概率论四种收敛性
- 格式:ppt
- 大小:431.52 KB
- 文档页数:24
概率论控制收敛定理概率论控制收敛定理是概率论中的一个重要定理,它描述了随机变量序列的收敛性质。
在实际问题中,我们经常需要研究随机变量的极限行为,而概率论控制收敛定理为我们提供了一种判断随机变量序列是否收敛的方法。
概率论控制收敛定理的核心思想是通过控制随机变量序列的矩或特征函数来判断其收敛性。
其中,矩是随机变量的一个重要特征,它能够刻画随机变量的分布情况。
特征函数则是随机变量的另一种特征描述方式,它是随机变量的分布函数的傅里叶变换。
概率论控制收敛定理主要包括三种形式:切比雪夫型、布瓦杰-拉普拉斯型和林德伯格型。
切比雪夫型定理是最基本的收敛定理,它利用切比雪夫不等式给出了一个上界,通过控制该上界可以判断随机变量序列的收敛性。
布瓦杰-拉普拉斯型定理是一种强收敛定理,它给出了一个直接的收敛判别条件,不需要额外的条件限制。
而林德伯格型定理则是在一些特殊情况下的收敛定理,它给出了一种弱收敛的判别方法。
概率论控制收敛定理在实际问题中有着广泛的应用。
例如,在大数定律中,我们需要判断随机变量序列的均值是否收敛于某个常数,这时可以利用概率论控制收敛定理来判断。
在中心极限定理中,我们需要判断随机变量序列的标准化和是否收敛于标准正态分布,也可以借助概率论控制收敛定理来进行判别。
此外,在统计推断中,我们还可以利用概率论控制收敛定理来研究参数估计的收敛性。
概率论控制收敛定理是概率论中的一个重要工具,它为我们研究随机变量序列的收敛性提供了一种有效的方法。
通过控制随机变量序列的矩或特征函数,我们可以判断其是否收敛,并在实际问题中得到广泛应用。
概率论控制收敛定理的研究不仅对于理论研究有着重要的意义,也对于实际应用有着重要的指导作用。
概率论中几种收敛及其联系 西北师范大学数学与应用数学专业 甘肃兰州 730070摘要:概率极限理论是概率论的重要组成部分,内容十分丰富,本文仅介绍依概率收敛,平均收敛,依分布收敛,a.s.收敛,完全性收敛以及事件序列的无穷次发生之间的联系.关键词:示性函数 概率 随机变量 收敛 分布函数Abstract : The probability limit theory is an important part of the probability theory, is rich in content, this article describes only the convergence in probability, the averageconvergence, converge in distribution, as convergence, complete convergence, as well as the infinite sequence of events occurred betweenKey words : indicator function probability random variable convergence distribution function首先,为了研究这几种收敛性,我们需要估计概率。
所以首先需要建立必要的概率不等式。
我们以I(A)表示事件A 的示性函数,即有⎩⎨⎧∉∈=.,0;,1)(A A A I ωω那么,显然当B A ⊂时,有).()(B I A I ≤,并且有).()(A EI A P =定理 1 (Chebyshev 不等式)设)(x g 是定义在 [)∞,0 上的非降的非负值函数,如果对随机变量η,有∞<)(ηEg ,那么对任何使得0)(>a g 的0>a ,我们都有.)()()(a g Eg a P ηη≤≥证明:首先,由)(x g 的非降性知 ()()()().a g g a ≥⊂≥ηη 因此()()()()()()()()().a g g I a g g a g g I a I ≥≤≥≤≥ηηηη其中)(A I 是事件A 的示性函数;其中的第二个不等号是由于在事件()()()a g g ≥η上面有()()1≥a g g η由上述不等式立得()()()()()()()()()()()().a g Eg a g g I a g g E a g g EI a EI a P ηηηηηη≤⎭⎬⎫⎩⎨⎧≥≤≥≤≥=≥Chebyshev 不等式在以后的证明中有非常重要的作用,所以我们在这里先将其提出. 下面让我们先从较简单的依概率收敛谈起.定义 1 已知随机变量序列{n ξ,N n ∈}与随机变量ξ.如果对0>∀ε,都有.0)|(|lim =≥-∞→εξξn n P那么我们就称随机变量序列{N n n ∈,ξ}依概率收敛到随机变量ξ,记为ξξ−→−Pn其实,依概率收敛的本质是n ξ对ξ的绝对偏差不小于任一给定量的可能性将随着n 增大而减小.或者说,绝对偏差小于任一给定量的可能性将随着增大而接近1,即上式等价于1)(lim =<-∞→εξξn n P .特别当ξ为退化分布时,即()1==c P ξ,则称序列{}n ξ依概率收敛于c ,即c Pn −→−ξ.下面, 我们来引入随机变量序列的另外一种收敛:平均收敛.定义 2 如果{}0;,>n n ξξ是r L 中的随机变量, 其中,0>r {}∞<=rr E L ξξ,并且0→-ξξn E , ()∞→n .则称随机变量序列{}N n n ∈,ξ依r 阶平均收敛到随机变量,ξ记作ξξ−→−rLn 当1=r 时简称为依平均收敛,并记为.ξξ−→−Ln在依概率收敛和平均收敛之间存在如下关系:定理 2 r 阶平均收敛蕴含依概率收敛. 证明:因为0lim =-∞→rn n E ξξ,故对,,0N ∃>∀ε当N n >时,有εξξrrn a E <- .又由Chebyshev 不等式知对任何0>a ,有()rrn n aE a P ξξξξ-≤≥-,故()εξξ<≥-a P n ,因此()0lim =≥-∞→a P n n ξξ.但是,反之不真.反例如下:例1 设概率空间为区间上的几何型概率空间,即有 ()1,0=Ω , () 1.0B F = , L P =. 令()0=ωξ, ()1,0∈∀ω, 而易知,对任何0>ε,当∞→n 时,都有 ()()020→=>≤>-nP P n n ξεξξ,所以ξξ−→−Pn ;但是1≡=-n n E E ξξξ, 所以n ξ不依平均收敛到ξ.在概率极限理论中,研究随机变量序列收敛性的同时当然也要研究相应的分布函数序列的收敛性,下面就让我们来谈一谈依分布收敛.定义3 设{}N n x F n ∈),(是一列定义在R 上的有界非降的左连续函数,如果存在一个定义在上的有界非降的左连续函数).(x F 使得),(),()(lim F C x x F x F n n ∈∀=∞→则称{})(x F n 弱收敛到)(x F 记为),()(x F x F n −→−ω并称)(x F 是{})(x F n 的弱极限。
第三章3・1四种收敛性车贝晓夫不等式2几乎处处收敛3依概率收敛4依分布收敛5r■阶收敛【引理】(马尔可夫不等式)设随机变量X有I•阶绝对矩,EX 「<00,则对任意£ > 0有P(\X\>s)<^4-【证明】设X的分布函数为F(x),则有:P(\X\>£)= f dF(x) < f x-\rdF(x)1 r00 ir< —-f x dF(x) 』J・8引理的特殊情况: P(|X|> £)<纟甲取一2,并以X ・E(X)代替X 得车贝晓夫不等式 * 【定理】(车贝晓夫不等式)设随机变量X 有2阶中心矩,E[X-E(X)] 则对任意£ > 0有P (|X -E (X )|>^)<^2【证明】设X 的分布函数为尸(兀),则有:DX = f (X -E(X))2JF(X )>f (x-E(X))2dF(x)\x-E(X)\^> J£2dF(x)= e 2P{\X-E(X)\>e}从而尸(|X - E(X)\ >e)< 代耳 <=^> P(\X 一 E(X)\ <^)>1-2^8 82 <00,P(\X-E(X)\<s)>l-^^ 8由车贝晓夫不等式可以看出,若b?越小,贝!I 事件[\X-E(X)\<£]的概率越大,即随机变量X集中在期望附近的可能性越大.特别地,若D(X)=O,则对任意£>0,恒<P{|X-EX|>g}|0- 因此P{X HE¥} = 0,即P{X = EX} = 1,所以方差为0的随机鑼是常数菱P{\X-E(X)\>当方差已知时,车贝晓夫不等式给出了/X与它的期望的偏差不小于8的概率的估计式・如取£ = 3b2P{IX-E(X)I> 3<r} <— ".1119(7 屋可见,对任给的分布,只要期望和方差亍存蠹则r.v X取值偏离超过3a的概率小于0.1117二车贝晓夫不等式的用途:车贝晓夫不等式只利用随机变量的数学期望及方差就可对的概率分布进行估计。
概率论基础知识(4)第四章 随机变量的数字特征 一 数学期望§4.1.1离散型随机变量的数学期望例1:全班40名同学,其年龄与人数统计如下: 该班同学的平均年龄为:若令x 表示从该班同学中任选一同学的年龄,则x 的分布律为于是,x 取值的平均值,即该班同学年龄的平均值为定义1:设x 为离散型随机变量,其分布律为如果级数绝对收敛,则此级数为x 的数学期望(或均值)既为 E(X),即 E(X)=意义:E(X)表示X 取值的(加权)平均值例2:甲、乙射手进行射击比赛,设甲中的环数位X1,乙中的环数为X2,已知X1和X2的分布律分别为:问谁的平均中环数高? 解:甲的平均中环数为 E(X 1)=8 0.3+90.1+10 0.6=9.3乙的平均中环数为 E(X 2)=8 0.2+9 0.5+10 0.3=9.1可见E(X 1)> E(X 2),即甲的平均中环数高于乙的平均中环数。
例3:设 ,求E(X)解:由于,其分布律为,k=0,1,2…,所以例4:一无线电台发出呼唤信号被另一电台收到的概率为0.2,发方每隔5秒拍发一次呼唤信号,直到收到对方的回答信号为止,发出信号到收到回答信号之间需经16秒钟,求双方取得联系时,发方发出呼唤信号的平均数?解:令X 表示双方取得联系时,发方发出呼唤信号的次数。
X 的分布律为于是,双方取得联系时,发方发出的呼唤信号的平均数为由于,求导数将x=0.8代如上式,便得将此结果代入原式便得:(次)§4.1.2连续型随机变量的数学期望绝对收敛,则称此积分为X 的数学期望,记为E(X),即,例7:设风速V是一个随机变量,且V~U[0,a],又设飞机的机翼上所受的压力W是风速V的函数:这里a,k均为已知正数。
试求飞机机翼上所受的平均压力E(W)。
W的分布函数为两边求导,使得进而便可求得W的数学期望由此运算过程可以看到,不必求出W的概率密度ƒw(z),而根据V的概率密度ƒv(v)也可直接求出W 的数学期望值,即§4.1.3随机变量函数的数学期望值1.一维随机变量函数的数学期望定理1:设X为随机变量,Y=g(X),(1)如果X,且级数(2)如果Xƒ(X),且积分绝对收敛,则有证略求:例8:已知X的分布律为解:例9:设,求解:(令 m=k-2)例10:设,求解:由于X的概率密度为于是例11:国际市场上每年对我国某种商品的需求量为一个随机变量X(单位:吨),且已知,并已知每售出一吨此种商品,可以为国家挣得外汇3万美元,但若售不出去,而屯售于仓库,每年需花费保养费每吨为一万美元,问应组织多少货源可使国家的平均收益达到最大?解:设a为某年准备组织出口此种商品的数量(单位:吨)Y为国家收益,于是Y是X的函数,即其概率密度为令解得 a=3500(吨)但,故E(Y)在a=3500时,E(Y)最大,即组织货源为3500吨时,可是国家的收益达到最大。
论文摘要概率是对大量随机现象的考察中显现出来的,而对于大量的随机现象的描述就要采用极限的方法。
概率统计中的极限定理研究的是随机变量序列的某种收敛性,对随机变量收敛性不同定义将导致不同的极限定理,而随机变量的收敛性的确可以有各种不同的定义。
主要讨论了依概率收敛与依分布收敛,r阶收敛与几乎处处收敛,几乎处处收敛与依概率收敛之间的关系。
给出了由依概率收敛推出几乎处处收敛的条件和由依概率收敛推出r阶收敛的条件,从而比较完全地说明了随机变量序列的各种收敛性之间的关系。
本论文将对随机变量的几种收敛作出较为简单扼要的介绍和讨论.论文结构如下:一、随机变量的几种收敛的概念理论;二、随机变量的几种收敛之间的关系;从以上几个方面对随机变量的几种收敛理论简明扼要地分析,说明随机变量序列收敛理论在实际问题中的应用范围之广,在实际生活中的重要性。
关键词:r阶收敛;几乎处处收敛;依概率收敛;依分布收敛。
AbstractThe Probability is the study of a large number of random phenomena emerge, but for a large number of random phenomena should use extreme methods described. Probability and statistics in the limit theorem is asequence of random variables convergence, convergence of random variables with different definitions lead to different limit theorem, and indeed the convergence of random variables can have different definitions. Mainly discussed convergence in probability and convergence in distribution, convergence in order r and almost everywhere convergence, almost sure convergence and convergence in probability relationship. Convergence in probability is given by the launch of almost everywhere convergence of conditions and the convergence in probability by the introduction of r-order convergence conditions, which more completely describes the various random variables convergence relationship. This paper will make the convergence of several random variables is more brief presentations and discussions. Paper is structured as follows: 1. Convergence of random variables the concept of theory; 2. the convergence of several random variables between; From the above aspects of the theory of random variables of several brief analysis of convergence shows that the convergence theory of random variables in the actual problems in the wide range of applications, in real life importance.Keywords: convergence in order r ; almost everywhere or almost surely; convergence in probability; convergence in distribution.目录引言: 41 几种收敛性定义 42 依概率收敛与依分布收敛的关系 53 r阶收敛与几乎处处收敛的关系 114 依概率收敛与r阶收敛的关系 135 几乎处处收敛与依概率收敛和依分布收敛的关系 17总结 19四种收敛性 19四种收敛蕴涵关系 19致谢 21参考文献 22引言:概率论最早产生于17世纪,本来是保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。