21.2 解一元二次方程4 4 一元二次方程的根与系数的关系
- 格式:doc
- 大小:290.50 KB
- 文档页数:4
21.2.4一元二次方程的根与系数的关系【目标导航】1、经历从具体方程的根发现一元二次方程根与系数之间的关系2、掌握一元二次方程根与系数的关系式3、能运用根与系数的关系由已知一元二次方程的一个根求出另一个根4、会求一元二次方程两个根的倒数和与平方数,两根之差【知识链接】法国数学家韦达最早发现代数方程的根与系数之间有一种非常密切的关系,因此,人们把这个关系称为韦达定理。
历史是有趣的,韦达在16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论证。
用于求方程中的特定系数,求含有方程根的一些代数式的值等问题,由方程的根确定方程的系数的方法等都很方便。
【珍宝探寻】珍宝 一.一元二次方程根与系数的关系1. 设x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根,试推导x 1+x 2=-b a ,x 1·x 2=ca; 解析:(1)∵x 1、x 2是ax 2+bx+c=0(a ≠0)的两根,∴x 1x 2∴x 1+x 2=2b b a -+-ba ,x 1·x 2=2b a -+·2b a --=ca即 这就是一元二次方程根与系数的关系,它是由法国的数学家韦达发现的,所以我们又称之为韦达定理。
2.使用一元二次方程ax 2+bx+c=0的根与系数的关系时需注意:(1)先把方程化为一般形式,并要注意隐含条件a ≠0; (2)应用时一定要记住根的判别式Δ=b 2-4ac ≥0这个前提条件; (3)写 时不要弄错符号. 【营养快餐】快餐 一 经典基础题例1:若1x ,2x 是一元二次方程0322=--x x 的两个根,则21x x 的值是( ) A .-2 B .-3 C .2 D .3 分析:由有根与系数的关系12cx x a==-3。
解:因为0322=--x x ,中a =1,c =-3,所以12-31x x ==-3 故选B点拨:本题利用两根之积与系数的关系.例2.1x 、2x 是方程05322=--x x 的两个根,不解方程,求下列代数式的值:(1)2221x x + (2)21x x - (3)2222133x x x -+分析:由根与系数的关系可建立关于1x 和2x 的方程组12123252x x x x ⎧+=-⎪⎪⎨⎪=-⎪⎩g ,再把所求式子用它们表示出来,代入化简即得解:由一元二次方程根与系数的关系,得12123252x x x x ⎧+=-⎪⎪⎨⎪=-⎪⎩g ,进而(1)2221x x +=212212)(x x x x -+=417(2)21x x -=212214)(x x x x -+=213(3)原式=)32()(2222221x x x x -++=5417+=4112点拨:本题考查的是一元二次方程根与系数的关系、完全平方公式、恒等式的变形等知识。
21.2.4 一元二次方程根与系数关系一、内容和内容解析1.内容一元二次方程根与系数的关系.2.内容解析一元二次方程的根与系数关系反映了一元二次方程的根与它的系数之间的一种确定关系.利用这一关系可以解决许多问题,同时它在高中数学的学习中有着更加广泛的应用.实际上,一元n 次方程的根与系数之间也有确定的数量关系,我们把它称之为韦达定理,一元二次方程的根与系数关系是韦达定理在n =2时的特例.一元二次方程()200ax bx c a ++=≠的求根公式x =,反映了方程的根的值是由系数a 、b 、c 所决定的,从一方面反映了根与系数之间的联系;而本节课中的12b x x a +=-,12c x x a⋅=是从另一方面更简洁地反映了一元二次方程的根与系数之间的联系.本节课从思考一元二次方程的根与方程中的系数之间的关系开始,由特殊到一般,先让学生思考二次项系数为1的情形,然后再思考并证明一般形式时的根与系数的关系.本节课为选学内容.基于以上分析,确定本课的教学重点:一元二次方程根与系数关系的探索及简单应用.二、目标和目标解析1.目标(1)了解一元二次方程的根与系数关系,能进行简单应用.(2)在一元二次方程根与系数关系的探究过程中,感受由特殊到一般的认识方法.2.目标解析达成目标(1)的标志是:学生能说出一元二次方程的根与系数关系,并能利用根与系数关系求出两根之和、两根之积.达成目标(2)的标志是:学生能够借助问题的引导,发现、归纳并证明一元二次方程根与系数的关系.三、教学问题诊断分析一元二次方程的根与系数关系是在学生已经学习了一元二次方程的解法的基础上,对一元二次方程根与系数之间的关系进行再探究.如果让学生思考一元二次方程()200ax bx c a ++=≠的两个根与系数之间有怎样的关系,学生会回答出求根公式x =,而不会想到两根之和、两根之积与系数之间的关系。
因此,先引导学生从特殊的一元二次方程得到两根之和、两根之积与系数之间关系的猜想,再推广到一般,探索一元二次方程根与系数关系.另外,在计算两根之积时,能否观察出式子中具有平方差公式的结构,并运用平方差公式正确进行计算,也是一部分学生的难点.本节课的教学难点是:发现一元二次方程根与系数关系的过程.四、教学过程设计1.复习一元二次方程一般形式及求根公式问题1 一元二次方程的根与方程中的系数之间有怎样的关系?师生活动:学生回顾一元二次方程的一般形式及求根公式.设计意图:复习一元二次方程的一般形式及求根公式,使学生进一步明确求根公式是方程的根与系数之间的一种关系,为推导根与系数之间的关系作好准备.2.猜想二次项系数为1时的根与系数关系问题 2 方程()()120x x x x --=(1x ,2x 为已知数)的两根是什么?将方程化为20x px q ++=的形式,你能看出1x ,2x 与p ,q 之间的关系吗?师生活动:学生独立思考,得出方程两根为1x ,2x ,通过将()()120x x x x --=的左边展开,化为一般形式,得到方程()212120x x x x x x -++=.发现这个方程的二次项系数为1,一次项系数()12p x x =-+,常数项12q x x =.学生独立观察并讨论后,发现这两个方程的两根之和是12x x p +=-,两根之积是12x x q =.设计意图:通过教师引导和点拨,让学生在二次项系数为1的方程中发现一元二次方程根与系数关系.3.猜想、验证一元二次方程根与系数关系问题3 一元二次方程20ax bx c ++=中,二次项系数a 未必是1,它的两个根的和、积与系数又有怎样的关系呢?师生活动:学生独立思考后,教师追问:如何探究这两者之间的关系呢?(利用一元二次方程的一般形式和求根公式)学生独立完成证明过程,然后再全班交流。
2021-2022学年九年级数学上册课时作业(人教版)第二十一章一元二次方程21.2解一元二次方程21.2.4一元二次方程的根与系数的关系分点训练知识点1利用根与系数的关系求两根之间关系的代数式的值1. 设α,β是一元二次方程x2+2x-1=0的两个根,则α·β的值是( )A. 2B. 1C. -2D. -12. 下列方程两个实数根之和等于两个实数根之积的是( )A. x2-2x-2=0B. x2+x+1=0C. x2+x-1=0D. x2+5x+5=03. 已知一元二次方程2x2-5x+1=0的两根为m,n,则m2+n2=.4. 根据一元二次方程的根与系数的关系,求下列方程两根x1,x2的和与积:(1)x2-9x-16=0;(2)3x2-2=2x;(3)3x(x-2)=5.5. 已知x1,x2是一元二次方程x2-4x+1=0的两个根.求(1)(x1-3)(x2-3);(2)(x1-x2)2.知识点2利用根与系数的关系求方程中待定字母的值6. 如果关于x的一元二次方程x2+4x+a=0的两个不相等的实数根x1,x2满足x1x2-2x1-2x2-5=0,那么a的值为( )A. 3B. -3C. 13D. -137. 关于x的一元二次方程x2+2x-2m+1=0的两实数根之积为负数,则实数m的取值范围是.8. 关于x的方程3x2+mx-8=0有一个根是23,求另一个根及m的值.9. 若关于x的一元二次方程x2-4x+k-3=0的两个实数根为x1,x2且满足x1=3x2,试求出方程的两个实数根及k的值.强化提升10. 一元二次方程x2-5x-4=0的两根为x1,x2,则下列正确的是( )A. x1=-1,x2=4B. x1=1,x2=-4C. x1+x2=5D. x1x2=411. 定义运算:a ★b =a (1-b ),若a ,b 是方程x 2-x +m =0(m <0)的两根,则b ★b -a ★a 的值为( )A. 0B. 1C. 2D. 与m 有关12. 若关于x 的一元二次方程x 2-3x +p =0(p ≠0)的两个不相等的实数根分别为a 和b ,且a 2-ab +b 2=18,则a b +b a的值是( ) A. 3 B. -3 C. 5 D. -513. 求下列方程两个根的和与积:(1)3x 2-5x =-2;(2)(x +1)(x +3)-6x =4.14. 已知关于x 的一元二次方程x 2-2x +m -1=0有两个实数根x 1,x 2.(1)求m 的取值范围;(2)当21x +22x =6x 1x 2时,求m 的值.15. 已知关于x的方程x2+2(m-2)x+m2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 的值.参考答案1. D 【解析】∵α,β是一元二次方程x 2+2x -1=0的两个根,∴α·β=-1.2. C 【解析】选项A ,x 1+x 2=2,x 1x 2=-2,方程两个实数根之和不等于两个实数根之积,此选项错误;选项B ,x 1+x 2=-1,x 1x 2=1,方程两个实数根之和不等于两个实数根之积,此选项错误;选项C ,x 1+x 2=-1,x 1x 2=-1,方程两个实数根之和等于两个实数根之积,此选项正确;选项D ,x 1+x 2=-5,x 1x 2=5,方程两个实数根之和不等于两个实数根之积,此选项错误.3.214 【解析】由根与系数的关系可得,m +n =52,m ·n =12,m 2+n 2=(m +n )2-2m ·n =(52)2-2×12=214. 4. 解:(1)x 1+x 2=9,x 1x 2=-16.(2)方程可化为3x 2-2x -2=0,x 1+x 2=23,x 1x 2=-23. (3)方程可化为3x 2-6x -5=0,x 1+x 2=2,x 1x 2=-53. 5. 解:(1)★x 1+x 2=4,x 1x 2=1,★(x 1-3)(x 2-3)=x 1x 2-3(x 1+x 2)+9=1-3×4+9=-2.(2)(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=42-4×1=12.6. B 【解析】由根与系数的关系可得,x 1+x 2=-4,x 1x 2=a ,∴x 1x 2-2x 1-2x 2-5=x 1x 2-2(x 1+x 2)-5=a +8-5=0,∴a =-3.7. m >12 【解析】设x 1,x 2为方程x 2+2x -2m +1=0的两个实数根,由已知得120•0x x ∆⎧⎨⎩>,<, 即80210m m -+⎧⎨⎩>,<, 解得m >12. 8. 解:设方程的另一个根是x 1,由一元二次方程根与系数的关系,得112332833m x x ⎧⎪⎪⎨⎪⎪⎩+=-,①=-,② 由★得x 1=-4,代入★,得23+(-4)=-3m ,解得m =10,所以方程的另一个根是-4,m 的值是10. 9. 解:依题意得:x 1+x 2=4,又x 1=3x 2,★x 1=3,x 2=1,把x 2=1代入原方程得k =6.10. C 【解析】∵一元二次方程x 2-5x -4=0的两根为x 1,x 2,∴x 1+x 2=5,x 1x 2=-4.11. A 【解析】由根与系数的关系可找出a +b =1,根据新运算找出b ★b -a ★a =b (1-b )-a (1-a ),将其中的1替换成a +b ,即可得出结论12. D 【解析】★a ,b 为方程x 2-3x +p =0(p ≠0)的两个不相等的实数根,★a +b =3,ab =p ,★a 2-ab +b 2=(a +b )2-3ab =32-3p =18,★p =-3.当p =-3时,★=(-3)2-4p =9+12=21>0,★p =-3符合题意.ab +b a =22a b ab +=222a b ab ab +-=2()a b ab +-2=-5. 13. 解:(1)方程化为3x 2-5x +2=0,x 1+x 2=53,x 1x 2=23. (2)方程化为x 2-2x -1=0,x 1+x 2=2,x 1x 2=-1.14. 解:(1)★原方程有两个实数根,★Δ=(-2)2-4(m -1)≥0,即4-4m +4≥0,★m ≤2.(2)★21x +22x =6x 1x 2,★(x 1+x 2)2-2x 1x 2=6x 1x 2,即(x 1+x 2)2-8x 1x 2=0. ★x 1+x 2=2,x 1x 2=m -1,★22-8(m -1)=0,即4-8m +8=0,★m =32. ★m =32<2,★m 的值为32. 15. 解:设方程x 2+2(m -2)x +m 2+4=0的两个实数根为x 1,x 2,★x 1+x 2=2(2-m ),x 1x 2=m 2+4. ★这两根的平方和比两根的积大21,★21x +22x -x 1x 2=21,即(x 1+x 2)2-3x 1x 2=21,★4(m -2)2-3(m 2+4)=21,m 2-16m -17=0,解得m =17或m =-1. ★Δ=4(m -2)2-4(m 2+4)≥0,解得m ≤0.故m =17舍去,★m =-1.。
21.2 一元二次方程根的判别式及根与系数的关系一元二次方程根的判别式一元二次方程中,叫做一元二次方程的根的判别式,通常用“”来表示,即(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根; (3)当△<0时,一元二次方程没有实数根.题型1:利用判别式判断一元二次方程根的情况1.下列方程有两个相等的实数根的是( )A .x 2﹣2x+1=0B .x 2﹣3x+2=0C .x 2﹣2x+3=0D .x 2﹣9=0)0(02≠=++a c bx ax ac b 42-)0(02≠=++a c bx ax ∆ac b 42-=∆2.已知:关于x的一元二次方程x2+kx﹣1=0,求证:方程有两个不相等的实数根.题型3:求一元二次方程两根的和与积3.若x1,x2是一元二次方程x2−5x+6=0的两个根,则x1+x2,x1x2的值分别是()A.1和6B.5和-6C.-5和6D.5和6; .题型4:已知一根求另一根或字母的值4.关于x 的方程x²+mx +6=0的一个根为-2,则另一个根是( )A .-3B .-6C .3D .6的一个根,求方程的另一个根及. 22x x +121(x x x =+2212x x x +1(x =22|x 2(|x x =题型5:利用根与系数的关系构造方程5.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,那么这个一元二次方程是()A.x2+3x+4=0B.x2+4x−3=0C.x2−4x+3=0D.x2+3x−4=0题型6:求涉根代数式的值6.若一元二次方程x2−2x=1的两个实数根分别为x1,x2,求(x1−1)(x2−1)的值.题型7:根与系数的关系与三角形综合7.一个三角形的两边为方程2x2−kx+8=0的两根,第三边长为4,则k的范围是()题型8:根与系数中的新定义问题8.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c一、单选题1.已知关于x的一元二次方程2x2+mx﹣3=0的一个根是﹣1,则另一个根是()A.1B.﹣1C.32D.−32 2.关于x的一元二次方程x2+bx+c=0的两个实数根分别为2和﹣3,则()A.b=1,c=﹣6B.b=﹣1,c=﹣6C.b=5,c=﹣6D.b=﹣1,c=63.一元二次方程x2-5x+6=0的两根分别是x1、x2,则x1+x2等于() A.5B.6C.-5D.-64.已知关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根α,β满足1α+1β=1,则m的值为()A.﹣3B.1 C.﹣3 或1D.2 5.已知a、b满足a2﹣6a+2=0,b2﹣6b+2=0,则b a+a b=()A.﹣6B.2C.16D.16或2 6.已知x1、x2是一元二次方程x2﹣3x+2=0的两个实根,则x1+x2等于()A.﹣3B.3C.﹣2D.2二、填空题7.二次项系数为2的一元二次方程的两个根分别是1 −√3和1 +√3,那么这个方程是.8.已知一元二次方程x2 -5x-1=0的两根为x1,x2,则x1+x2= .9.已知方程x2+2x-1=0 的两根分别为x1,x2,则x1+x2=.10.已知一元二次方程x2﹣6x﹣5=0的两根为a、b,则1a+1b的值是.11.方程x2+2x−3=0的两根为x1、x2则x1⋅x2的值为.三、解答题12.已知方程关于x的一元二次方程3x2+5x-4k=0的一个根是-2,求k和方程另一个根a的值.13.已知方程2x2+3x-4=0的两实数根为x1、x2,不解方程求:(1)x12+x22的值;(2)(x1-2)(x2-2) 的值四、综合题14.已知关于x的一元二次方程x2﹣6x+2m+1=0有实数根.(1)求实数m的取值范围;(2)若方程的两个实数根为x1,x2,且x1x2+x1+x2=15,求m的值.15.已知关于x的一元二次方程x2−2x+k−1=0.(1)若此方程有两个不相等的实数根,求实数k的取值范围;(2)已知x=3是此方程的一个根,求方程的另一个根及k的值.。
《一元二次方程的根与系数关系》教学设计教材分析学生已经学习了完一元二次方程求根公式的基础上,对一元二次方程的根与系数之间的关系进行再探究,通过本课进一步的学习,使学生了解一元二次方程两根之和、两根之积与一元二次方程中系数之间的关系.教学目标1.掌握一元二次方程根与系数的关系;2.能运用根与系数的关系解决具体问题.3.在探索一元二次方程根与系数的关系的过程中,体验观察→发现→猜想→验证的思维转化过程,培养学生分析问题和解决问题的能力.教学重难点重点:一元二次方程根与系数的关系及其应用.难点:探索一元二次方程根与系数的关系.课前准备多媒体课件教学过程问题1:(1)一元二次方程的一般形式是什么?(2)一元二次方程有实数根的条件是什么?(3)当Δ>0,Δ=0,Δ<0时,一元二次方程根的情况如何?(4)一元二次方程的求根公式是什么?[师生活动]教师指导学生回忆知识,学生进行口答,教师指出重点.[答](1)一元二次方程一般形式为ax2+bx+c=0(a≠0);(2)当△≥0时,一元二次方程有两个实数根;(3)当△>0时,一元二次方程有两个不等实根;当△=0时,一元二次方程有两个相等实根;当△<0时,一元二次方程没有实根;(4)方程ax2+bx+c=0(a≠0)的求根公式为a acbbx24 2-±-=(△≥0). 【设计意图】通过复习巩固旧知识,并为新知识的学习做铺垫。
问题2:请完成下面的表格观察、思考表格中方程两根之和与两根之积与系数有何关系,你能从中发现什么规律?你有什么发现?【设计意图】学生通过计算、观察、分析,发现一元二次方程中根与系数的关系,发展学生的感性认识,体会由特殊到一般的认识过程。
问题3:(1)填写上表后思考:①运用你所发现的规律,你能解答下列问题吗?已知方程x 2-4x-7=0的根为x 1,x 2,则x 1+x 2= , x 1·x 2= ; 已知方程x 2+3x-5=0的两根为x 1,x 2,则x 1+x 2= , x 1·x 2= .已知方程2x 2-3x -2=0的两根分别是x 1和x 2,则x 1+x 2= , x 1·x 2= . [答案]4,-7;-3,-5;23,-1. ②如果方程ax 2+bx+c=0的两根为x 1,x 2,你知道x 1+x 2和x 1·x 2与方程系数之间的关系吗? [回答]若方程ax 2+bx +c =0(a≠0)的两个根分别为x 1和x 2,则x 1+x 2=-b a ,x 1x 2=c a .③如何证明以上发现的规律呢?[论证结论]教师与学生共同整理证明过程: 证明:当Δ>0时,由求根公式得x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a,所以x 1+x 2=-b +b 2-4ac 2a +-b -b 2-4ac 2a =-2b 2a =-ba ,x 1x 2=-b +b 2-4ac 2a ·-b -b 2-4ac 2a =(-b )2-(b 2-4ac )4a 2=ca ; 当Δ=0时,x 1=x 2=-b2a .所以x 1+x 2=-b a ,x 1x 2=ca.[归纳并板书]根与系数关系:若方程ax 2+bx +c =0(a≠0)的两个根分别为x 1和x 2,则x 1+x 2=-b a ,x 1x 2=ca.[文字表达]一元二次方程的根与系数的关系为:两个根的和等于一次项系数与二次项系数的比的相反数,两个根的积等于常数项与二次项系数的比.【设计意图】 ①进一步分析、验证所发现的根与系数的关系,为从感性到理性打好基础.②通过设置问题2使学生明确利用一元二次方程根与系数的关系进行计算需要满足Δ≥0.问题4:例1 根据一元二次方程的根与系数的关系,求下列方程的两个根x 1,x 2的和与积.(1)x 2-6x -15=0;(2)3x 2+7x -9=0;(3)5x -1=4x 2. [师生活动]学生自主进行解答,教师做好评价和总结.[注意]把一元二次方程整理为一般形式,确定a ,b ,c 的值,比较b 2-4ac 与0的大小,然后利用根与系数的关系代入求值.[解](1)x 1+x 2=6,x 1·x 2=-15; (2)x 1+x 2=37-,x 1·x 2=39-; (3)方程化为4x 2-5x+1=0,∴x 1+x 2=45,x 1·x 2=41. 变式练习1 已知x 1,x 2是一元二次方程x 2-4x +1=0的两个实数根,则x 1x 2等于(C )A .-4B .-1C .1D .4变式练习2 若x 1,x 2为方程x 2-2x -1=0的两个实数根,求x 1+x 2-x 1x 2的值. [解]由根与系数关系得,x 1+x 2=2,x 1·x 2=-1, ∴x 1+x 2-x 1x 2=2-(-1)=3.【设计意图】问题的设置是针对本课时的重点所学进行及时巩固,也是培养学生计算能力和熟记公式的关键。
人教版数学九年级上第四课时教学设计课题21.2.4解一元二次方程单元第二十一章学科数学年级九年级上学习目标情感态度和价值观目标培养学生观察,分析和综合,判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神。
能力目标学生经历探索、尝试发现一元二次方程根与系数的关系,感受不完全归纳验证以及演绎证明。
知识目标 1.了解一元二次方程根与系数的关系,能进行简单应用;2.在一元二次方程根与系数关系的探究过程中,感受由特殊到一般地认识事物的规律。
重点一元二次方程根与系数关系的探索及简单应用。
难点发现一元二次方程根与系数的关系。
学法探究学习、合作交流法教法启发引导、归纳推理教学过程教学环节教师活动学生活动设计意图导入新课一、复习引入1. 一元二次方程的求根公式是什么?2. 方程的两根x1,x2与系数a,b,c还有其他关系吗?一元二次方程的求根公式:求根公式不仅表示可以由方程的系数a,b,c决定根的值,而且反应了根与系数之间的关系。
出示问题,引出课题学生初步了解本课所要研究的问题。
通过温故知新,创设问题情境,激发学生好奇心,求知欲。
讲授新课二、探究新知1.填表、观察、猜想启发:猜想二次项系数为1时,根与系数的关系. 学生通过去括号、合并得到一般形式的一元通过思考问题,让学生知道二次项系问题:(1)用语言叙述你发现的规律;(2)x2+px+q=0的两根x1,x2用式子表示你发现的规律。
跟踪练习:根据一元二次方程的根与系数的关系,求下列方程两个根x1,x2的和与积:x2-6x-15=02.启发:如果方程二次项系数不为1呢?表2:填表、观察、猜想问题:上面发现的结论在这里成立吗?请完善规律:(1)用语言叙述你发现的规律;(2)ax2+bx+c=0的两根x1,x2用式子表示你发现的规律。
跟踪练习:根据一元二次方程的根与系数的关系,求下列方程两个根x1,x2的和与积:(1)3x2+7x-9=0 (2)5x-1=4x23.总结归纳:一元二次方程的根与系数的关系:两根的和等于一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比。
21.2解一元二次方程21.2.4一元二次方程的根与系数的关系一、教学目标【知识与技能】1.掌握一元二次方程根与系数的关系;2.能运用根与系数的关系解决具体问题.【过程与方法】经历探索一元二次方程根与系数的关系的过程,体验观察→发现→猜想→验证的思维转化过程,培养学生分析问题和解决问题的能力.【情感态度与价值观】通过观察、归纳获得数学猜想,体验数学活动充满着探索性和创造性,理解事物间相互联系、相互制约的辩证唯物主义观点,掌握由“特殊——一般——特殊”的数学思想方法,培养学生勇于探索的精神.二、课型新授课三、课时1课时四、教学重难点【教学重点】一元二次方程根与系数的关系及其应用.【教学难点】探索一元二次方程根与系数的关系.五、课前准备课件六、教学过程(一)导入新课1.一元二次方程的求根公式是什么?(出示课件2)学生口答:2(40).2b b ac x b ac a-±=-≥2.如何用判别式b 2-4ac 来判断一元二次方程根的情况?学生口答:对一元二次方程:ax 2+bx+c=0(a≠0).b 2-4ac>0时,方程有两个不相等的实数根.b 2-4ac=0时,方程有两个相等的实数根.b 2-4ac<0时,方程无实数根.想一想:方程的两根x 1和x 2与系数a、b、c 还有其他关系吗?(二)探索新知探究根与系数的关系填表,观察、猜想(出示课件4)方程x 1,x 2x 1+x 2x 1·x 2x 2-2x +1=0x 2+3x -10=0x 2+5x +4=0你发现什么规律?①用语言叙述你发现的规律;②x2+px+q=0的两根x1,x2用式子表示你发现的规律.出示课件5:若一元二次方程的两根为x1,x2,则有x-x1=0,且x-x2=0,那么方程(x-x1)(x-x2)=0(x1,x2为已知数)的两根是什么?将方程化为x2+px+q=0的形式,你能看出x1,x2与p,q之间的关系吗?教师引导:归纳结论:(出示课件6)如果关于x的方程x2+px+q=0的两根为x1,x2,则:x1+x2=-p,x1·x2=q.教师问:如果方程二次项系数不为1呢?(出示课件7)方程x1,x2x1+x2x1·x22x2-3x-2=03x2-4x+1=0上面发现的结论在这里成立吗?请完善规律.①用语言叙述发现的规律;②ax2+bx+c=0的两根x1,x2用式子表示你发现的规律.师生共同归纳:(出示课件8)一元二次方程根与系数的关系(韦达定理):若一元二次方程ax2+bx+c=0(a≠0)有两实数根x1,x2,则x1+x2=-ba ,x1·x2=ca.这表明两根之和为一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比.请同学用求根公式证明.(一生板演)教师问:在运用根与系数的关系解决具体问题时,是否需要考虑根的判别式Δ=b2-4ac≥0呢?强调:能用根与系数的关系的前提条件为b2-4ac≥0.出示课件9,10:例1利用根与系数的关系,求下列方程的两根之和、两根之积.(1)x2+7x+6=0;(2)2x2-3x-2=0.学生思考后,共同解答如下:解:⑴这里a=1,b=7,c=6.Δ=b2-4ac=72–4×1×6=25>0.∴方程有两个实数根.设方程的两个实数根是x1,x2,那么x1+x2=-7,x1·x2=6.⑵这里a=2,b=-3,c=-2.Δ=b2-4ac=(-3)2–4×2×(-2)=25>0,∴方程有两个实数根.设方程的两个实数根是x1,x2,那么x1+x2=32,x1·x2=-1.出示课件11:不解方程,求方程两根的和与两根的积:①x2+3x-1=0;②2x2-4x+1=0.学生自主思考并解答.解:⑴x1+x2=-3,x1·x2=-1.⑵原方程可化为:2122=+-xxx1+x2=2,x1·x2=1 2 .出示课件12:例2已知方程5x2+kx-6=0的一个根是2,求它的另一个根及k 的值.学生思考后,共同解答如下:解:设方程的两个根分别是x1,x2,其中x1=2.所以:x1·x2=2x2=6, 5-即:x2=3, 5-由于x1+x2=2+3 ()5-=,5k-得:k=-7.答:方程的另一个根是3,5-k=-7.出示课件13:已知方程x2-(k+1)x+3k=0的一个根是2,求它的另一个根及k 的值.学生自主思考并解答.解:设方程的另一个根为x1.把x=2代入方程,得4-2(k+1)+3k=0.解这方程,得k=-2.由根与系数关系,得x1·2=3k,即2x1=-6.∴x 1=-3.答:方程的另一个根是-3,k 的值是-2.出示课件14:例3不解方程,求方程2x 2+3x-1=0的两根的平方和、倒数和.师生共同分析:将所求代数式分别化为只含有x 1+x 2和x 1·x 2的式子后,用根与系数的关系,可求其值.师生共同解答如下:解:根据根与系数的关系可知:121231,.22+=-⋅=-x x x x ()()22212112212,∵+=++x x x x x x ∴()2221212122+=+-x x x x x x 21331;4222⎛⎫⎛⎫=--⨯-= ⎪ ⎪⎝⎭⎝⎭()1212121132.2312+⎛⎫⎛⎫+==-÷- ⎪ ⎪⎝⎭⎝=⎭x x x x x x 出示课件15:设x 1,x 2为方程x 2-4x+1=0的两个根,则:⑴x 1+x 2=,(2)x 1·x 2=,(3)=-221)(x x ,(4)=+2221x x .学生自主解答后,口答:⑴4;⑵1;⑶12;⑷14.出示课件16:例4设x 1,x 2是方程x 2-2(k-1)x+k 2=0的两个实数根,且x 12+x 22=4,求k 的值.教师分析:将x 1+x 2=2(k -1),x 1x 2=k 2,代入x 12+x 22=4可求出k 值.此时需用Δ=b 2-4ac 来判断k 的取值,这是本例的关键.解:由方程有两个实数根,得Δ=4(k -1)2-4k 2≥0即-8k +4≥0.∴.21≤k 由根与系数的关系得x 1+x 2=2(k -1),x 1x 2=k 2.∴x 12+x 22=(x 1+x 2)2-2x 1x 2=4(k -1)2-2k 2=2k 2-8k +4.由x 12+x 22=4,得2k 2-8k+4=4,解得k 1=0,k 2=4.经检验,k 2=4不合题意,舍去.师生共同总结归纳如下:(出示课件17)12111.x x +=1212;x x x x +2221212122.()2;x x x x x x +=+-12213.x x x x +221212x x x x +=2121212()2;x x x x x x +-=124.(1)(1)x x ++=1212()1;x x x x +++125.x x -==教师强调:求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.出示课件18:当k 为何值时,方程2x 2-(k+1)x+k+3=0的两根差为1.学生自主思考并解答.解:设方程两根分别为x1,x2(x1>x2),则x1-x2=1.∵(x2-x1)2=(x1+x2)2-4x1x2,由根与系数的关系得x1+x2=12k+,x1x2=32k+.∴(12k+)2-4×32k+=1.解得k1=9,k2=-3.当k=9或-3时,由于Δ>0,∴k的值为9或-3.(三)课堂练习(出示课件19-25)1.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2B.1C.2D.02.如果-1是方程2x2-x+m=0的一个根,则另一个根是___,m=____.3.已知一元二次方程x2+px+q=0的两根分别为-2和1,则:p=,q=.4.已知方程3x2-19x+m=0的一个根是1,求它的另一个根及m的值.5.已知x1,x2是方程2x2+2kx+k-1=0的两个根,且(x1+1)(x2+1)=4;(1)求k的值;(2)求(x1-x2)2的值.6.设x1,x2是方程3x2+4x–3=0的两个根.利用根系数之间的关系,求下列各式的值.(1)(x1+1)(x2+1);(2).2112xxxx+7.当k为何值时,方程2x2-kx+1=0的两根差为1.8.已知关于x的一元二次方程mx2-2mx+m-2=0(1)若方程有实数根,求实数m的取值范围.(2)若方程两根x1,x2满足∣x1-x2∣=1求m的值.参考答案:1.D2.32;-33.1;-24.解:将x =1代入方程中:3-19+m=0.解得m=16,设另一个根为x 1,则:1×x 1=16.3c a =∴x 1=16.35.解:(1)根据根与系数的关系12,x x k +=-121.2k x x -=得(x 1+1)(x 2+1)=x 1x 2+(x 1+x 2)+1=1()14,2k k -+-+=解得:k=-7;(2)因为k=-7,所以127,x x +=12 4.x x =-则:222121212()()474(4)65.x x x x x x -=+-=-⨯-=6.解:根据根与系数的关系得:12124, 1.3b c x x x x a a +=-=-⋅==-(1)(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=44(-1)1;33-++=-(2)222211212121212123492x x x x x x x x x x x x x x +++===-()-.7.解:设方程两根分别为x 1,x 2(x 1>x 2),则x 1-x 2=1,由根与系数的关系,得,221k x x =+,2121=∙x x ∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=1,∴1,21422=⨯-⎪⎪⎭⎫ ⎝⎛k ∴3,22=⎪⎪⎭⎫ ⎝⎛k ∵△>0,∴=±k 8.解:(1)方程有实数根,24b acD =-=(-2m )2-4m (m -2)22448m m m=-+=8m ≠0∴m 的取值范围为m>0.(2)∵方程有实数根x 1,x 2,∴.22,2121mm x x x x -=⋅=+∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=1,∴1.2422=-⨯-m m 解得m=8.经检验m=8是原方程的解.(四)课堂小结通过这节课的学习你有哪些收获和体会?有哪些地方需要特别注意的?谈谈你的看法.(五)课前预习预习下节课(21.3)第1课时的相关内容。
*21.2.4 一元二次方程的根与系数的关系
一、导学
1.导入课题:
如果一个方程的两根之和为1,两根之积为-2,你能说出这个方程吗?
今天我们进一步学习一元二次方程根与系数的关系.
2.学习目标:
知道一元二次方程的根与系数的关系.
3.学习重、难点:
重点:一元二次方程根与系数的关系.
难点:能应用一元二次方程根与系数的关系解决问题.
4.自学指导:
(1)自学内容:教材第15页到第16页的内容.
(2)自学时间:5分钟.
(3)自学方法:独立探究一元二次方程根与系数的关系.
(4)探究提纲:
①已知方程x2+p x+q=0的两根分别是x1,x2,则x1+ x2= -p,x1x2=q .你是怎么得到的?若方程两根分别为x1,x2.则方程可表示为(x-x1)(x-x2)=0.
化简,得x2-(x1+x2)x+x1x2=0.
∴x1+x2=-p, x1x2=q.
③独立完成例4,说说运用根与系数的关系求一元二次方程的两根之和与两根之积时应注意什么?
①把方程化为一般形式,明确二次项系数、一次项系数和常数项的值;
②方程必须有实数根.
④不解方程,求下列方程两根的和与积.
x2-3x=15;3x2+2=1-4x;
x1+x2=3,x1+x2= -,
x1x2= -15 x1x2=
5x2-1=4x2+x;2x2-x+2=3x+1.
x1+x2=1,x1+x2=2,
x1x2= -1 x1x2=
二、自学
学生可参考自学指导进行自学.
三、助学
1.师助生:
(1)明了学情:了解学生探究两个方程的根与系数的关系的方式和易错点.
(2)差异指导:指导学生通过比较的方式探究方程x2+p x+q=0根与系数的关系,通过直接计算的方式探究方程a x2+b x+c=0(a≠0)根与系数的关系.对学习有困难的学生予以指导,并帮他们分析根与系数之间的关系.
2.生助生:同桌之间可以互动、研讨.
四、强化
1.若方程x2+p x+q=0有两个实根x1,x2,则x1+x2=-p,x1x2=q.
2.方程a x2+b x+c=0中,在a≠0,b2-4ac≥0的条件下,x1+x2=-, x1x2=.
3.运用一元二次方程根与系数的关系求方程的两根之和,两根之积时要注意:
(1)先把方程化成一般形式,明确方程的二次项系数,一次项系数和常数项的值,然后直接代入关系式.
(2)确定方程的各项系数时一定要包括其符号.
(3)只有在一元二次方程有实根的前提下,才能使用根与系数的关系.如果所给一元二次方程没有实数根,那也就不存在根与系数的关系.
五、评价
1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?有何收获或不足?说说
运用一元二次方程根与系数的关系时应注意的问题.
2.教师对学生的评价:
(1)表现性评价:点评学生的学习态度、积极性、学习方法、效果及不足之处等.
(2)纸笔评价:课堂评价检测.
3.教师的自我评价(教学反思):
(1)通过从熟知的解法解一元二次方程的过程中探究根与系数的关系,并发现可用求根公式来证明这个关系,再通过问题探讨帮助学生运用这个关系解决问题,注重了知识产生、发展和出现的过程以及知识的应用.
(2)教学过程从具体到抽象,从特殊到一般,从简单到复杂,从猜想到论证,使学生在体验知识发生、发展和应用的过程中理解和掌握推理的数学思想与化归思想.
(3)教材把本节作为了解的内容,但本节知识在中考试题填空题、选择题、解答题中均有出现,为了让学生能适应平时的试题,把本节内容进行了一定的延伸,同时也可以激发同学们学习的兴趣.
(时间:12分钟满分:100分)
一、基础巩固(70分)
1.(10分)关于x的方程x2+p x+q=0的根为x1=1+,x2=1-,则p= -2,q= -1.
2.(10分)已知方程5x2+k x-6=0的一根是2,则另一根是-,k=-7.
3.(40分)求下列方程的两根x1,x2的和与积:
(1)x2-3x+2=0;(2)5x2+x-5=0;
解:x1+x2=3 解:x1+x2= -
x1x2=2 x1x2= -1
(3)x2+x=5x+6;(4)7x2-5=x+8.
解:方程化为x2-4x-6=0 解:方程化为7x2-x-13=0
x1+x2=4 x1+x2=
x1x2= -6 x1x2= -
4.(10分)已知两个数的和为8,积为9.75,求这两个数.
解:设其中一个数为x,则另一个数为(8-x).
根据题意,得x(8-x)=9.75,整理,得x2-8x+9.75=0.
解得x1=6.5, x2=1.5.
当x=6.5时,8-x=1.5;当x=1.5时,8-x=6.5,
∴这两个数是6.5和1.5.
二、综合应用(20分)
5.(20分)x1,x2是方程x2-5x-7=0的两根,不解方程求下列各式的值:
三、拓展延伸(10分)
6.(10分)已知关于x的方程x2-(2m+3)x+m2=0的两根之和等于两根之积,求m的值. 解:设方程x2-(2m+3)x+m2=0的两根为x1,x2.
∴x1+x2=2m+3,x1x2=m2.
根据题意得m2=2m+3,解得m1=3,m2= -1.
当m=3时,原方程为x2-9x+9=0, b2-4ac=45>0.方程有实数根.
当m= -1时,原方程为x2-x+1=0, b2-4ac=-3<0.方程无实数根,此m值舍去.
∴m的值为3.。