包括一些辅助器件和系统,如冷却系统、调谐器和稳频器等,它们的功能主要有以下几个方面:1.冷却系统:激光器在工作过程中会产生大量的热量,需要通过冷却系统来散热,以保持激光介质和泵浦源的稳定性。
常见的冷却方式包括空气冷却、水冷却和制冷剂冷却等。
2.调谐器:激光器的波长可能需要进行调整,以适应不同应用的需求。
调谐器通过改变光学谐振腔的长度或谐振性能,实现激光器波长的可调。
3.稳频器:激光器的频率稳定度对一些应用非常重要。
稳频器通过使用反馈调节和控制系统,使激光器的频率保持在目标值附近的范围内。
典型激光器的原理、特点及应用摘要:本文介绍了四种典型的激光器,固体、气体、染料和半导体激光器,并分别介绍了特点及应用。
关键词:典型激光器,原理和特点,应用一、引言自梅曼发明了第一台红宝石激光器至今,激光器得到了飞速发展,在激光工作物质方面也得到了很大的改进,激光器根据激活媒质可分为固体、气体、染料和半导体激光器。
各类激光器各有特色,并在相关的领域里发挥着重要的作用。
二、固体激光器固体激光器是以掺杂离子的绝缘晶体或玻璃作为工作物质的激光器,基本上都是由工作物质、泵浦系统、谐振腔和冷却、滤光系统构成的。
最常采用的固体工作物质仍然是红宝石、钕玻璃、掺钕钇铝石榴石(Nd3+:Y AG)等三种。
图1是固体激光器的基本结构示意图。
图1 固体激光器的基本结构示意图1.红宝石(Cr3+:A12O3)红宝石是在三氧化二铝(A12O3)中掺入少量的氧化铬(Cr2O3)生长成的晶体。
它的吸收光谱特性主要取决于铬离子(Cr3+),铬离子与激光产生有关的能级结构如图2所示。
它属于三能级系统,相应于图(1-3)的简化能级模型,其激发态E3为4F1和4F2能级,激光上、下能级E2和E1分别为2E和4A2。
它的荧光谱线有两条:R1线和R2线,在室温下对应的中心波长分别为694.3nm和692.9nm。
由于R1线的辐射强度比R2大,在振荡过程中总占优势,所以通常红宝石激光器产生的激光谱线均为R1线(694.3nm)。
红宝石激光器的优点是机械强度高,容易生长大尺寸晶体,容易获得大能量的单模输出,输出的红颜色激光不但可见,而且适于常用硅探测器探测。
红宝石激光器的主要缺点是阈值高和温度效应非常严重。
随着温度的升高,激光波长将向长波长方向移动,荧光谱线变宽,荧光量子效率下降,导致阈值升高,严重时会引起“温度猝灭”。
因此,在室温情况下,红宝石激光器不适于连续和高重复率工作,但在低温下,可以连续运转。
目前在医学方面和动态全息方面还有应用价值。
四种激光器有哪些典型应用?一半导体激光器:半导体激光器是以半导体材料作为激光工作物质的激光器1.半导体激光器在高压反馈电路中的应用2.在电子焊接领域的应用3. 量子阱半导体大功率激光器在精密机械零件的激光加工方面有重要应用4. 在印刷业和医学领域,高功率半导体激光器也有应用. .另外,如长波长激光器(1976年,人们用Ga[nAsP/InP实现了长波长激光器)用于光通信,短波长激光器用于光盘读出.自从NaKamuxa实现了GaInN/GaN蓝光激光器,可见光半导体激光器在光盘系统中得到了广泛应用,如CD播放器,DVD系统和高密度光存储器可见光面发射激光器在光盘、打印机、显示器中都有着很重要的应用,特别是红光、绿光和蓝光面发射激光器的应用更广泛.蓝绿光半导体激光器用于水下通信、激光打印、高密度信息读写、深水探测及应用于大屏幕彩色显示和高清晰度彩色电视机中.总之,可见光半导体激光器在用作彩色显示器光源、光存贮的读出和写人,激光打印、激光印刷、高密度光盘存储系统、条码读出器以及固体激光器的泵浦源等方面有着广泛的用途.量子级联激光的新型激光器应用于环境检测和医检领域.另外,由于半导体激光器可以通过改变磁场或调节电流实现波长调谐,且已经可以获得线宽很窄的激光输出,因此利用半导体激光器可以进行高分辨光谱研究.可调谐激光器是深入研究物质结构而迅速发展的激光光谱学的重要工具大功率中红外(3.5lm)LD在红外对抗、红外照明、激光雷达、大气窗口、自由空间通信、大气监视和化学光谱学等方面有广泛的应用.5. 绿光到紫外光的垂直腔面发射器在光电子学中得到了广泛的应用,如超高密度、光存储.近场光学方案被认为是实现高密度光存储的重要手段.垂直腔面发射激光器还可用在全色平板显示、大面积发射、照明、光信号、光装饰、紫外光刻、半导体二极管激光器在激光通信、光存储、光陀螺、激光打印、测距以及雷达等方面以及获得了广泛的应用。
半导体激光器是成熟较早、进展较快的一类激光器,由于它的波长范围宽,制作简单、成本低、易于大量生产,并且由于体积小、重量轻、寿命长,因此,品种发展快,应用范围广,目前已超过300种,半导体激光器的最主要应用领域是Gb局域网,850nm波长的半导体激光器适用于)1Gh/。
激光器的种类及性能参数总结讲解激光器的种类及性能参数总结半导体激光器——用半导体材料作为工作物质的一类激光器中文名称:半导体激光器英文名称:semiconductor laser定义1:用一定的半导体材料作为工作物质来产生激光的器件。
所属学科:测绘学(一级学科);测绘仪器(二级学科)定义2:以半导体材料为工作物质的激光器。
所属学科:机械工程(一级学科);光学仪器(二级学科);激光器件和激光设备-激光器名称(三级学科)定义3:一种利用半导体材料PN结制造的激光器。
所属学科:通信科技(一级学科);光纤传输与接入(二级学科)半导体激光器的常用参数可分为:波长、阈值电流Ith 、工作电流Iop 、垂直发散角θ⊥、水平发散角θ∥、监控电流Im 。
(1)波长:即激光管工作波长,目前可作光电开关用的激光管波长有635nm、650nm、670nm、激光二极管690nm、780nm、810nm、860nm、980nm等。
(2)阈值电流Ith :即激光管开始产生激光振荡的电流,对一般小功率激光管而言,其值约在数十毫安,具有应变多量子阱结构的激光管阈值电流可低至10mA以下。
(3)工作电流Iop :即激光管达到额定输出功率时的驱动电流,此值对于设计调试激光驱动电路较重要。
(4)垂直发散角θ⊥:激光二极管的发光带在垂直PN结方向张开的角度,一般在15?~40?左右。
(5)水平发散角θ∥:激光二极管的发光带在与PN结平行方向所张开的角度,一般在6?~ 10?左右。
(6)监控电流Im :即激光管在额定输出功率时,在PIN管上流过的电流。
工业激光设备上用的半导体激光器一般为1064nm、532nm、808nm,功率从几瓦到几千瓦不等。
一般在激光打标机上使用的是1064nm的,而532nm的则是绿激光。
准分子激光器——以准分子为工作物质的一类气体激光器件。
中文名称:准分子激光器英文名称:excimer laser定义:以准分子为工作物质的激光器。
10多种激光器全面梳理!光纤激光器应用领域广阔,细分种类可满足特殊需求光纤激光器有多种分类方法,其中较为常见的是按工作方式分类、按波段范围分类及按介质掺杂稀土元素分类。
激光器通常也是根据这三个分类中的一至两个来命名的,例如 IPG的 YLM-QCW 系列即翻译为准连续掺镱光纤激光器。
光纤激光器应用领域广泛,不同细分的激光器特质不同,适合的应用领域各异。
例如中红外波段对于人眼来说是安全的,且在水中能够被很强的吸收,是理想的医用激光光源;掺铒光纤由于其合适的波长可以打开光纤通信窗口,在光纤通信领域应用较广;绿光激光由于其可见性,在娱乐与投影等方面必不可少。
脉冲激光器峰值功率高,准连续激光器加工速度快光纤激光器按照工作方式可以分为锁模光纤激光器、调Q光纤激光器、准连续光纤激光器及连续光纤激光器。
实现脉冲光纤激光器的技术途径主要有调Q技术、锁模技术和种子源主振荡功率放大(MOPA)技术。
锁模技术可以实现飞秒或皮秒量级的脉冲输出,且脉冲的峰值功率较高,一般在百万瓦量级,但是其输出的脉冲平均功率较低;调Q光纤激光器可以获得脉宽为纳秒量级、峰值功率为千瓦量级、脉冲能量为百万焦量级的脉冲激光。
准连续激光器的脉冲宽度为微秒级,而连续激光由泵浦源持续提供能量,长时间地产生激光输出。
连续光纤激光器是高功率激光器的主要产品连续激光器的激光输出是连续的,广泛运用于激光切割、焊接和熔覆领域。
激光泵浦源持续提供能量,长时间地产生激光输出,从而得到连续激光。
连续激光器中各能级的粒子数及腔内辐射场均具有稳定分布。
其工作特点是工作物质的激励和相应的激光输出,可以在一段较长的时间范围内以连续方式持续进行,以连续光源激励的光纤激光器即为连续光纤激光器。
相比其他类型激光器,连续光纤激光器能达到相对较高的功率,IPG已经生产出单模2万瓦的连续光纤激光器,较常用于激光切割、焊接和熔覆领域。
准连续光纤激光器可双模式运转,显著提升加工速度准连续激光器可以同时在连续和高峰值功率脉冲模式下工作。
常用激光器及其分类本文由高能激光设备制造有限公司()提供激光器发展至今,其品种目前已超过200多种,特点各异,其用途也各不相同。
激光器可按以下方法进行分类.1)按工作介质来分有:固体激光器、液体激光器、气体激光器、半导体激光器。
此外,还有化学激光器靠化学反应而形成受激状态)和自由电子激光器等。
(1)固体激光器固体激光器的工作介质是在作为基质材料的晶体或玻璃中均匀掺人少量激活离子,除了用红宝石和玻璃外,常用的还有在忆铝石榴石(Y AG)品体中掺人三价铰离子(Nd)的激光器,它发射1060nm的近红外激光.固体激光器连续功率一般可达1 kw以上,脉冲峰值功率可达10000000Kw一般固体激光器具有器件小、坚固、使用方便、输出功率大的特点。
近年来发展十分迅猛的光纤赫却,其工作物质是一段光纤.光纤中掺不同的元素.能够产生波段范围很宽的激光。
(2)液体激光器常用的是染料激光器,采用有机染料作为工作介质。
大多数情况是把有机染料济于溶剂(乙醇、丙酮、水等)中使用,也有以蒸汽状态工作的。
利用不同染料可获得不同波长的激光(在可见光范困)。
染料激光器一般使用激光作泵浦源.常用的有氢离子激光器。
液体激光器的工作原理比较复杂,它的优点是输出波长连续可调且搜盖面宽。
(3)气体激光器工作物质主要以气体状态进行发射的激光器,在常温常压下是气体,有的物质在通常条件下是液体(如非金属粒子的有水、汞)及固体(如金属离子结构的铜、锅等粒子),经过加热使其变为蒸汽,利用这类蒸汽作为工作物质的激光器,统归气体激光器之中。
气体激光器中除了发出激光的工作气体外,为了延长器件的工作寿命及提高输出功率,还加入一定量的辅助气体与发光的工作气体相混合。
气体工作物质是所使用的工作物质中数日最多、激励方式最多样化、激光发射波长分布区域最广的一类激光器。
·气体激光器所采用的工作物质,可以是原子气体、分子气体和电离化离子气体,为此,把它们相应地称为原子气体激光器、分子气体激光器和离子气体激光器。
常见激光器结构及器件功能介绍激光器是一种产生并放大激光束的装置,常见的激光器结构包括气体激光器、固体激光器、液体激光器和半导体激光器。
下面将对这些常见的激光器结构及器件功能进行介绍。
1.气体激光器:气体激光器是利用气体分子或原子的电子能级跃迁放大光子束的装置。
常见的气体激光器包括二氧化碳激光器和氩离子激光器。
(1)二氧化碳激光器(CO2激光器):它是利用二氧化碳气体的分子振动能级跃迁来放大激光。
主要用于切割、打孔、焊接等工业加工领域。
(2)氩离子激光器:它利用氩离子气体的电子能级跃迁来放大激光。
主要应用于生物医学、光学雷达等领域。
2.固体激光器:固体激光器是利用固体材料(如纳、晶体、陶瓷等)的电子能级跃迁放大光子束的装置。
常见的固体激光器包括Nd:YAG激光器和雷射晶体放大器。
(1)Nd:YAG激光器:它是利用掺杂了钕离子的钇铝石榴石晶体的电子能级跃迁来放大激光。
主要用于切割、焊接、医疗美容等领域。
(2)雷射晶体放大器:它是利用高浓度掺杂放大材料(如三氧化二铜、Cr4+:YAG等)的反射效应来放大激光。
主要应用于高能激光研究和军事领域。
3.液体激光器:液体激光器是利用液体材料的分子或原子能级跃迁放大光子束的装置。
常见的液体激光器包括染料激光器和化学激光器。
(1)染料激光器:它利用在溶液中溶解染料分子的电子能级跃迁来放大激光。
主要用于光谱分析、显示技术等领域。
(2)化学激光器:它利用化学反应产生的激发态物质来放大激光。
主要应用于军事领域和科学研究。
4.半导体激光器:半导体激光器是利用半导体材料(如GaN、InP等)的电子能级跃迁放大光子束的装置。
常见的半导体激光器包括激光二极管和垂直腔面发射激光器(VCSEL)。
(1)激光二极管:它利用PN结的电子能级跃迁来放大激光。
主要应用于光通信、光储存、激光打印等领域。
(2)VCSEL:它利用垂直结构的PN结的电子能级跃迁来放大激光。
主要应用于光通信、生物传感等领域。
常见半导体激光器
常见半导体激光器是指利用半导体材料制成的激光器,它们具有小体积、高效率、低功率消耗等优点,被广泛应用于通讯、医疗、工业等领域。
常见的半导体激光器包括:
1. 激光二极管:是一种最简单、最常见的半导体激光器,可用
于光通信、激光打印、激光显示等应用。
2. 垂直腔面发射激光器(VCSEL):是一种向上发射激光的激光器,由于其优秀的光束品质和易于集成的特点,被广泛应用于局域网、传感器、3D 成像等领域。
3. 底发射激光器:是一种向下发射激光的激光器,具有高功率、高可靠性等特点,被广泛应用于工业制造、医疗等领域。
4. 外接式半导体激光器:是一种通过光纤连接到外部光学系统
的激光器,具有高功率、高能量密度等特点,被广泛应用于激光切割、激光焊接等领域。
随着技术的不断进步,半导体激光器的性能也在不断提高,未来它们将会在更多领域发挥作用。
- 1 -。
各种激光器的介绍激光器是一种将能量源转化为高强度、高单色性、高定向性的激光光束的装置。
激光器被广泛应用于医疗、通信、材料加工、测量检测等各个领域。
下面将介绍几种常见的激光器。
1.氦氖激光器(He-Ne激光器)氦氖激光器是一种气体激光器,它利用氦和氖的混合气体在波长为632.8纳米的红光范围内产生激光。
氦氖激光器具有单一稳定频率、高空间定向性和较小的光腔长度,适用于光学实验、干涉测量等领域。
2.二极管激光器(LD激光器)二极管激光器是一种半导体激光器,它是由多层不同材料的半导体材料组成的结构。
二极管激光器广泛应用于通信领域,如光纤通信、光存储等。
它具有体积小、效率高的特点。
3.CO2激光器CO2激光器是一种分子激光器,其工作介质是CO2分子。
CO2激光器具有中红外波段的辐射,波长在9.6-10.6微米之间。
CO2激光器在材料加工、医疗等领域有广泛应用,如切割、焊接、组织切割等。
4.Nd:YAG激光器Nd:YAG激光器是一种固体激光器,其工作介质是掺有镓和铽离子的YAG晶体。
它具有较长的荧光寿命和较高的能量转换效率,常用于材料加工、医疗、科学研究等领域。
5.氮化镓激光器(GaN激光器)氮化镓激光器是一种宽禁带半导体激光器,它利用氮化镓材料发射紫外激光。
GaN激光器具有较高的工作温度、较长的寿命和较高的光电子转换效率,可用于蓝光显示、白光LED照明等领域。
6.染料激光器染料激光器是一种利用染料溶液作为工作介质的激光器。
它具有波长调谐范围广、转换效率高的特点。
染料激光器在科学研究、生物医学等领域有广泛应用。
7.纳秒脉冲激光器纳秒脉冲激光器是一种能够在纳秒时间尺度内产生激光脉冲的激光器。
它广泛应用于材料加工、精密测量、医疗等领域,如激光打标、激光切割、激光测距等。
总之,激光器具有波长可调、能量可控、光束质量高等优点,能满足不同应用领域的需求。
随着材料科学、光学技术的不断发展,激光器的种类也在不断增多,并得到了广泛的研究和应用。
医学中常用的激光器自第一台激光器问世后,人们对激光器件及技术进行了大量的研制工作,取得了相当可观的成果。
目前能实现激光运转的工作物质达数百种以上,大体上分为气体、固体、半导体、染料等几大类。
人们在探索激光产生机理的同时,扩展了激光的频谱范围,几千条谱线遍布于真空紫外到远红外的广阔光谱区域。
激光方向性好、强度大,可以使被照物体在1/1000s内产生几千度的高温,瞬间发生汽化。
由于激光的物理特性决定了其具有明显的生物学效应,。
各种不同的激光具有不同的特性和组织效应,正确认识激光的这些特点,是选择和合理利用激光的基础。
一.气体激光器气体激光器,按工作物质的性质,大致可分成下列三种:(1)原子激光器:利用原子跃迁产生激光振荡,以氦氖激光器为代表。
氩、氪、氙等惰性气体,铜、镉、汞等金属蒸气,氯、溴、碘等卤素,它们的原子均能产生激光。
原子激光器的输出谱线在可见和红外波段,典型输出功率为10毫瓦数量级。
(2)分子激光器:利用分子振动或转动状态的变化产生辐射制成的,输出的激光是分子的振转光谱。
分子激光器以二氧化碳(CO2)激光器为代表,其他还有氢分子(H2),氮分子(N2)和一氧化碳(CO)分子等激光器。
分子激光器的输出光谱大多在近红外和远红外波段,输出功率从数十瓦到数万瓦。
(3)离子激光器:这类激光器的激活介质是离子,由被激发的离子产生激光放大作用,如氩离子(激活介质为Ar+)激光器。
氦镉激光器(激活介质为Cd+)等。
离子激光器的输出光谱大多在可见光和紫外波段,输出功率从几毫瓦到几十瓦。
气体激光器是覆盖波谱范围最广的一类器件,能产生连续输出。
其方向性、单色性也比其他类型器件好,加之制造方便、成本低、可靠性高,因此成为目前应用最广的一类器体。
1、氦氖激光器氦氖激光器能输出波长为632.8nm的可见光,具有连续输出的特性。
它的光束质量很好(发散角小,单色性好,单色亮度大)。
激光器结构简单,成本低,但输出功率较小。
常用激光介绍1.二氧化碳激光(连续式)(1)技术参数:波长为10600nm,功率一般为10-50W.(2)作用原理:二氧化碳激光波长位于中红外区,主要作用靶为水分子,可导致皮肤组织温度显著升高,产生凝固,炭化,气化等生物学效应,在临床上起到烧灼,切割等作用。
(3)适应症:在临床上,二氧化碳激光主要用于去除浅表皮肤良性赘生物及肿瘤,包括寻常疣,尖锐湿疣,脂溢性角化病,色素痣,皮赘,皮角,角化棘皮瘤,化脓性肉芽肿等,有时也用于Bowen病,基底细胞癌,鳞状细胞癌等肿瘤的治疗。
二氧化碳激光经扩束后,可作为低功率激光照射,用于治疗皮肤溃疡,皮肤瘙痒症,冷性多形红斑及冻疮等。
2.氦氖激光(1)技术参数:波长为632.8nm输出功率一般为10-40mW(2)作用原理:氦氖激光具有以下几方面的作用:<1>改善皮肤微循环,加强新陈代谢,促进组织结构与功能的的恢复;<2>加快吸收,减轻充血和水肿等炎症反应;<3>调节免疫功能<4>加速致痛化学介质(如K+,氨类物质)的吸收,起到镇痛作用。
(3)适应症:皮肤溃疡,斑秃,带状疱疹及后遗症,毛囊炎等。
(4)忌症:光敏性疾病,恶性肿瘤,急性感染等。
3.掺钕钇铝石榴石(Nd:YAG)激光(连续式)(1)技术参数:波长为1064nm功率一般为10-80W(2)作用原理:Nd:YAG激光输出波长位于近红外区,在皮肤组织中主要产生热效应,导致皮肤组织气化,炭化,凝固。
该波长在皮肤中组织中穿透深,凝固作用强,热损伤范围较大。
(3)适应症:Nd:YAG激光主要用于治疗血管增生性损害,如海绵状血管瘤,淋巴血管瘤,血管角皮瘤,化脓性肉芽肿,血管内皮瘤,木村病等,还可用于寻常疣,趾疣的治疗。
4.掺铟砷化稼半导体激光(1)技术参数:波长为980nm,功率一般为10-30W,是一种大功率半导体激光。
(2)作用原理:与Nd:YAG激光类似,在皮肤组织中主要产生热效应,导致皮肤组织气化,炭化,凝固。
作者:非成败作品编号:92032155GZ5702241547853215475102时间:2020.12.13几种常用激光器的概述一、CO2激光器1、背景气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。
特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。
二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。
1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。
在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。
不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。
最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。
2、工作原理CO2激光器中,主要的工作物质由CO₂,氮气,氦气三种气体组成。
其中CO₂是产生激光辐射的气体、氮气及氦气为辅助性气体。
加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。
氮气加入主要在CO₂激光器中起能量传递作用,为CO₂激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。
CO₂分子激光跃迁能级图CO₂激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。
放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。
这时受到激发的氮分子便和CO₂分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO₂分子从低能级跃迁到高能级上形成粒子数反转发出激光。
3、特点二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点:(1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。
(2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。
(3)结构简单,使用一般工业气体,操作简单,价格低廉。
由此可见,随着研究工作的进展、新技术的使用,输出功率和效率会不断提高,寿命也会不断增长,将会出现一系列新颖的应用。
例如大气和宇宙通讯、相干探测和导航、超外差技术和红外技术等。
4、应用二氧化碳分子激光器以其独有的特点获得广泛的应用,现就某些方面的应用介绍如下:1、热效应的应用可以毫不困难地把激光器的射束直径聚成100微米。
在此情况下。
300瓦的功率就相当于107瓦/厘米2数量级的能量密度,此值已超过太阳光的能量密度,能达到极高的温度。
例如Garver公司研制的800 瓦二氧化碳激光器在2秒钟之内就能烧穿4寸厚的耐火砖。
因而,可以想象这些分子激光器可以用于解决高温材料的焊接、融熔和钻孔。
例如6200型二氧化碳激光器连续波输出10瓦,可用于硬质合金的焊接、高速蒸发、切割有机和无机玻璃材料。
现在有人把二氧化碳激光器用作钻孔和爆破的一种辅助工具,这项研究正作为波士顿到华盛顿的高速地下运输技术的一个组成部分。
美帝的军事部门,正在探讨将这些器件用作武器的可能性。
一种是利用轻便式二氧化碳激光器作杀人武器,由于10.6微米是不可见光,故其威胁较大。
另一种作为反导弹武器,虽然现阶段能量不足以烧毁导弹,但能破坏导弹的热平衡。
另外,由于它几乎能蒸发任何材料,所以能够用来改进等离子体的获得和用于质谱学。
2、光通讯和光雷达应用二氧化碳分子激光器的上作波长正好处在大气的“窗口”,加上该器件的功率高,效率也高,因此,该器件在光通讯和光雷达方面的应用前途是很美好的。
美帝电子光学实验室NASA等单位正准备使用二氧化碳激光器作为高讯息率9x107[二进位/秒]的激光通讯系统。
NASA歌德空简飞行中心空对地激光通讯系统实验工作正在进行,使用的是连续波输出功率为20瓦的二氧化碳激光器,将传送106二进位/秒讯息。
若实验成功,行星之间就可以传输电视图像。
NASA歌德空间飞行中心还使用二氧化碳激光器进行深空探测,认为只要几百瓦连续波输出功率就可以实现。
美帝空军航空电子学实验室使用二氧化碳激光器制成光学多普勒导航系统。
前面报导的雷声公司研制的1200瓦小体积、大功率、高效率的二氧化碳激光器可作为激光跟踪导弹光雷达发射器。
3、在非线性光学方面的应用使用10.6微米的二氧化碳激光器,借助锑和碲晶体一定的方向性,能够很容易产生二次谐波,贝尔电话实验室和法国通用电气公司研究中心在这方面已获得成功。
锑和碲晶体是一种很有用的晶体,因为它们的非线性系数比K.D.P高1000多倍,并且它们对5~25微米是可透射的。
例如,贝尔电话实验室的Patel 利用它制成第一个远红外参量放大器。
使用10.6微米、10千瓦、160脉冲/秒的二氧化碳激光器来作为泵浦源,讯号频率由氦氖激光器提供,可在碲晶体中获得17.9微米波长的激光,可用于通讯和光学材料性能的研究。
二、准分子激光器1、背景准分子是一种在激发态复合成分子,而在基态离解成原子得不稳定缔合物,激光跃迁发生在束缚的激发态到排斥的基态,属于束缚——自由跃迁。
1970年,巴索夫等利用强流电子束泵浦液态氙,获得Xe激光振荡,其波长在176nm,这是第一台准分子激光器,稍后美国洛斯阿拉莫斯实验室报道了气相氙的激光输出,并在Kr(145.7nm)、Ar(126.1nm)获得激光输出。
1974年美国Kansan州立大学报道了稀有气体卤化物在紫外波段的强荧光辐射,这结果引起了激光界的极大兴趣,短短六个月,美国海军实验室便获得了溴化氙(282nm)激光输出,阿符科公司获得了氟化氙(351nm)、氟化氪(248nm)、氯化氙(308nm)的激光输出,桑迪亚实验室则获得了氟化氢(193nm)的真空紫外输出,每个脉冲能量达百焦耳以上。
2、工作原理准分子激光是一种气体激光,它的工作气体是由常态下化学性质稳定的惰性气体原子如He、Ne、Ar、Kr、Xe和化学性质较活泼的卤素原子如F、Cl、Br等组成。
一般情况下,惰性气体原子是不会和别的原子形成分子的,但是如果把它们和卤素元素混合,再以放电的形式加以激励,就能成为激发态的分子,当激发态的分子跃迁回基态时,立刻分解、还原成本来的特性,同时释放出光子,经谐振腔共振放大后,发射出高能量的紫外光激光。
这种处于激发态的分子寿命极短,只有10ns,故称为“准分子”( Excimer)。
准分子激光器的谐振腔用于存储气体、气体放电激励产生激光和激光选模。
它由前腔镜、后腔镜、放电电极和预电离电极构成,并通过两排小孔与储气罐相通,以便工作气体的交换、补充。
为了获得均匀大面积的稳定放电, 一般的准分子激光器均采用了预电离技术,在主放电开始之前,预电离电极和主放电的阴极之间先加上高压,使它们之间先发生电晕放电,在阴极附近形成均匀的电离层。
一般高压为20kV~ 30kV。
气体放电时,脉冲高压电源加在电极上对谐振腔内的工作气体放电,发生能级跃迁产生光子,通过反射镜的反馈振荡,最后产生激光从前腔镜输出。
3、特点准分子激光具有以下特性:(1)由于“准分子”寿命极短,在共振腔内往复次数少,缺乏共振,因此光束指向性差,发散角一般为(2~10)毫弧度。
(2)不同的工作气体组合可产生191nm~ 354nm不同波长的紫外激光。
(3)单一脉冲的功率极高,约为(109~1010)W/cm,单一脉冲能量可达数个焦耳以上。
4、应用眼科使用的准分子激光,是以氩气(Argon)和氟气(Fluoride)为工作气体产生的激光。
其波长为193nm,属超紫外激光。
由于波长极短,光子能量极高,达6. 4eV,因此可轻易地切断角膜组织的分子键,其切割精度可达二百万分之一厘米以下,同时由于每个脉冲波的时间极短,所释放的热能极少,因此对周边组织的伤害非常轻微,所以准分子激光非常适合做角膜切割手术。
目前准分子激光在眼科临床的应用主要包括两类:一类是用于治疗近视、远视和散光的矫治屈光不正手术。
主要技术有准分子激光光学角膜切削术( Photorefractive Keratectomy,简称PRK)和准分子激光原位角膜磨镶术(Laser insituker-atomileusis,简称LASIK),其中LASIK手术是目前发展最快,普及最广,技术应用最强的治疗屈光不正手术之一。
另一类是准分子激光光学治疗性角膜切削术( Excimer laser pho-totherapeutic keratectomy, 简称PTK),主要用于治疗角膜不规则散光、切除角膜浅层瘢痕等。
激光治疗屈光不正手术在十多年的发展过程中,随着高新技术的不断应用,技术日趋完美。
从早期的大光斑扫描技术到现在广泛应用的小光斑飞点扫描技术,解决了术后中心岛效应和角膜浑浊问题,能够获得完美的光学抛面,使术面光滑、平整;角膜地形图的应用和波前像差引导下的个体化切削技术,使切削精度大大提高, 真正做到“量眼定做”;主动眼球跟踪技术解决了术眼转动产生的角膜偏中心切削,使准分子激光始终处于角膜中心约6mm大小的区域内进行渐进式切削,提高了手术的精确度。
另外,随着准分子激光治疗屈光不正手术发展起来的其他技术如角膜板层刀技术、计算机辅助软件技术等等也有了长足发展,大大增强了手术的安全性。
随着科学技术的发展以及临床工作的不断深入和研究,准分子激光技术在医学领域必将取得更快的发展, 为人类带来更好地服务。
其次,准分子激光的切割,与金刚石刀相比,切口位置及深度可精确控制,XeCl准分子激光器用于使动脉粥样硬化斑块气化,具有边缘齐整且周围组织碳化极小的优点,可望取代心脏旁通术和气球血管成形术。
准分子激光在半导体参杂、激光诱导化学超导薄膜形成等方面的研究在广泛展开。
由于紫外激光束与物质相互作用的微细加工与冷加工的特点,成为继CO2激光器与YAG激光器之后的新一代激光加工及激光医疗用激光器件。
三、半导体激光器1、背景自1962年第一台半导体激光器诞生以来,经过几十年的发展,半导体激光器的研究取得了长足的发展,波长从红外、红光到蓝绿光,覆盖范围逐渐扩大,各项性能参数也有了很大的提高。
和其他类型的激光器相比,半导体激光器由于波长范围宽,制作简单、成本低、易于大量生产,并且具有体积小、重量轻、寿命长等特点,在光通讯、光谱分析和光信息处理等产业以及技术、医疗、生命科学、军事等基础和应用研究方面有着广泛的应用。
半导体激光器虽然有上述诸多优势,但在实际应用中,由于其谐振腔的输出频率容易受到环境温度和注入电流的影响,自然运转的半导体激光器的输出线宽通常在100MHz左右,可调性也比较差。