磁场对电流的作用 教学设计示例一
- 格式:doc
- 大小:14.00 KB
- 文档页数:5
磁场对电流的作用教案篇一:磁场对电流的作用基础知识归纳1.安培力:磁场对电流的作用力(1)安培力的大小F=(θ为B与I的夹角).①此公式适用于任何磁场,但只有匀强磁场才能直接相乘.②L应为有效长度,即曲线的两端点连线在垂直于磁场方向的投影长度,相应的电流方向沿L(有效长度)由始端流向终端.任何形状的闭合线圈,其有效长度为零,所以通电后,闭合线圈受到的安培力的矢量和为零.③当θ=90°时,即B、I、L两两相互垂直,F=BIL;当θ=0°时,即B与I平行,F=0;当B与I成θ角时,F=BILinθ.(2)安培力的方向:用左手定则来判定(左手定则见课本).安培力(F)的方向既与磁场(B)方向垂直,又与电流I的方向垂直,安培力F垂直于B与I决定的平面,但B与I可不垂直.2.磁电式仪表的原理(1)弹簧和指针.蹄形磁铁和铁芯之间的磁场是均匀的辐向分布的,如图所示.无论通电导线处于什么位置,线圈平面均与磁感线平行.给线圈通电,线圈在安培力的力矩的作用下发生转动,螺旋弹簧变形,产生一个阻碍线圈转动的力矩,当两者平衡时,线圈停止转动.电流越大,线圈和指针的偏转角度也就越大,所以根据线圈偏转的角度就可以判断通过电流的大小.线圈的电流方向改变时,安培力的方向也就随着改变,指针偏转的方向也就改变,所以根据指针的偏转方向,就可以判断被测电流的方向.(2)磁电式仪表的优点是灵敏度高,可以测出很弱的电流;缺点是绕制线圈的导线很细,允许通过的电流很小.重点难点突破一、判断通电导体(或磁体)在安培力作用下的运动的常用方法1.电流元受力分析法即把整段电流等效为很多直线电流元,先用左手定则判断出每小段电流元所受安培力的方向,从而判断出整段电流所受合力的方向,最后确定运动方向.2.特殊位置分析法把电流或磁铁转到一个便于分析的特殊位置(如转过90°)后再判断所受安培力的方向,从而确定运动方向.3.等效分析法环形电流可以等效成条形磁铁,条形磁铁也可以等效成环形电流,通电螺线管可等效成很多的环形电流.4.推论分析法(1)两直线电流相互平行时无转动趋势,方向相同时相互吸引,方向相反时相互排斥;(2)两直线电流不平行时有转动到相互平行且方向相同的趋势.5.转换研究对象法:因为电流之间,电流与磁体之间相互作用满足牛顿第三定律,这样定性分析磁体在电流磁场作用下如何运动的问题,可先分析电流在磁体磁场中所受的安培力,然后由牛顿第三定律来确定磁体所受的电流作用力,从而确定磁体所受合力及运动方向.二、安培力与力学知识的综合运用1.通电导体在磁场、重力场中的平衡与加速运动问题的处理方法和纯力学问题一样,无非是多了一个安培力.2.解决这类问题的关键(1)受力分析时安培力的方向千万不可跟着感觉走,牢记安培力方向既跟磁感应强度方向垂直又和电流方向垂直.(2)画出导体受力的平面图.做好这两点,剩下的问题就是纯力学问题了.带电粒子在磁场中的运动基础知识归纳1.洛伦兹力运动电荷在磁场中受到的力叫洛伦兹力.通电导线在磁场中受到的安培力是在导线中定向移动的电荷受到的洛伦兹力的合力的表现.(1)大小:当v∥B时,F=v⊥B时,F=.(2)方向:用左手定则判定,其中四指指向正电荷运动方向(或负电荷运动的反方向),拇指所指的方向是正电荷受力的方向.洛伦兹力垂直于磁感应强度与速度所决定的平面.2.带电粒子在磁场中的运动(不计粒子的重力)(1)若v∥B,带电粒子做平行于磁感线的.(2)若v⊥B,带电粒子在垂直于磁场方向的平面内以入射速度v做洛v2伦兹力提供带电粒子做圆周运动所需的向心力,由牛顿第二定律qvB=得带电粒子R运动的轨道半径R=mv2πm,运动的周期T=.qBqB3.电场力与洛伦兹力的比较一、对带电体在洛伦兹力作用下运动问题的分析思路1.确定对象,并对其进行受力分析.2.根据物体受力情况和运动情况确定每一个运动过程所适用的规律(力学规律均适用).总之解决这类问题的方法与纯力学问题一样,无非多了一个洛伦兹力,要注意:(1)洛伦兹力不做功,在应用动能定理、机械能守恒定律时要特别注意这一点;(2)洛伦兹力可能是恒力也可能是变力.二、带电粒子做匀速圆周运动的圆心、半径及运动时间的确定1.圆心的确定一般有以下四种情况:(1)已知粒子运动轨迹上两点的速度方向,作这两速度的垂线,交点即为圆心.(2)已知粒子入射点、入射方向及运动轨迹上的一条弦,作速度方向的垂线及弦的垂直平分线,交点即为圆心.(3)已知粒子运动轨迹上的两条弦,作出两弦垂直平分线,交点即为圆心.(4)已知粒子在磁场中的入射点、入射方向和出射方向(不一定在磁场中),延长(或反向延长)两速度方向所在直线使之成一夹角,作出这一夹角的角平分线,角平分线上到两直线距离等于半径的点即为圆心.2.半径的确定和计算.圆心找到以后,自然就有了半径,半径的计算一般是利用几何知识,常用到解三角形的方法及圆心角等于弦切角的两倍等知识.3.在磁场中运动时间的确定,利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角θ的大小,由公式t=度的比t=360T可求出运动时间,有时也用弧长与线速l.v三、两类典型问题1.极值问题:常借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,求出临界点,然后利用数学方法求解极值.注意:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切;(2)当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.2.多解问题:多解形成的原因一般包含以下几个方面:(1)粒子电性不确定;(2)磁场方向不确定;(3)临界状态不唯一;(4)粒子运动的往复性等.篇二:磁场对电流的作用《磁场对电流的作用》教案教学目标知识与能力1.知道磁场对通电导体有作用力。
教科版九年级物理上册第八章第二节《磁场对电流的作用》教学设计我的教学设计:一、设计意图:本节课的设计方式采用了问题驱动和实验探究相结合的方式,旨在让学生通过观察实验现象,理解磁场对电流的作用原理。
活动的目的在于培养学生的观察能力、思考能力和动手实践能力,提高他们对物理现象的兴趣和好奇心。
二、教学目标:1. 让学生了解磁场对电流的作用原理。
2. 培养学生观察、思考和动手实践的能力。
3. 激发学生对物理现象的兴趣和好奇心。
三、教学难点与重点:重点:磁场对电流的作用原理。
难点:磁场对电流作用原理的深入理解和应用。
四、教具与学具准备:教具:电磁铁、电流表、导线、开关、磁铁等。
学具:记录本、笔。
五、活动过程:1. 引入:通过展示一个电磁铁吸引铁钉的实验,引发学生对磁场对电流作用的好奇心。
2. 讲解:简要讲解磁场对电流的作用原理,让学生了解电磁铁的工作原理。
4. 讨论交流:让学生分享实验结果,引导学生思考磁场对电流作用的原因,并鼓励学生提出自己的看法和疑问。
六、活动重难点:重点:磁场对电流的作用原理。
难点:磁场对电流作用原理的深入理解和应用。
七、课后反思及拓展延伸:课后反思:通过本节课的教学,学生对磁场对电流的作用有了初步的了解,但在实验操作和现象观察方面仍有待提高。
在今后的教学中,应加强学生的实验操作指导,培养他们的观察能力和思考能力。
拓展延伸:引导学生探索电磁铁在现实生活中的应用,如电磁起重机、电磁继电器等,激发学生对物理知识的兴趣和应用能力。
重点和难点解析:一、磁场对电流的作用原理:这是本节课的核心内容,也是学生需要理解和掌握的重点。
磁场对电流的作用原理涉及到电磁学的基础知识,包括洛伦兹力、电磁感应等。
我需要通过生动的实验现象,让学生直观地感受到磁场对电流的作用,从而引导他们理解这一原理。
二、实验操作和观察能力:三、思考能力和动手实践能力:本节课的教学目标之一是培养学生的思考能力和动手实践能力。
在教学过程中,我需要通过提问、讨论等方式引导学生思考,通过实验让学生动手实践。
磁场对电流的作用力教案一、教学目标1. 让学生了解磁场对电流的作用力,知道安培力定律的内容。
2. 培养学生运用科学方法研究问题的能力,提高学生的实验技能。
3. 引导学生认识磁场对电流作用力在实际生活中的应用,培养学生的学习兴趣和社会责任感。
二、教学内容1. 磁场对电流的作用力原理2. 安培力定律3. 磁场对电流作用力的实验探究4. 磁场对电流作用力在生活中的应用5. 拓展与思考三、教学重点与难点1. 教学重点:磁场对电流的作用力原理,安培力定律,磁场对电流作用力的实验探究。
2. 教学难点:安培力定律的应用,磁场对电流作用力的实验操作。
四、教学方法1. 采用问题驱动法,引导学生探究磁场对电流的作用力。
2. 利用实验演示,让学生直观地了解磁场对电流作用力的现象。
3. 运用讨论法,分析磁场对电流作用力的原理和应用。
4. 采用案例分析法,让学生了解磁场对电流作用力在生活中的实际应用。
五、教学过程1. 导入新课:通过展示磁铁吸引铁屑的实验,引导学生思考磁场对电流的作用力。
2. 讲解磁场对电流的作用力原理,介绍安培力定律的内容。
3. 进行磁场对电流作用力的实验探究,让学生亲身体验磁场对电流的作用力。
4. 分析实验结果,引导学生运用安培力定律解释实验现象。
5. 讲解磁场对电流作用力在生活中的应用,如电动机、发电机等。
6. 布置课后作业:让学生运用安培力定律解决实际问题。
7. 课堂小结:回顾本节课所学内容,总结磁场对电流的作用力及其应用。
8. 课后反思:教师反思教学效果,针对学生的掌握情况调整教学策略。
六、教学评价1. 评价目标:检查学生对磁场对电流作用力原理、安培力定律的理解和应用能力。
2. 评价方法:课堂问答:观察学生在课堂提问中的回答情况,了解学生对知识的掌握程度。
实验报告:评估学生在实验中的操作技能和对实验结果的分析能力。
课后作业:检查学生完成作业的质量,考查学生对课堂所学知识的应用能力。
小组讨论:评估学生在小组讨论中的参与程度和思考问题的深度。
磁场的教案电流的磁场教案篇一一、电流的磁效应说明:人类很早就留意到了电流的磁效应。
例如:①一名英国商人发现,雷电过后,他的一箱新刀竟然带上了磁性②富兰克林也在实验中发现,在莱顿瓶放电后,附近的缝衣针被磁化了说明:那么电流和磁场之间有什么关系吗?19 世纪,随着对摩擦生热等现象认识的深人,人们逐步相信自然界各种运动之间存在m.huzhidao. 着广泛联系。
除了表面上的一些相似性之外,电和磁之间是否还存在着更深刻的联系?一些科学家相信.答案是肯定的,在实验中寻找这种联系,就成为他们的探索目标。
后来,丹麦物理学家奥斯特首先获得成功。
1820 年,奥斯特发现:把一根导线平行地放在磁针的上方,给导线通电时,磁针发生了偏转,就好像磁针受到磁铁的作用一样。
这说明不仅磁铁能产生磁场,电流也能产生磁场,这个现象称为电流的磁效应问:既然电流能够产生磁场,那么电流的方向和磁场的方向之间是否存在什么关系呢?演示实验实验仪器:直导线、硬纸板、细铁屑、直流电源实验过程:①使直导线穿过一块硬纸板②给导线通电③在硬纸板上均匀地撒一层细铁屑④轻敲硬纸板⑤观察细铁屑的排列情况,以得到电流的方向和磁场的方向之间的关系说明:以安培为代表的法国科学家经过长期实验,总结了直线电流和磁场方向之间的关系,得出了安培定则,具体内容是:右手握住导线,伸直的拇指的方向代表电流的方向,那么弯曲的四指所指的方向就是磁感线的环绕方向问:直线电流的磁场可以用什么图形表示?(一系列的同心圆)问:这些同心圆有何特征?(内紧外松)演示实验实验仪器:环形导线、硬纸板、直流电源、细铁屑实验过程:①把环形导线穿过硬纸板②给导线通电③在硬纸板上均匀地撒一层细铁屑④轻敲硬纸板⑤观察细铁屑的排列情况,以得到电流的方向和磁场的方向之间的关系说明:以安培为代表的法国科学家经过长期实验,总结了环形电流和磁场方向之间的关系,右手握住环形导线.弯曲的四指所指的方向代表电流的方向,拇指所指的方向就是圆环中心周线上的磁感线的方向问:螺线管可以看成由多个环形导线组成,那通电螺线管的电流方向跟它的磁感线方向之间有怎样的关系呢?(右手握住螺线管.弯曲的四指所指的方向代表电流的方向,拇指所指的方向就是螺线管内部磁感线的方向说明:通电螺线管外部的磁场与条形磁体十分相似,如果把它看做一个条形磁体,那如何判断螺线管的N极?(拇指的指向是条形磁体的N 极)《磁场》教案篇二本文是关于介绍高二物理《磁场》教学反思的范文,老师们参考并加以修改,便可以运用到课堂上了,一起看看具体的内容吧。
高中物理-高二磁场对电流的作用教学设计示例一教案一、教学目标:1.了解磁场对电流的作用,理解洛伦兹力的概念及其作用;2.掌握洛伦兹力的计算方法,掌握磁场对电流的定向作用规律;3.能够应用磁场对电流的作用,解决一些与之相关的物理问题。
二、教学重难点:1.掌握洛伦兹力的计算方法;2.理解磁场对电流的定向作用规律。
三、教学过程:1.引入:同学们,你们一定听说过磁铁能够拾起铁片、铁钉等吧,这是因为磁铁周围有磁场。
那么,磁铁对电流有没有作用呢?今天我们就一起来探讨一下吧。
2.知识讲解:(1)磁场对电流的作用当电流通过导线时,会在其周围产生磁场。
这个磁场会对其他导线或磁物体产生力的作用,这种力就是洛伦兹力。
(2) 洛伦兹力的计算方法洛伦兹力的大小和方向由下式给出:F=BILsinθ其中,F为力的大小,B为磁感应强度,I为电流强度,L为导线长度,θ为洛伦兹力与磁感应方向之间的夹角。
(3) 磁场对电流的定向作用规律当电流与磁场方向垂直时,洛伦兹力的方向垂直于电流和磁场的平面,并遵循左手定则。
(左手伸出食指、中指、大拇指,使食指指向磁场方向,中指指向电流方向,则大拇指所指的方向就是洛伦兹力的方向。
)当电流与磁场方向平行时,洛伦兹力的方向垂直于电流方向。
3.板书讲解:(内容可根据自己的教学风格自行确定)磁场对电流的作用洛伦兹力的计算方法磁场对电流的定向作用规律4.案例分析:(1)一条长为L的直导线,在匀强磁场中电流为I,且直导线方向与磁感应强度方向垂直,求直导线所受的洛伦兹力大小。
解:由洛伦兹力公式:F=BILsinθ其中,θ=90度,所以sinθ=1。
代入公式得:F=BIL(2)如图,一定电流浓度的电流条垂直于直弦AC,在匀强磁场中电流条受到的洛伦兹力的大小为F,D是中点。
如将电流条向右移动,另一根电流条经AC所在位置,经中点D并向左返回原位置。
当第一根电流条从AC位置移动到AG位置时,作用在第二根电流条上的磁场强度的变化率为α。
磁场对电流的作用力教案一、教学目标1. 让学生了解磁场对电流的作用力,知道安培力定律的内容。
2. 通过实验和问题讨论,使学生掌握电流在磁场中受力的规律,能运用安培力定律分析实际问题。
3. 培养学生的实验操作能力,提高学生分析问题、解决问题的能力。
二、教学内容1. 磁场对电流的作用力概念2. 安培力定律的内容及公式3. 电流在磁场中受力的规律4. 实验操作:电流与磁场相互作用实验5. 应用安培力定律分析实际问题三、教学重点与难点1. 教学重点:磁场对电流的作用力概念、安培力定律的内容及公式、电流在磁场中受力的规律。
2. 教学难点:安培力的大小计算及应用。
四、教学方法1. 采用实验演示法,让学生直观地了解磁场对电流的作用力。
2. 采用问题驱动法,引导学生主动探究电流在磁场中受力的规律。
3. 采用案例分析法,培养学生运用安培力定律解决实际问题的能力。
五、教学过程1. 导入新课:通过展示电流与磁场相互作用的实验现象,引发学生对磁场对电流作用力的兴趣。
2. 讲解磁场对电流的作用力概念,介绍安培力定律的内容及公式。
4. 进行实验操作:电流与磁场相互作用实验,让学生亲身体验磁场对电流的作用力。
6. 应用安培力定律分析实际问题,培养学生运用所学知识解决实际问题的能力。
7. 课堂小结,梳理本节课的主要内容。
8. 布置作业,巩固所学知识。
六、教学评价1. 学生能准确地描述磁场对电流的作用力概念。
2. 学生能熟练地运用安培力定律计算安培力的大小。
4. 学生能运用安培力定律分析实际问题。
七、教学资源1. 实验设备:电流与磁场相互作用实验装置。
2. 教学课件:磁场对电流的作用力相关知识点。
3. 案例素材:运用安培力定律分析的实际问题。
八、教学进度安排1课时九、课后反思本节课通过实验和问题讨论,使学生掌握了磁场对电流的作用力及电流在磁场中受力的规律。
在教学过程中,要注意引导学生主动探究,培养学生的实验操作能力和分析问题、解决问题的能力。
《磁场对电流的作用》教案一、教学目标1. 让学生了解磁场对电流的作用,知道磁场对电流有力的作用。
2. 培养学生运用科学的方法研究问题的能力。
3. 培养学生合作、交流的能力,提高学生的实验技能。
二、教学重点与难点1. 教学重点:磁场对电流的作用。
2. 教学难点:安培力的大小与哪些因素有关。
三、教学方法采用实验法、问题驱动法和小组合作交流法。
四、教学准备1. 实验器材:电流表、电压表、滑动变阻器、电磁铁、铁钉、导线、电池等。
2. 教学工具:PPT、黑板、粉笔等。
五、教学过程1. 导入新课创设情境,引导学生回顾磁场与电流的关系,引出本节课的主题——磁场对电流的作用。
2. 自主学习(1)磁场对电流有什么作用?(2)安培力的大小与哪些因素有关?3. 实验探究分组进行实验,观察电磁铁吸引铁钉的情况,并记录实验数据。
引导学生分析实验现象,探讨安培力的大小与哪些因素有关。
4. 课堂讨论各小组汇报实验结果,全班同学共同讨论,得出结论:安培力的大小与电流的大小、磁场强度、导线的长度以及导线与磁场的夹角有关。
5. 知识拓展介绍安培力的应用,如电动机、发电机等。
引导学生思考磁场对电流的作用在现实生活中的应用。
6. 课堂小结7. 布置作业设计一些有关磁场对电流作用的练习题,巩固所学知识。
六、教学反思在课后对自己的教学进行反思,看是否达到了教学目标,学生是否掌握了磁场对电流的作用。
如有需要,对教学方法进行调整。
七、课后辅导针对学生在学习中遇到的问题,进行课后辅导,帮助学生更好地理解磁场对电流的作用。
八、教学评价通过课堂表现、作业完成情况和实验报告,评价学生对磁场对电流作用的掌握程度。
九、教学进度安排本节课安排在某个课时,根据学校教学计划进行。
十、教学资源1. 教材2. 实验器材3. PPT4. 网络资源关于磁场对电流作用的相关知识。
六、教学活动设计1. 导入新课:通过复习上一节课的内容,引导学生回顾磁场对电流的作用,并提问:“你们认为磁场对电流的作用有哪些实际应用?”2. 实验演示:教师演示电动机的原理,让学生直观地感受磁场对电流的作用。
磁场对电流的作用教案磁场对电流的作用教案1(一)教学目的1.知道磁场对通电导体有作用力。
2.知道通电导体在磁场中受力的方向与电流方向和磁感线方向有关,改变电流方向或改变磁感线方向,导体的受力方向随着改变。
3.知道通电线圈在磁场中转动的道理。
4.知道通电导体和通电线圈在磁场中受力而运动,是消耗了电能,得到了机械能。
5.培养学生观察能力和推理、归纳、概括物理知识的能力。
(二)教具小型直流电动机一台,学生用电源一台,大蹄形磁铁一块,干电池一节,用铝箔自制的圆筒一根(粗细、长短与铅笔差不多),两根铝箔条(用透明胶与铝箔筒的两端相连接),支架(吊铝箔筒用),如课本图12-10的挂图,线圈(参见图12-2),抄有题目的小黑板一块(也可用投影片代替)。
(三)教学过程1.引入新课本章主要研究电能;第一节和第二节我们研究了获得电能的原理和方法,第三节我们研究了电能的输送。
电能输送到用电单位,要使用电能,这就涉及到用电器,以前我们研究了电灯、电炉、电话等用电器,今天我们要研究另一种用电器--电动机。
出示电动机,给它通电,学生看到电动机转动,提高了学习兴趣。
提问:电动机是根据什么原理工作的呢?讲述:要回答这个问题,还得请同学们回忆一下奥斯特实验的发现--电流周围存在磁场,电流通过它产生的磁场对磁体施加作用力(如电流通过它的磁场使周围小磁针受力而转动)。
根据物体间力的作用是相互的,电流对磁体施加力时,磁体也应该对电流有力的作用。
下面我们通过实验来研究这个推断。
2.进行新课(1)通电导体在磁场里受到力的作用板书课题:〈第四节磁场对电流的作用〉介绍实验装置,将铝箔筒两端的铝箔条吊挂在支架上,使铝箔筒静止在磁铁的磁场中(参见课本中的图12-9)。
用铝箔筒作通电导体是因为铝箔筒轻,受力后容易运动,以便我们观察。
演示实验1:用一节干电池给铝箔筒通电(瞬时短路),让学生观察铝箔筒的运动情况,并回答小黑板上的.题1:给静止在磁场中的铝箔筒通电时,铝箔筒会xxx,这说明xxx。
磁场对电流的作用教案一、教学目标:1. 让学生了解磁场对电流的作用,理解安培力定律。
2. 培养学生运用科学知识解决实际问题的能力。
3. 激发学生对物理学科的兴趣,培养学生的探索精神。
二、教学内容:1. 磁场对电流的作用原理。
2. 安培力定律的表述及应用。
3. 磁场对电流作用实验的操作与分析。
三、教学重点与难点:1. 教学重点:磁场对电流的作用原理,安培力定律的应用。
2. 教学难点:安培力的大小计算,实验操作中的数据分析。
四、教学方法:1. 采用问题驱动法,引导学生思考磁场对电流的作用。
2. 利用实验演示,让学生直观地感受磁场对电流的作用。
3. 运用案例分析法,培养学生解决实际问题的能力。
五、教学过程:1. 引入:通过讲解电磁感应现象,引导学生了解磁场与电流之间的关系。
2. 讲解磁场对电流的作用原理,阐述安培力定律的内容。
3. 演示磁场对电流作用的实验,让学生观察并记录实验现象。
4. 分析实验数据,引导学生运用安培力定律解释实验结果。
5. 练习:让学生运用安培力定律解决实际问题,如计算电流在磁场中所受的安培力。
6. 总结:回顾本节课所学内容,强调磁场对电流的作用及其应用。
7. 作业布置:让学生绘制安培力定律的应用实例,并进行简要解释。
8. 课后反思:教师对本节课的教学情况进行总结,为学生提供反馈。
六、教学评估:1. 评估学生对磁场对电流作用原理的理解程度。
2. 评估学生对安培力定律的掌握情况。
3. 评估学生在实验操作中的观察能力及数据分析能力。
七、教学拓展:1. 探讨磁场对电流作用在其他领域的应用,如电机、发电机等。
2. 介绍安培力的计算在工程实践中的应用。
八、教学资源:1. 实验设备:电流表、电压表、导线、磁场发生器等。
2. 教学课件:磁场对电流作用原理、安培力定律等。
九、教学进度安排:1. 第一课时:讲解磁场对电流的作用原理,阐述安培力定律。
2. 第二课时:演示实验,分析实验现象,运用安培力定律解释实验结果。
磁场对电流的作用教学设计示例一
磁场对电流的作用教学设计示例一
磁场对电流的作用教学设计示例一
(一)教学目的
1.知道磁场对通电导体有作用力。
2.知道通电导体在磁场中受力的方向与电流方向和磁感应线方向有关,改变电流方向或改变磁感线方向,导体的受力方向随着改变。
3.知道通电线圈在磁场中转动的道理。
4.知道通电导体和通电线圈在磁场中受力而运动,是消耗了电能,得到了机械能。
5.培养学生观察能力和推理、归纳、概括物理知识的能力。
(二)教具
小型直流电动机一台,学生用电源一台,大蹄形磁铁一块,干电池一节,用铝箔自制的圆筒一根(粗细、长短与铅笔差不多),两根铝箔条(用透明胶与铝箔筒的两端相连接),支架(吊铝箔筒用),如课本图12—10的挂图,线圈(参见图12—2),抄有题目的小黑板一块(也可用幻灯片代替)。
(三)教学过程
1.引入新课
本章主要研究电能:第一节和第二节我们研究了获得电能的原理和方法,第三节我们研究了电能的输送,电能输送到用电单位,要使用电能,这就涉及到用电器,以前我们研究了电灯、电炉、电话等用电器,今天我们要研究另一种用电器一电动机。
出示电动机,给它通电,学生看到电动机转动,提高了学习兴趣。
提问:电动机是根据什么原理工作的呢?
讲述:要回答这个问题,还得请同学们回忆一下奥斯特实验的发现—电流周围存在磁场,电流通过它产生的磁场对磁体施加作用力(如电流通过它的磁场使周围小磁针受力而转动)。
根据物体间力的作用是相互的,电流对磁体施加力时,磁体也应该对电流有力的作用。
下面我们通过实验来研究这个推断。
2.进行新课
(1)通电导体在磁场里受到力的作用
板书课题:〈第四节磁场对电流的作用〉
介绍实验装置,将铝箔筒两端的铝箔条吊挂在支架上,使铝箔筒静止在磁铁的磁场中(参见课本中的图12—9)。
用铝箔筒作通电导体是因为铝箔筒轻,受力后容易运动,以便我们观察。
演示实验1:用一节干电池给铝箔筒通电(瞬时短路),让学生观察铝箔筒的运动情况,并回答小黑板上的题1:给静止在磁场中的`铝箔筒通电时,铝箔筒会______,这说明______。
板书:<1.通电导体在磁场中受到力的作用。
〉
(2)通电导体在磁场里受力的方向,跟电流方向和磁感线方向有关
教师说明:下面我们进一步研究通电导体在磁场里的受力方向与哪些因素有关。
演示实验2:先使电流方向相反,再使磁感线方向相反,让学生观察铝箔筒运动后回答小黑板上的题2:保持磁感线方向不变,交换电池两极以改变铝箔筒中电流方向,铝箔筒运动方向会
_________,这说明_________。
保持铝箔筒中电流方向不变,交换磁极以改变磁感线方向,铝箔筒运动方向会______,这说明
______。
归纳实验2的结论并板书:〈2.通电导体在磁场里受力的方向,跟电流方向和磁感线方向有关。
〉
(3)磁场对通电线圈的作用
提问:应用上面的实验结论,我们来分析一个问题:如果把直导线弯成线圈,放入磁场中并通电,它的受力情况是怎样的呢?
出示方框线圈在磁场中的直观模型(磁极用两堆书代替),并出示如课本上图12—10的挂图(此时,图中还没有标出受力方向)。
引导学生分析:通电时,图甲中ab边和cd边都在磁场中,都要受力,因为电流方向相反,所以受力方向也肯定相反。
提问:你们想想看,线圈会怎样运动呢?
演示实验3:将电动机上的电刷、换向器拆下(实质是线圈)后通电,让学生观察线圈的运动情况。
”
教师指明:线圈转动正是因为两条边受力方向相反,边说边在挂图上标明ab和cd边的受力方向。
提问:线圈为什么会停下来呢?
利用模型和挂图分析:在甲图位置时,两边受力方向相反,但不在一条直线上,所以线圈会转动。
当转动到乙图位置时,两边受力方向相反,且在同一直线上,线圈在平衡力作用下保持平衡而静止。
板书结论:〈3.通电线圈在磁场中受力转动,到平衡位置时静止。
〉
(4)讨论
①教材中的“想想议议”。
②小黑板上的题3:通电导体在磁场中受力而运动是消耗了______得到了______能。
板书:〈4.通电导体在磁场中运动是消耗了电能,得到了机械能。
〉
3.小结:板书的四条结论。
4.作业(思考题):电动机就是根据通电线圈在磁场中受力而转动的道理工作的。
但实际制成电动机时,还有些问题需要我们解决,比如:通电线圈不能连续转动,而实际电动机要能连续转动,这个问题同学们先思考,下节我们研究。
(四)说明:
1.受力方向与电流方向和磁感线方向垂直,这一点不能从实验直接得到(因为运动方向并不一定是受力方向),且与后面学习联系不大,本教案没讲这一点。
2.教案最后的思考题是为下节学习作准备。