基于Fluent对一种同步电动机的温度场进行优化
- 格式:pdf
- 大小:371.71 KB
- 文档页数:8
基于热阻网络法的电机瞬态温度场分析何磊;王心坚;宋国辉【摘要】针对用于电动汽车的驱动电机,要获得较高的功率密度并提升可靠性,必须进行温升分析与控制。
通过有限元仿真可以进行精确计算,但存在计算效率低、实时控制较难实现等缺点。
为快速分析电机温度场分布情况,在满足精度要求的前提下,本文基于热阻网络法,根据电机结构选取了关键部件作为温度节点,建立了8节点热阻网络,分析计算了热容、热阻、热源和边界条件,建立了矩阵数学模型,最终通过编程获得了额定工况下电机温度场的瞬态变化特性。
结合有限元仿真,验证了该结果具备较高的可靠性,并从热阻网络的角度对限制电机温升的方法提出了建议。
%Thermal analysis and control for electric motor is essential when expecting high power density and reliability .Precise computation can be made via FEA analysis , while the method costs a lot of time .In this paper, according to the thermal network method , temperature nodes of some key components were selected to build an 8-node network , containing capacities , resistances , powers and boundary conditions , and a relevant mathematical model was programmed to show transient thermal performance .The result was verified by FEA sim-ulation and some suggestions were provided thereby .【期刊名称】《佳木斯大学学报(自然科学版)》【年(卷),期】2014(000)002【总页数】4页(P187-190)【关键词】车用电机;热阻网络法;瞬态温度场【作者】何磊;王心坚;宋国辉【作者单位】同济大学汽车学院,上海201804;同济大学汽车学院,上海201804; 同济大学新能源汽车工程中心,上海201804;同济大学汽车学院,上海201804【正文语种】中文【中图分类】U463.330 引言驱动电机作为电动汽车的关键零部件,其发展水平在一定程度上决定了电动汽车的发展水平.电机的发热与冷却,对电机的设计和运行有着重要的影响.因此,开展对车用环境下永磁电机特性的研究具有重要的理论意义和实际价值.目前,电机温度场计算的方法主要有等效热网络法、有限差分法和有限元法[1].有限元法是对有限差分法的继承和超越,精确度高,但过程复杂,仿真时间长;热阻网络法虽然计算过程不及有限元法细致,但也具备一定的准确性,且仿真时间短,具有较高计算效率和实时性.本文将运用热阻网络法,较为准确地计算出电机的温度场分布情况,并与ANSYS 有限元联合仿真结果进行对比、分析.1 电机结构的热阻网路建模关于使用热阻网络法计算电机温度场,近二十年来国内外学者有着诸多研究.比如Aldo Boglietti等就以电机分析为例,很好地整理了近年来国外的热阻网络法的变革[2].一般的,通过热节点表示系统中相对应的零部件或者流体介质的温度,相关节点再根据实际情况以不同方式的热阻相互联系,形成整体热网络系统[3].根据永磁同步电机样机的结构,这里选取关键部件作为温度节点,包括铝质散热水套Tc、定子轭部Tj、定子齿部Tz、铜绕组Tw、永磁体Tm(包括转子铁芯、转轴)、滚动轴承Tb等主要部分,以及Tk冷却水和转子外表面Trs两个辅助建模的节点,总共8个节点.其中,由于电机与水泵、水箱形成冷却环路,在循环过程中,可将冷却水节点上的温度设置为常温.理论上风阻损耗应该加载在转子外表面上,由于定转子之间气隙(air gap)热容值太小,会导致时间常数有异常,所以添加“转子外表面”这一节点.结合各元件间结构关系,热阻网络结构如图1所示.其中,C、P分别表示节点上的热容、热源,R表示节点间热阻.2 参数设置与计算针对图1的热网络结构,结合电机样机结构进一步分析热阻、热容、边界条件等,并计算电机损耗以获取各节点等效热源值.2.1 热容节点热容值表示该节点温度上升或降低单位值所吸收或释放的热量,反映电机温度变化特性的时间常数.热容值的计算需通过查阅各节点的材料热性能参数,并计算相关元件体积.图1 电机热阻网络结构图2.2 热阻2.2.1 各元件传导热阻传导热阻可分为平壁传导和圆筒壁传导两大类,相关计算公式如下[4]:其中,k为导热系数,l为平壁沿热流方向的传热长度,A为平壁导热面积,ro,ri为圆筒壁的外径和内径,L为圆筒壁的轴向长度.对各节点,轴承热阻Rb、轴热阻Rsh、转子外表面热阻Rrotor_surf、转子铁芯及永磁体热阻Rrotor、定子轭部热阻Ryoke和散热水套热阻Rcj属于圆筒壁传导,定子齿横向及纵向的热阻Rthx与Rthy、单根绕组条横向及纵向热阻Rbarx与Rbary属于平壁传导.2.2.2 气隙热阻其中,Aair为转子外表面面积,hair为气隙换热系数,是气隙努塞尔数Nu的函数[4].图2 Fluent仿真计算水套等效散热系数2.2.3 冷却水对流热阻如图2所示,通过FLUENT仿真计算,得到等效散热系数h,则半电机模型的对流换热热阻为A为等效散热面积.图3 电机额定工况下30min内各节点温度变化特性图4 电机额定工况下30min内有限元仿真结果根据上述各单个节点热阻值,图1中各节点间的热阻表达式计算见表1.表1 节点间热阻计算表达式热阻表达式Rj,c ϑRcj+0.5Ryoke/Qt Rb,c (1-ϑ)Rcj+0.25Rb Rz,j (2Rthy+Ryoke)/4Qt Rj,w(Rbary+4Rsloty+Ryoke+4Rcontact)/4Qs(Rthx+Rcontact)/2Qs+[(Rbarx+Rsl otx)//(0.5Rbary+Rsloty)]/Qt Rrs,w0.5(Rair+Rrotor_surf)θ+(0.25Rbary+Rsloty)/Qs Rrs,z0.5(Rair+Rrotor_surf)(1-θ)+0.5Rthy/Qs Rrs,m 0.5Rrotor+0.5Rrotor_surf Rb,m 0.5Rrotor+0.5Rsh+0.25R Rz,w b其中,Rcontact为接触热阻,取经验值与θ为电机结构相关的比例系数;Qs为热阻并联数.2.3 各项损耗数值根据电机设计中的定义[5],各项损耗数值的求取通过MATLAB编程及电磁仿真计算实现.3 瞬态温度计算基本数学公式为其中C为热容矩阵,G为热导(热阻的倒数)矩阵,Q(t)为热源向量,θ(t)为节点温度向量.据此,列出8节点热阻网络的数学模型矩阵如下所示:利用MATLAB编程,计算得电机在额定工况下工作1800s各节点温度变化情况如图3所示.可见,各节点的温度增长率逐渐降低,直至趋于稳定状态.其中节点温度最高的是铜绕组,这是由于绕组铜损耗数值显著高于其他损耗,且绕组与定子之间存在绝缘介质,热阻较高,因此与其他部分的温差较大.其次,转子表面节点的温度也较高,略高于永磁体,因为该节点直接加载了风阻损耗,同时也有转子铁芯产生的涡流损耗和磁滞损耗.4 有限元仿真验证建立电机温度场三维计算模型,并联合ANSOFT电磁损耗仿真,通过ANSYS进行有限元仿真分析,得到额定工况下电机持续工作30min总体的温度分布情况,结果如图4所示.如表2所示,对比两种方法计算结果,可见热阻网络各节点的温度均落在有限元仿真结果的温度范围内.由于网络节点温度为电机相应部件的平均温度,而有限元温度分布梯度也非线性,基本可以认定两者的结果具备一致性.表2 热网络与FEA仿真结果对比(单位:℃)有限元法(极值) 热阻网络法(均值)107转子表面 / 101转轴 [100.21,102.22]转子 [95.14,101.33]98永磁体 [96.93,100.23]定子齿部 [33.92,67.87]63定子轭部 53散热水套 [24.86,34.38]绕组[105.63,112.13]315 总结与分析为了对永磁电机的温度场分布进行研究,本文应用了热阻网络法,根据电机结构选取了关键部件作为温度节点,建立了8节点热阻网络.在此基础上添加并分析计算了热容、热阻、热源和热边界条件,建立了热网络的矩阵数学模型.利用MATLAB 编程计算了额定工况下电机温度场的瞬态变化特性.利用ANSYS进行有限元联合仿真,对比验证了热阻网络法的计算结果,基本保持一致.进一步分析,为限制在车用环境下电机高功率密度带来的更高的温升,从根本上需要降低损耗、提升电机效率,并且提升电机的散热能力.这两点在热阻网络结构中体现为降低各个热源的数值,以及提高水套散热系数(即减小对流热阻).在热网络中,温升最直观的影响因素是各节点之间的热阻数值.为了有效缩减各元件之间的温差,相同的热流数值下必须降低节点间热阻数值.同时,影响材料热阻的要素有很多,比如减小金属与非金属材料之间的接触热阻,而接触间隙又是一个复杂的函数,其变量包括材料硬度、接触面之间的压力、表面光顺度、大气压等.结合实际电机结构,分析这些因素与热阻之间的关系,电机设计者可以得到很多启发,最终实现优化温度场分布、提高电机功率密度的目标.参考文献:[1]凌文星.电机温升分析研究[J].机电技术,2010,3:66-67.[2]Aldo Bogliettiet al.Evolution and Modern Approaches for ThermalAnalysis of Electrical Machines[C].IEEE Transactionson Industrial Electronics,VOL.56,NO.3,MARCH 2009:871-882.[3]黄飞.基于热网络法的行星减速器热分析[D].南京:南京航空航天大学,2011.[4]裴宇龙.基于旋转电磁理论的机电热换能器及其相关参数的研究[D].黑龙江:哈尔滨工业大学,2009.08.[5]陈世坤.电机设计(第二版)[M].北京:机械工业出版社,1990.。
作业7FLUENT 优化设计FLUENT-DesignXplorer in ANSYS WB 12Training Manual混合容器热水进口T= 400 KOperating Limit of U = 1.5 m/s to 3.5 m/s冷水进口T= 300 K U = 0.5 m/s to 1.5 m/s压力出口目标:在操作限制内优化进口速度,从而使出口的温度耗散最小(确保均匀的混合)和容器中的压降(从其中的一个进口到出口的压力下降)也要最小。
混合容器中的流动Training Manual在WB-12中建立问题Training Manual•启动ANSYSWorkbench 12•在Schematic中插入FLUENT AnalysisSystem•在“Geometry”上点击鼠标右键选择“Import Geometry”,然后浏览选择“GeomDX.agdb”文件•在Mesh上点击鼠标右键选择“Edit”进行编辑•WB Mesher 在一个独立窗口中开始,此时模型已经准备好网格划分网格划分和边界命名Training Manual•建立三个组件:•inlethot•inletcold•pressure outlet•划分方式:自动划分•划分细节•物理优先:CFD(计算流体力学)•求解器选择:FLUNT•相关性:0执行单元划分保存项目Training Manual •在Project 页,在Mesh 上鼠标右键选择Update•进入Project页•File>Save As> “ mixing.wbpj”•返回到Meshing Module(网格划分模块)选择路径:File>Close Meshing退出网格划分启动FLUENTTraining Manual •在Setup上点击鼠标右键选择Edit在一个独立性窗口中启动FLUENT软件作为DX 输入参数Training Manual •材料:air(空气)•稳态,湍流,使用标准壁面函数的标准K-epsilon模型:能量模型•边界:inletcold(进冷口)选项New InputParameter推荐速度作为一个DX输入参数。
基于FLUENT的锂电池温度场动态仿真研究秦凯;李想;陈龙【摘要】针对电动汽车磷酸铁锂电池在高温环境下寿命短、安全性能低的问题,为了保证其工作在合适的温度范围,开展了动力电池冷却方案的动态仿真研究.运用FLUENT软件建立了电池-管道流固耦合模型,仿真计算了不同水流速度和温度对电池的冷却情况,然后运用FLUENT中UDF设置冷却管道入口水的温度,把实时电池温度作为反馈条件来控制管道中水的温度以模拟当电池温度在正常温度时采用一般水温进行冷却,当电池温度达到临界值时降低水温对电池冷却.研究表明:水的流速变化对电池冷却温度变化影响较小,水温变化对电池冷却温度变化影响较大.当电池温度达到界限时,改变管道中水的温度能够有效地控制电池的最高温度,是一种有效的冷却方案.%Aiming at the problem that lithium iron phosphate battery in electrical vehicle has a shorted life and reduced secu-rity when working at high temperature condition,in order to ensure its proper operating temperature range,a dynamic simulation of temperature field of battery based on FLUENT has been carried out. The FLUENT software was used to establish the battery-pipe fluid-solid coupling model. The cooling of the battery was calculated and analyzed at different velocity and temperature of water. Then use udf of FLUENT to get the real-time battery temperature as a feedback to control the temperature of the water in the pipelines to simulate the real situation of the cooling system of the battery. When the temperature of the battery is at normal, set the corresponding cooling temperature in the inlet of the pipe through udf. When the temperature of the battery exceeds the temperature limit,change the correspondingcooling temperature in the inlet of the pipe through udf. The results show that the change of the water flow rates has little influence on the change of the battery temperature and the change of the water temperature has a great influence on the change of the battery temperature. When the temperature of the battery reaches the limit, change the temperature of the water in the pipe can effectively control the maximum temperature of the battery. It′s an effective cooling scheme.【期刊名称】《武汉理工大学学报(信息与管理工程版)》【年(卷),期】2017(039)006【总页数】6页(P759-764)【关键词】锂电池;动态仿真;FLUENT;冷却方案【作者】秦凯;李想;陈龙【作者单位】武汉理工大学自动化学院,湖北武汉430070;武汉理工大学自动化学院,湖北武汉430070;武汉理工大学自动化学院,湖北武汉430070【正文语种】中文【中图分类】TM912随着新能源汽车的进一步推广和使用,锂离子电池以其高效的能量比、高电压特性及使用寿命长等诸多优点成为电动汽车电池的首选[1]。
Fluent电机最高温度仿真简介在工程设计中,对电机的温度进行仿真分析是非常重要的。
电机在工作过程中会产生大量的热量,如果温度过高,可能会导致电机性能下降、寿命缩短甚至故障发生。
因此,通过Fluent软件进行电机最高温度仿真分析,可以帮助工程师优化电机设计,提高电机的工作效率和可靠性。
本文将介绍Fluent电机最高温度仿真的基本原理、步骤和注意事项,并提供一些实际案例,帮助读者理解和应用Fluent软件进行电机最高温度仿真。
原理Fluent是一款流体力学仿真软件,可以模拟流体流动和传热过程。
在电机最高温度仿真中,Fluent可以通过求解流体流动和传热方程,计算电机内部的温度分布。
电机最高温度仿真的基本原理如下:1.建立电机的几何模型:首先需要将电机的几何形状转换为计算机可识别的几何模型,通常使用CAD软件完成。
几何模型应包括电机的转子、定子、风扇等部件。
2.网格划分:将电机的几何模型划分成小的单元,形成网格。
网格的划分对仿真结果有很大影响,需要根据电机的几何复杂度和计算资源进行合理的网格划分。
3.设置边界条件:定义电机的边界条件,包括入口条件、出口条件、壁面条件等。
入口条件可以设定电机的供电电压和转速,出口条件可以设定电机的排热方式。
4.定义材料属性:根据电机的材料性质,设置热传导系数、密度、比热等参数。
5.求解流动和传热方程:根据电机内部的流动和传热特性,建立流动和传热方程。
通过迭代求解这些方程,得到电机内部的温度分布。
6.分析结果:根据仿真结果,分析电机的最高温度分布和热点位置。
如果温度超过了电机的承受范围,需要重新优化电机的设计。
步骤进行Fluent电机最高温度仿真的步骤如下:1.准备电机的几何模型:使用CAD软件绘制电机的几何模型,并将其导入Fluent软件。
2.划分网格:在Fluent软件中,使用网格划分工具对电机的几何模型进行网格划分。
划分网格时需要注意,网格的划分应该足够精细以捕捉电机内部的细节,但也不能过于细致以至于导致计算资源不足。
基于FLUENT的功放散热优化设计金文丽【摘要】利用FLUENT软件可以模拟许多工程实际问题,对工作环境进行仿真.因而可以通过对设备温度场的模拟,对其进行散热设计.本文首先由理论分析得出一个初步的散热选型方案,通过模拟对功率放大器的使用环境进行再现,以此为参考,确定空调的型号和散热导流风道的布局是否优化.下面通过模拟分析验证空调及风道设计是否合理.【期刊名称】《新技术新工艺》【年(卷),期】2010(000)008【总页数】4页(P22-25)【关键词】FLUENT;功率放大器;热设计;导流风道【作者】金文丽【作者单位】中国电子科技集团公司第二十八研究所,江苏,南京,210007【正文语种】中文【中图分类】TP311在电磁兼容测试方舱中,功率放大器的散热问题尤其引人关注,其在舱体狭小的空间内如何正常工作是设计时必须解决的问题。
功放通常要求(特别是放大器舱)空调、通风设施等能够满足功率放大器的散热和降温要求,确保其正常工作。
放大器舱内的工作温度要求小于25℃。
利用FLUENT软件可以辅助功放进行散热设计,缩短研制周期,提高其有效性、准确性和可靠性。
1 设计输入1.1 设备工作状态在长1 950mm×宽2 400mm×高2 100mm的方舱隔舱内放置2台低端放大器,低端放大器1的进风口位置在仪器底面与正面,出风口位置在仪器顶部,最佳工作温度为20℃,放大器自带风冷风量为991L/s,最大散热量约为11kW。
低端放大器2的进风口位置在仪器侧面与正面,出风口位置在仪器背面,距底板1m,最佳工作温度为20℃,放大器自带风冷风量为718L/s,最大热量约为15kW。
建议选用20kW空调进行制冷工作。
空调进风口布置在底部,在地板上设置金属风道,将冷风送入2个放大器底部及前部,回风口布置在中上部,在舱板上对应放大器出风口处敷一层隔热材料,顶板出风的放大器在上面安装导风板(前舱放大器间2台空调的制冷量均为10kW,2台最大功率的低端功放一台工作(最大发热功率15kW),1台待机(发热功率11kW)的极限工作情况仍然有裕量,充分满足前舱功放间的需要,在空调出风口处加导流板,使其冷空气引入放大器内;在放大器出风口附件加喇叭口型管道,将热空气引至方舱回风口,见图1。
电机绕组温度场分析及优化研究电机是现代工业中不可或缺的重要设备之一,其核心部件之一就是绕组。
绕组既是电机的能源转换介质,也是决定电机性能的关键因素之一。
电机的功率、效率、寿命等等指标都与绕组的质量有着紧密的关系。
近年来,电机绕组的温度场分析及优化已成为电机行业研究的热点之一。
一、电机绕组的温度场分析方法在电机运行中,由于绕组内部的电磁感应发热和电阻发热作用下,绕组温度会逐渐升高。
由于各个部分的绕组结构不同,所以在绕组温度分布上也会存在差异。
因此,进行电机绕组温度场分析,有利于优化绕组结构,提高电机的功率密度和效率。
目前,电机绕组温度场分析的方法主要有以下三种:1. 数值模拟法数值模拟法是目前研究电机绕组温度场分布的常用方法。
其基本思想是建立电机绕组的数学模型,通过计算机模拟的方式分析电机在不同工况下的温度场分布情况。
具体来说,数值模拟法常用的软件包括ANSYS、FLUENT等。
2. 实验方法实验方法是通过实验手段,测量电机绕组在不同负载条件下的温度变化情况,并根据测量结果进行分析和优化。
常用的实验手段有红外线热像仪、热电偶、纤维光学传感器等。
3. 解析方法解析方法是建立基于物理原理的电机绕组温度场分布模型,在此基础上,通过解析计算得出温度场分布的解析解。
常用的解析方法包括有限元法、有限体积法、边界元法等。
二、电机绕组的温度场优化方法电机绕组的温度场分布是影响电机整体性能的重要因素之一,因此,研究绕组结构优化方法,是提高电机功率密度和效率的关键。
目前,有许多方法可以有效地优化电机绕组的温度场分布,其中最常用的包括以下几种。
1. 涂层技术涂层技术是在绕组表面喷涂一层专门的保护性材料,目的是提高绕组的热稳定性和导热性。
常用的涂层材料包括氧化铝、氮化硅、热沉淀镀层等。
2. 合理铺绕合理铺绕是指将绕组的导体线依据其规格和结构特点,按照一定的规律分布在绕组槽中。
通过优化绕组的排列方式、导体线的集中密度、绕组的长度等参数,可以使绕组温度场分布更加合理,提高其工作效率。
区域治理综合信息永磁电机等效热阻法温度场计算周宁本钢板材股份有限公司,辽宁 本溪 117000摘要:为避免永磁电机的初始设计及优化设计中,使用有限元三维方法计算电机温升时耗费大量建模及计算时间,本文建立了内转子永磁电机的等效热网络模型,分析了模型的各等效热阻,建立各节点热平衡方程组并求解。
通过样机温升试验,验证了本文提出的永磁电机等效热网络模型的正确性,为同类电机的设计和温升计算提供了参考依据。
关键词:热网络模型;外转子永磁电机;热分析;温升近年来,永磁电机因其功率密度高、体积小、重量轻、结构紧凑和良好的动态性能等优点获得越来越多的关注。
随着永磁材料特别是钕铁硼的不断改善和提高,使其得到了快速发展。
永磁材料的剩磁密度受温度影响较大,进而影响永磁电机的电磁性能和运行特性,工作温度过高还会产生不可逆退磁。
因此,在电机设计阶段,准确预测电机温升是十分重要的。
目前,永磁电机瞬态温度场计算的方法主要有三种:等效热网络法、有限差分法以及有限元法。
其中,等效热网络法主要用于电机稳态温度场计算,对于电机瞬态温度场计算研究较少。
同济大学何磊等人针对电动汽车的驱动电机,基于等效热网络法求取永磁电机温度场的瞬态变化特性,并验证该模型具备较高的可靠性。
文献以等效热网络法为理论基础,分别求解得到行星减速器的稳态温度场和瞬态温度场分布情况,并同试验结果对比,验证了理论研究的合理性。
温志伟采用三维有限元方法计算了采用铁芯浸润与强迫循环内冷方式结合的蒸发冷却汽轮发电机的定子三维温度场。
李伟力利用基于有限体积法的FLUENT软件,对永磁同步电动机三维稳态温度场进行仿真分析和研究。
然而,三维数值计算对计算机性能有着较高要求,特别是其建模、剖分和计算的繁琐和大量时间的耗费,难以适应电机的初始设计及优化的快速性要求。
热网络一直保持其精确、快速、占用计算机资源小和工作量小的特点,为电磁方案的最初设计提供了很大方便。
为此,本文研究了一种稳态等效热网络模型,对模型中各热阻进行了分析处理,通过试验验证了该模型的可靠性,并利用该模型分析了不同冷却条件对电机温升的影响。
Ansys Workbench在电机温度场分析的实际运用发布时间:2022-09-08T05:17:38.048Z 来源:《科学与技术》2022年第9期第5月作者:王刚郑玉鑫[导读] 温升高是电机最为主要的故障原因,而电机的种类很多,不同种类有着多种多样冷却方式王刚、郑玉鑫东方电气(德阳)电动机技术有限公司中国.德阳618000摘要:温升高是电机最为主要的故障原因,而电机的种类很多,不同种类有着多种多样冷却方式,因此,电机的温度分析较为复杂,传统方法是以热负荷作为基准根据试验结果类比电机的设计温升,对于一些特殊结构的电机,热负荷类比法就不能满足设计需要。
采用Ansys Workbench仿真软件通过FEA有限元分析(Finite Element Analysis),可以对特殊结构电机定转子热源分布、以及传导、对流、辐射等要素进行网格化分析。
本文以具体案例的设计分析过程,论述Ansys Workbench稳态温度场在电机设计中的实际运用。
关键词:温升电机温度场有限元 Ansys1 引言我们以一台低压变频异步电动机YVF400-6-315KW、380V、50HZ为研究对象,对其定转子温度场进行仿真分析,对比求解结果与最后型式试验的偏差,从而验证Ansys Workbench仿真软件在特殊电机设计的实际运用。
6.3与型式试验温升值对比采用叠频法,对变频异步电动机YVF400-6-315KW进行温升试验,在额定电流588A工况下,运行4个小时后,定子温度基本稳定,PT100测温元件显示的结果是127度,减去环境温度32度,实际温升95K,与仿真的结果基本接近。
7、结论这次的仿真温度场分析,只考虑了机座表面的辐射散热,暂未考虑机座表面空气的对流影响,因此仿真的温度结果有所偏高,但是,作为电机温度计算的手段之一,能够在传统设计方法基础上,增添一种参考和补充。
参考文献:《Ansys Workbench完全自学一本通》许进峰著,电子工业出版社。