例2. (X,Y)的联合概率分布为:
Y0 1 X
0 0.3 0.4
(1)求X,Y的边缘分布; (2)判断X,Y是否独立.
1 0.2 0.1
解: (1)X,Y的概率分布分别为:
X0 1
Y
0
1
P 0.7 0.3
P
0.5 0.5
(2) P(X=0,Y=0)=0.3 P(X=0)P(Y=0) =0.7×0.5 =0.35
所以,X,Y独n个随机变量独立性的概念与性质 定义:称n个随机变量X1,X2,…,X n相互独立,若对任意
ai<bi( i=1,2,…,n), 有 P{a1<X1<b1,a2<X2<b2,…,a n<X n<b n}= P{a1<X1<b1}…P{a n<X n<b n}
(2)
0
即:
z<0 (x<0或y=z-x<0)
0≤z≤1
y=z-x>0 x=z-y≤z
z>1 y=z-x>0 x=z-y≤z
1.设成年人群的体重与身高组成二维随机向量(X,Y), 历史资料表明(X,Y)服从二维正态分布,参数分别为μ=55, σ=10,μ=170,σ=8,ρ=0.90,求X和Y的边缘分布。
(2)P(X<Y)=
所以, X, Y独立.
随机向量的联合分布函数
一、二维随机向量的联合分布函数
1、n元实函数 F(x1,x2,…,xn)= P{X1≤x1,X2≤x2,…,Xn≤xn},
(x1,x2,…,xn)∈Rn, 称为n维随机向量(X1,X2,…,Xn)的 联合分布函数。
注意: X1≤x1,X2≤x2,…,Xn≤xn 均表示事件,