人教版九年级上册数学 第23章 旋转 单元测试(含答案)
- 格式:doc
- 大小:197.50 KB
- 文档页数:6
第 23 章旋转单元检测( B 卷)附答案(满分 100 分,时间40 分钟)命题人:陈锦喜单位:矿泉中学试卷命题企图 : 中考取有好多实质操作题,可是考试中有时不行能实质操作,这就需要同学们在平常着手,培育自己的实践操作能力. “旋转”既考察基着手操作有考察图形空间想象能力,本测试题是在掌握本章的知识基础长进行提高和稳固,考察数学解题过程,学生解题的切入点不一样,运用的思想方法不一样,表现出不一样的思想水平。
使不一样思想层次的考生都有表现的时机,进而有效地域分出学生不一样的数学能力。
试卷展望难度为0.6 左右。
一. 选择题 ( 每题 4 分,共 20 分)1.如图 , 过圆心 O和圆上一点 A 连一条曲线 ,将曲线OA绕 O点按同一方向连续旋转三次, 每次旋转900, 把圆分红四部分 , 则( )AA.这四部分不必定相等B.这四部分相等O·C.前一部分小于后一部分D.不可以确立2.图( 1)中,能够经过旋转和翻折形成图案(2)的梯形切合条件为()A.等腰梯形 ; B .上底与两腰相等的等腰梯形 ;C.底角为 60°且上底与两腰相等的等腰梯形;D.底角为 60°的等腰梯形3.按序连结矩形各边中点所得的四边形()A.是轴对称图形而不是中心对称图形; B.是中心对称图形而不是轴对称图形;C.既是轴对称图形又是中心对称图形; D.没有对称性4.如图,直线y= 3 x+ 3 与y轴交于点P,将它绕着点P 旋转 90?°所得的直线的分析式为().A. y=3x+ 3B. y=-3x+ 3 33C. y= 1x+ 3D. y=-1x+ 3 335.如图,△ ABC中,∠ B=90°,∠ C=30°, AB=1,将△ ABC?绕极点 A 旋转 180°,点 C 落在C′处,则 CC′的长为()A.4 B .42C.23 D .25二、填空题(每题 4 分,共 20 分)6.以下图的五角星绕中心点旋转必定的角度后能与自己完整重合,则其旋转的角度起码为 __ ______ .7.如图,将 Rt △ ABC 绕点 C 按顺时针方向旋转 90°到△ A?′B′ C 的地点, ?已知斜边AB=?10cm,?BC=?6cm, ?设 A?′ B?′的中点是 M,?连结 AM, ?则 AM= cm .8.以下图,P 是等边△ ABC 内一点,△ BMC 是由△ BPA 旋转所得,则∠PBM =.9.如图,设 P 是等边三角形 ABC 内随意一点,△ ACP′是由△ ABP 旋转获得的,则 PA___ ___PB+ PC(填“ >”、“<”或“=” ).第 8题图第9题图第10题图10.如图, E、F 分别是正方形ABCD 的边 BC、CD 上一点,且BE+ DF = EF,则∠ EAF =____ .三. 解答题(共 60 分)11.( 10 分)作图 (1) 已知△ ABC和点 O,画出△ DEF,使△ DEF和△ ABC对于点 O成中心对称.(2)已知四边形 ABCD和点 O,求作四边形 A'B'C'D' ,使四边形 A'B'C'D' 和四边形 ABCD对于点 O成中心对称 .12.( 10 分)如图是一个每边长4m 的荷花池, O 到各极点距离相等,计划在池中安装13盏灯,使夜景变得更为美丽。
人教版九年级数学上册第二十三章《旋转》单元测试题(含答案)一、单选题1.如图已知在ABC ∆中,AB AC =,90BAC ∠=,直角EPF ∠的顶点P 是BC 的中点,两边PE 、PF 分别交AB 和AC 于点E 、F ,给出以下五个结论正确的个数有( ) ①AE CF =;②APE CPF ∠=∠;③BEP ∆≌AFP ∆;④EPF ∆是等腰直角三角形;⑤当EPF ∠在ABC ∆内绕顶点P 旋转时(点E 不与A 、B 重合),12ABC AEPF S S ∆=四边形.A .2B .3C .4D .52.如图,点A ,B ,C ,D ,O 都在方格纸的格点上,若△COD 可以由△AOB 旋转得到,则合理的旋转方式为( )A .绕点O 顺时针旋转90°B .绕点D 逆时针旋转60°C .绕点O 逆时针旋转90°D .绕点B 逆时针旋转135°3.在下列现象中:①时针转动,②电风扇叶片的转动,③转呼啦圈,④传送带上的电视机,其中是旋转的有( )A .①②B .②③C .①④D .③④4.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .平行四边形B .矩形C .等腰三角形D .正多边形5.下列四个图形中,既是轴对称图形又是中心对称图形的有( )个.A.0B.1C.2D.36.6.同学们曾玩过万花筒,它是由三块等宽等长的玻璃围成的,图是看到的万花筒的一个图案,图中所有的小三角形均是全等的等边三角形,其中的菱形AEFG可以看成是把菱形ABCD以点A为中心().A.顺时针旋转60︒得到B.顺时针旋转120︒得到C.逆时针旋转60︒得到D.逆时针旋转120︒得到7.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.9.下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.10.在下列四个汽车标志图案中,是中心对称图形的是()A.B.C.D.第II 卷(非选择题)二、填空题11.如图,在ABCD 中,AD=3,AB=5,4sin 5A =,将ABCD 绕着点B 顺时针旋转()090θθ︒<<︒后,点A 的对应是点'A ,联结'AC ,如果'A C BC ⊥,那么cos θ的值是______.12.已知两点P(1,1)、Q(1,-1),若点Q 固定,点P 绕点Q 旋转使线段PQ∥x 轴,则此时的点P 的坐标是_________________________;13.如图,在平面直角坐标系中,点1A 的坐标为(10),,以1OA 为直角边作12Rt OA A ∆,并使1260A OA ∠︒=,再以2OA 为直角边作23Rt OA A ∆,并使2360A OA ∠︒=,再以3OA 为直角边作34Rt OA A ∆,并使3460A OA ∠︒=…按此规律进行下去,则点2019A 的坐标为_______.14.在平面直角坐标系中,将函数y =2x 2+2的图象绕坐标原点0顺时针旋转45°后,得到新曲线l.(1)如图①,已知点A(-1,a),B(b ,10)在函数y =2x 2+2的图象上,若A’、B’是A 、B 旋转后的对应点,连结OA’,OB’,则S △OA’B’=____.(2)如图②,曲线与直线322y =相交于点M 、N ,则S △OMN 为_________.15.如图,在△ABC 中,∠ABC=112°,将△ABC 绕着点B 顺时针旋转一定的角度后得到△DBE (点A 与点D 对应),当A 、B 、E 三点在同一直线上时,可得∠DBC 的度数为_______.16.如图1是实验室中的一种摆动装置,BC 在地面上,支架ABC 是底边为BC 的等腰直角三角形,摆动臂AD 可绕点A 旋转,摆动臂DM 可绕点D 旋转,30AD = ,10DM =.(1)在旋转过程中,当A D M ,,为同一直角三角形的顶点时,AM 的长为______________.(2)若摆动臂AD 顺时针旋转90°,点D 的位置由ABC 外的点1D 转到其内的点2D 处,连结12D D ,如图2,此时2135AD C ∠=︒,260CD =,2BD 的长为______________.17.如图,在△ABC 中,∠BAC=45°,AB=4cm ,将△ABC 绕点B 按逆时针方向旋转45°后得到△A′BC′,则阴影部分的面积为 ___________.18.如图,在△ABC 中,AB=2,BC=3.6,∠B=60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为______.三、解答题19.已知正方形ABCD ,点P 是其内部一点.(1)如图1,点P 在边AD 的垂直平分线l 上,将DAP ∆绕点D 逆时针旋转,得到11DA P ∆,当点1P 落在DC 上时,恰好点1A 落在直线l 上,求ADP 的度数;(2)如图2,点P 在对角线AC 上,连接PB ,若将线段BP 绕点P 逆时针旋转90︒后得到线段1B P ,试问点1B 是否在直线CD 上,请给出结论,并说明理由;(3)如图3,若135APB ∠=︒,设PA a =,PD b =,PC c =,请写出a 、b 、c 这三条线段长之间满足的数量关系是____________.20.(1)问题发现如图①,△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°,点B 在线段AE 上,点C 在线段AD 上,请直接写出线段BE 与线段CD 的数量关系: ;(2)操作探究如图②,将图①中的△ABC 绕点A 顺时针旋转,旋转角为α(0<α<360),请判断线段BE 与线段CD 的数量关系,并说明理由.21.如图,四边形ABCD 是正方形,△ADF 绕着点A 顺时旋转90°得到△ABE ,若AF =4,AB =7.(1)求DE 的长度;(2)指出BE 与DF 的关系如何?并说明由.22.如图,已知:如图点()4,0A ,点B 在y 轴正半轴上,且5AB =,将线段BA 绕点A 沿顺时针旋转90,设点B 旋转后的对应点是点1B ,求点1B 的坐标.23.在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请写出新的结论并说明理由.24.如图,在正方形网格中,点A 、B 、C 、M 、N 都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.25.(1)如图1,已知正方形ABCD,点M和N分别是边BC,CD上的点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论;(2)如图2,将图(1)中的△APB绕着点B逆时针旋转90º,得到△A′P′B,延长A′P′交AP 于点E,试判断四边形BPEP′的形状,并说明理由.26.下列图形是中心对称图形吗?如果是中心对称图形,在图中用点O标出对称中心.27.已知:如图所示,△ABC为任意三角形,若将△ABC绕点C顺时针旋转180°得到△DEC.(1)试猜想AE与BD有何关系?并且直接写出答案.(2)若△ABC的面积为4cm2,求四边形ABDE的面积;(3)请给△ABC 添加条件,使旋转得到的四边形ABDE 为矩形,并说明理由参考答案1.D2.C3.A4.B5.B6.D7.B8.D9.C10.B11.72512.(-1,-1)或(3,-1)13.()201720172,23- 14.99415.44° 16.202或1010; 306.17.42【详解】 解: AC 与BA′相交于D ,如图,∵△ABC 绕点B 按逆时针方向旋转45°后得到△A′BC′,∴∠ABA′=45°,BA′BA=4,△ABC ≌△A′BC′,∴S △ABC =S △A′BC′,∵S 四边形AA′C′B =S △ABC +S 阴影部分=S △A′BC′+S △ABA′,∴S 阴影部分=S △ABA′,∵∠BAC=45°,∴△ADB 为等腰直角三角形,∴∠ADB=90°,AD=222, ∴S △ABA′=12AD•BA′=12×2×2(cm 2), ∴S 阴影部分2cm 2.故答案为:42.18.1.6【详解】由旋转的性质可得:AD=AB ,∵∠B=60°,∴△ABD 是等边三角形,∴BD=AB ,∵AB=2,BC=3.6,∴CD=BC-BD=3.6-2=1.6.故答案为1.6.19.(1)30;(2)点1B 在直线CD 上,理由见解析;(3)222320a b c -+= 连接1AA ,∵点1A 在边AD 的垂直平分线l 上,∴11AA DA =.又∵AD DA =,∴1AA D ∆是等边三角形,∴160ADA ∠=︒,∴1160PDP ADA ∠=∠=︒,∴19030ADP PDP ∠=︒-∠=︒.(2)点1B 在直线CD 上.证明如下:作PQ PB ⊥交CD 于点Q ,过点P 作//EF AD 交AB 于点E 交CD 于点F . ∴90BPQ BEP PFQ ∠=∠=∠=︒,∴90EBP EPB PQF FPQ ∠+∠=∠+∠=,90EPB FPQ ∠+∠=∴=EBP FPQ ∠∠又∵P 在正方形对角线AC 上,∴∠EAP=∠APE=45°∴AE EP =,∵AE EB EP PE +=+,∴BE FP =,∴()BEP PFQ ASA ∆≅∆,∴1BP PQ B P ==.即将线段BP 绕点P 8逆时针旋转90︒后得到线段1B P ,点1B 在直线CD 上.(3)如图,将△ABP 绕点A 逆时针旋转90°得到△AMD,由题意可知:∠APB=∠AAMD=135°,DM=BP,AP=AM=a ,∠PAM=90°∴∠AMP=45°∴∠PMD=90°∴在Rt△APM 中,22222PM AM AP a =+=在Rt△PMD 中,222PM DM PD +=∴2222DM b a =-将△ABP 绕点B 顺时针旋转90°得到△BNC,同理可证在Rt△PNC 中,22222PN PC NC c a =-=-在Rt△BPN 中,222PN BP BN =+ ∴2222==22PN c a BP - 所以可得:2222-2=2c a b a - 整理得:222320a b c -+=.20.(1)BE=CD ;(2)BE=CD ;证明见解析.【详解】解:(1)BE=CD ,理由如下;∵△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°, ∴AB=AC ,AE=AD ,∴AE ﹣AB=AD ﹣AC ,∴BE=CD ;故答案为:BE=CD .(2)∵△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°,∴AB=AC ,AE=AD ,由旋转的性质得,∠BAE=∠CAD ,在△BAE 与△CAD 中,,∴△BAE ≌△CAD (SAS )∴BE=CD .21.(1)3;(2)BE =DF ,BE ⊥DF .【详解】解:(1)∵△ADF 按顺时针方向旋转一定角度后得到△ABE ,∴AE =AF =4,AD =AB =7,∴DE =AD ﹣AE =7﹣4=3;(2)BE 、DF 的关系为:BE =DF ,BE ⊥DF .理由如下:∵△ADF 按顺时针方向旋转一定角度后得到△ABE ,∴△ABE ≌△ADF ,∴BE =DF ,∠ABE =∠ADF ,∵∠ADF +∠F =180°﹣90°=90°, ∴∠ABE +∠F =90°, ∴BE ⊥DF ,∴BE 、DF 的关系为:BE =DF ,BE ⊥DF .22.1B 点的坐标为()7,4.【详解】解:如图,作1B C x ⊥轴于C ,∵4OA =,5AB =,∴22543OB -=,∵线段BA 绕点A 沿逆时针旋转90得1A B ,∴1BA A B =,且190BA B ∠=,∴190BAO B AC ∠+∠=而90BAO ABO ∠+∠=,∴1ABO B AC ∠=∠,在ABO 和1B AC 中111AOB B CA ABO B AC AB B A ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴1ABO B AC ≅,∴3AC OB ==,14B C OA ==,∴7OC OA AC =+=,∴1B 点的坐标为()7,4.23.(1)证明见解析;(2)DE=AD-BE试题解析:证明:(1)∵AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠BEC =90°,∵∠ACB =90°,∴∠ACD +∠BCE =90°,∠DAC +∠ACD =90°,∴∠DAC =∠BCE ,在△ADC 和△CEB 中CDA BEC DAC ECB AC BC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADC ≌△CEB (AAS ),∴AD=CE ,CD=BE ,∵DC+CE=DE ,∴AD+BE=DE .(2)DE=AD-BE ,理由:∵BE ⊥EC ,AD ⊥CE ,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,ACD CBEADC BECAC BC∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=EC-CD=AD-BE.24.(1)见解析;(2)3.【详解】解:(1)如图,△A′B′C′为所作;(2)△ABC的面积=12×3×2=3.25.(1)AM⊥BN,证明见解析;(2)四边形BPEP′是正方形,理由见解析.【详解】(1)AM⊥BN证明:∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°∵BM=CN,∴△ABM≌△BCN∴∠BAM=∠CBN∴∠ABN+∠BAM=90°,∴∠APB=90°∴AM⊥BN.(2)四边形BPEP′是正方形.△A′P′B是△APB绕着点B逆时针旋转90º所得,∴BP= BP′,∠P′BP=90º.又由(1)结论可知∠APB=∠A′P′B=90°,∴∠BP′E=90°.所以四边形BPEP′是矩形.又因为BP= BP′,所以四边形BPEP′是正方形.26.图形1,图形3,图形4,图形5,图形8为中心对称图形,其对称中心为图形中的点O.【详解】这些图形中:图形1,图形3,图形4,图形5,图形8为中心对称图形,其对称中心为图形中的点O.27.(1)AE∥BD,且AE=BD.(2)16;(3)当∠ACB=60°时,四边形ABFE为矩形.【解析】试题分析:(1)易证四边形ABDE是平行四边形,根据平行四边形的性质即可求解;(2)根据平行四边形的性质:平行四边形的对角线互相平分,即可得到平行四边形的面积是△ABC的面积的四倍,据此即可求解;(3)四边形ABDE是平行四边形,只要有条件:对角线相等即可得到四边形ABDE是矩形.试题解析:(1)AE∥BD,且AE=BD;(2)四边形ABDE的面积是:4×4=16;(3)AC=BC.理由是:∵AC=CD,BC=CE,∴四边形ABDE是平行四边形.∵AC=BC,∴平行四边形ABDE是矩形.考点:1.旋转的性质;2.矩形的判定。
人教版九年级数学上册第23章旋转单元练习卷含答案(1)一、选择题1. 下列几个图形是国际通用的交通标志,其中不是中心对称图形的是()A. B. C. D.2.在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是( )A B C D3.下列运动形式属于旋转的是()A.在空中上升的氢气球B.飞驰的火车C.时钟上钟摆的摆动D.运动员掷出的标枪4.如图是扬州“三菱”电梯的标志,它可以看作是由菱形通过旋转得到的,每次旋转了()A.60°B.90°C.120°D.150°5. 若点P(-m,m-3)关于原点对称的点是第二象限内的点,则m满足()A. m>3B. 0<m≤3C. m<0D. m<0或m>36.如图,是用围棋子摆出的图案(围棋子的位置用有序数对表示,如点A在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)7.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是()A.(1,1)B.(2,0)C.(0,1)D.(3,1)8. 如图,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°.四边形ABCD是平行四边形,下列结论中错误的是()A. △ACE以点A为旋转中心,逆时针旋转90°后与△ADB重合B.△ACB以点A为旋转中心,顺时针旋转270°后与△DAC重合C. 沿AE所在直线折叠后,△ACE与△ADE重合D. 沿AD所在直线折叠后,△ADB与△ADE重合9.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转到ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.7 B.6 C.D.510.已知等边△ABC的边长为4,点P是边BC上的动点,将△ABP绕点A逆时针旋转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是()A.B.C.2 D.不能确定二、填空题11. 钟表分针的运动可以看作是一种旋转现象,经过40分钟分针旋转了°. 12.如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,点B,C旋转后的对应点分别是点D和E,连接BD,则∠BDE的度数是.13.如图,线段AB的端点A、B分别在x轴和y轴上,且A(2,0),B(0,4),将线段AB绕坐标原点O逆时针旋转90°得线段A'B',设线段AB'的中点为C,则点C的坐标是.14.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为____.15. 如图,△ABC绕点A逆时针旋转30°后到△A′B′C′的位置,若∠B′=45°,∠C′=60°,则∠B′AC=.16.如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按照逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按照逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OP n(n为正整数),则点P8的坐标为.17.如图,在△ABC中、∠C=90°,AC=3,BC=4,点O是BC的中点,将△ABC绕点O 旋转得△A'B'C',则在旋转过程中点A,C'两点间的最大距离是__________.18.如图,正方形ABCD,将正方形AEFG绕点A旋转,连接DF,点M是DF的中点,连接CM,若AB=4,AE=1,则线段CM的最大值为.三、解答题19.如图,△ABC为等边三角形,△AP′B旋转后能与△APC重合,那么:(1)指出旋转中心;(2)求旋转角的度数;(3)求∠PAP′的度数.20.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;直接写出点B2的坐标;(3)作出△ABC关于原点O成中心对称的△A3B3C3,并直接写出B3的坐标.21.如图,在平面直角坐标系中,O为坐标原点,每个小方格的边长为1个单位长度,在第二象限内有横、纵坐标均为整数的A,B两点,点B(-2,3),点A的横坐标为-2,且OA = 5.(1)直接写出A点的坐标,并连接AB,AO,BO;(2)画出△OAB关于点O成中心对称的图形△OA1B1,并写出点A1,B1的坐标(点A1,B1的对应点分别为A,B);(3)将△OAB逆时针旋转90°得到△O1A2B2,画出△O1A2B2.22.如图,在正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF.(1)△DCF可以看成是△BCE绕点C旋转某个角度得到的吗?(2)若∠CEB=60°,求∠EFD的度数.23.如图①,△ABC和△AEF都为等腰直角三角形,∠ACB=∠AEF=90°,连接EC、BF,点D为BF的中点,连接CD.(1)如图①,当点E落在AB边上时,请判断线段EC与DC的数量关系,并证明你的结论;(2)将△AEF绕点A顺时针旋转n°(n<180),如图②,请判断线段EC与DC的数量关系,并证明你的结论;(3)若AC=2,点P为BC中点,动点Q满足PQ=,如图③,将线段AQ绕点A逆时针旋转90°到线段AM,连PM,则线段PM的最小值为.图①图②人教新版九年级数学上第23章旋转单元练习试题含详细答案一.选择题(共10小题)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是()A.36°B.60°C.72°D.90°3.如图,△ODC是由△OAB绕点O顺时针旋转50°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为130°,则∠C的度数是()A.25°B.30°C.35°D.40°4.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A.B.C.D.5.如图,将△ABC绕点A逆时针旋转110°,得到△ADE,若点D落在线段BC的延长线上,则∠B大小为()A.30°B.35°C.40°D.45°6.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以将图形进行以下的操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移7.如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n 的最小值为()A.45 B.60 C.72 D.1448.在平面直角坐标系中,点A的坐标是(1,3),将点A绕原点O顺时针旋转90°得到点A′,则点A′的坐标是()A.(﹣3,1)B.(3,﹣1)C.(﹣1,3)D.(1,﹣3)9.如图,在平面直角坐标系xOy中,点A从(3,4)出发,绕点O顺时针旋转一周,则点A不经过()A.点M B.点N C.点P D.点Q10.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′二.填空题(共9小题)11.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=度.12.如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小是.13.点A(﹣2,3)关于原点对称的点的坐标是.14.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为.15.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为.16.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M 是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是.17.在△ABC中,∠C=90°,AC=BC,将△ABC绕点A按顺时针方向旋转60°到△AB′C′的位置,连结C′B、BB′,则∠BB′C′=.18.在平面直角坐标系中,已知点A(3,0),B(0,4),将△BOA绕点A按顺时针方向旋转得△CDA,使点B在直线CD上,连接OD交AB于点M,直线CD的解析式为.19.如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是.三.解答题(共6小题)20.如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.21.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(﹣4,﹣2),请直接写出直线l的函数解析式.22.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.23.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2B2C2.24.将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.25.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.参考答案一.选择题(共10小题)1.解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.2.解:根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.3.解:∵∠AOC的度数为130°,∠AOD=∠BOC=50°,∴∠AOB=130°﹣50°=80°,∵△AOD中,AO=DO,∴∠A=(180°﹣50°)=65°,∴△ABO中,∠B=180°﹣80°﹣65°=35°,由旋转可得,∠C=∠B=35°,故选:C.4.解:A、B、C中只能由旋转得到,不能由平移得到,只有D可经过平移,又可经过旋转得到.故选:D.5.解:∵△ABC绕点A逆时针旋转110°,得到△ADE∴AB=AD,∠BAD=110°由三角形内角和∠B=故选:B.6.解:屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,可以先逆时针旋转90°,再向左平移.故选:A.7.解:该图形被平分成五部分,旋转72°的整数倍,就可以与自身重合,故n的最小值为72.故选:C.8.解:如图所示,由旋转可得:∠AOA'=∠BOC=90°,AO=A'O,∴∠AOB=∠A'OC,而∠ABO=∠A'CO=90°,∴△AOB≌△A'OC,∴A'C=AB=1,CO=BO=3,∴点A'的坐标为(3,﹣1),故选:B.9.解:由图形可得:OA=,OM=,ON=,OP=,OQ=5,所以点A从(3,4)出发,绕点O顺时针旋转一周,则点A不经过P点,故选:C.10.解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.二.填空题(共9小题)11.解:∵Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠B=∠CB′A′,∴△CAA′为等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=65°,∴∠B=65°.故答案为65.12.解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵△AEF是等边三角形,∴AE=AF,∠EAF=60°,分两种情况:①如图,当正△AEF在正方形ABCD内部时,在△ABE和△ADF中,∴△ABE≌△ADF(SSS),∴∠BAE=∠DAF=(90°﹣60°)=15°②如图,当正△AEF在正方形ABCD外部时,在△ABE和△ADF中,∴△ABE≌△ADF(SSS),∴∠BAE=∠DAF=(360°﹣90°+60°)=165°故答案为:15°或165°.13.解:根据两个点关于原点对称,∴点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3);故答案为(2,﹣3).14.解:∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.15.解:过点C作CE⊥x轴于点E,∵OB=2,AB⊥x轴,点A在直线y=x上,∴AB=2,OA==4,∴RT△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴∠D=∠AOB=∠OBD=60°,AO=CD=4,∴△OBD是等边三角形,∴DO=OB=2,∠DOB=∠COE=60°,∴CO=CD﹣DO=2,在RT△COE中,OE=CO•cos∠COE=2×=1,CE=CO•sin∠COE=2×=,∴点C的坐标为(﹣1,),故答案为:(﹣1,).16.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故答案为:3.17.解:∵∠C=90°,AC=BC,∴∠ABC=∠BAC=45°,∵将△ABC绕点A按顺时针方向旋转60°到△AB′C′的位置,∴∠AB′C′=∠ABC=45°,∠BAB′=60°,AB′=AB,∴AB′=B′B=BA,∴∠AB′B=60°,∴∠BB′C′=∠AB′B﹣∠AB′C′=60°﹣45°=15°,故答案为:15°.18.解:∵△BOA绕点A按顺时针方向旋转得△CDA,∴△BOA≌△CDA,∴AB=AC,OA=AD,∵B、D、C共线,AD⊥BC,∴BD=CD=OB,∵OA=AD,BO=CD=BD,∴OD⊥AB,设直线AB解析式为y=kx+b,把A与B坐标代入得:,解得:,∴直线AB解析式为y=﹣x+4,∴直线OD解析式为y=x,联立得:,解得:,即M(,),∵M为线段OD的中点,∴D(,),设直线CD解析式为y=mx+n,把B与D坐标代入得:,解得:m=﹣,n=4,则直线CD解析式为y=﹣x+4.故答案为:y=﹣.19.解:取线段AC的中点G,连接EG,如图所示.∵△ABC为等边三角形,且AD为△ABC的对称轴,∴CD=CG=AB=6,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG.在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.当EG∥BC时,EG最小,∵点G为AC的中点,∴此时EG=DF=CD=BC=3.故答案为3.三.解答题(共6小题)20.解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作21.解:(1)如图,△A1B1C1为所作,C1(﹣1,2);(2)如图,△A2B2C2为所作,C2(﹣3,﹣2);(3)因为A的坐标为(2,4),A3的坐标为(﹣4,﹣2),所以直线l的函数解析式为y=﹣x,22.解:(1)画出△ABC关于y轴对称的△A1B1C1,如图所示,此时A1的坐标为(﹣2,2);(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,如图所示,此时A2的坐标为(4,0);(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,如图所示,此时A3的坐标为(﹣4,0).23.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.24.解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.25.解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC ≌△ADB (SAS );(2)∵四边形ADFC 是菱形,且∠BAC =45°,∴∠DBA =∠BAC =45°,由(1)得:AB =AD ,∴∠DBA =∠BDA =45°,∴△ABD 为直角边为2的等腰直角三角形,∴BD 2=2AB 2,即BD =2,∴AD =DF =FC =AC =AB =2,∴BF =BD ﹣DF =2﹣2.人教版九年级上册第二十三章旋转单元测试(含答案)(2)一、选择题:(每小题3分共30分)1.如图,在等腰直角△ABC 中,∠C =90°,将△ABC 绕顶点 A 逆时针旋转 80°后得△AB′C′,则∠CAB′的度数为( )A .45°B .80°C .125°D .130°2.如图,把ABC ∆绕着点A 逆时针旋转20︒得到ADE ∆,30BAC ∠=︒,则BAE ∠的度数为( )A .10︒B .20︒C .30°D .50︒3.图中,不能由一个基本图形通过旋转而得到的是( )A.B.C.D.4.在以下几种生活现象中,不属于旋转的是()A.下雪时,雪花在天空中自由飘落B.钟摆左右不停地摆动C.时钟上秒针的转动D.电风扇转动的扇叶5.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰直角三角形C.平行四边形D.菱形7.如图,将绕点逆时针旋转一定的角度,得到,且.若,,则的大小为()A. B. C. D.8.如图①,在△AOB 中,∠AOB=90°,OA=3,OB=4,AB=5.将△AOB 沿x 轴依次绕点A、B、O 顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为()A.(30,0) B.(32,0) C.(34,0) D.(36,0)△绕点B顺时针旋转60 得到DBE,点C的对应点E落在AB的延长9.如图,将ABC线上,连接,AD AC 与DE 相交于点F .则下列结论不一定正确的是( )A .60ABD CBE ︒∠=∠=B .ADB △是等边三角形C .BC DE ⊥D .60EFC ︒∠=10.在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC=5,BD=4,则以下四个结论中:①△BDE 是等边三角形; ②AE ∥BC ; ③△ADE 的周长是9; ④∠ADE=∠BDC .其中正确的序号是( )A .②③④B .①②④C .①②③D .①③④二、填空题:(每小题3分共18分)11.在平面直角坐标系中,点(45)P -,与点Q(4,1m -+)关于原点对称,那么m =_____;12.如图,等腰△ABC 中,∠BAC =120°,点D 在边BC 上,等腰△ADE 绕点A 顺时针旋转30°后,点D 落在边AB 上,点E 落在边AC 上,若AE =2cm ,则四边形ABDE 的面积是__________.13.如图,在ΔABC 中,AB=8,AC=6,∠BAC=30°,将ΔABC 绕点A 逆时针旋转60°得到△AB 1C 1,连接BC 1,则BC 1的长为________.14.如图,两块相同的三角板完全重合在一起,30,10A AC ∠==,把上面一块绕直角顶点B 逆时针旋转到''A BC ∆的位置,点'C 在AC 上,''A C 与AB 相交于点D ,则'BC =______.15.如图,在矩形ABCD 中,3AD =,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且60DAG ∠=︒,若EC =AB =__.16.如图,点D 是等边ABC △内部一点,1BD =,2DC =,AD =ADB ∠的度数为=________°.三、解答题:(共72分)17.如图,已知△ABC 的顶点A ,B ,C 的坐标分别是A (-1,-1),B (-4,-3),C (-4,-1).(1)作出△ABC 关于原点O 中心对称的图形△A ’B ’C ’;(2)将△ABC 绕原点O 按顺时针方向旋转90°后得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点A 1的坐标.18.已知,P 为等边三角形内一点,且BP=3,PC=4,将BP 绕点B 顺时针旋转60°至BP′的位置.(1)试判断△BPP′的形状,并说明理由;(2)若∠BPC=150°,求PA 的长度.19.如图,在平面直角坐标系中,直线:3l y x =-+与x 轴、y 轴分别交于点A ,B ,将点B 绕坐标原点O 顺时针旋转60︒得点C ,解答下列问题:(1)求出点C 的坐标,并判断点C 是否在直线l 上;(2)若点P 在x 轴上,坐标平面内是否存在点Q ,使得以P 、C 、Q 、A 为顶点的四边形是菱形?若存在,请直接写出Q 点坐标;若不存在,请说明理由.20.在Rt△ABC中,∠ACB=90°,,点D是斜边AB上一动点(点D与点A、B 不重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接AE,DE.(1)求△ADE的周长的最小值;(2)若CD=4,求AE的长度.21.四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=3,AB=7,求(1)指出旋转中心和旋转角度;(2)求DE的长度;(3)BE与DF的位置关系如何?请说明理由.22.如图所示:已知∠ABC=120°,作等边△ACD,将△ACD旋转60°,得到△CDE,AB=3,BC=2,求BD和∠ABD.23.如图,把一副三角板如图①放置,其中,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图②).(1)求∠OFE1的度数;(2)求线段AD1的长.24.如图,在正方形ABCD 中,点M 、N 是BC 、CD 边上的点,连接AM 、BN ,若BM=CN(1)求证:AM ⊥BN(2)将线段AM 绕M 顺时针旋转90°得到线段ME ,连接NE ,试说明:四边形BMEN 是平行四边形;(3)将△ABM 绕A 逆时针旋转90°得到△ADF ,连接EF ,当1 BM BC n时,请求出四边形四边形ABCD AMEFS S 的值。
人教版九年级数学上第23章旋转单元测试卷及答案(Word版)一、填空题:〔共23分〕1.如图1,△ABC是等腰直角三角形,D是AB上一点,△CBD经旋转后抵达△ACE的位置,那么旋转中心是;旋转角度是;点B的对应点是;点D的对应点是;线段CB的对应点是;∠B的对应角是;假设点M是CB的13,那么经过上述旋转后,点M移到了.2. 3点12分和3点40分时,时针与分针构成的角各是度和度.3.请你写出5个成中心对称的汉字,填在下面的横线上.4.如图2所示的四个图形中,图形(1)与图形成轴对称;图形(1)与图形成中心对称.(填写契合要求的图形所对应的符号)5.如图3所示,△ABC绕点A逆时针旋转某一角度失掉△ADE,假定∠1=∠2=∠3=20°,那么旋转角为度.6.如图4所示,线段AB=4cm,且CD⊥AB于O,那么阴影局部的面积是.7.如图5①,将字母〝V〞沿平移格会失掉字母〝W〞。
如图5②,将字母〝V〞绕点旋转度后失掉字母N,绕点旋转度后会失掉字母X.(图中E、F区分是其所在线段的中点)8.如图6是由面积为1的单位正三角形经过平移旋转,拼成由24个相反的三角形组成的正六边形,我们把面积为4的正三角形称为〝希望杯〞,那么图中可数出个不同的〝希望杯〞.9.在直角坐标系中,点A〔2,-3〕关于原点对称的坐标是.10. 在以下图7的四个图案中,既是轴对称图形,又是中心对称图形的有个.图7二、选择题:〔共40分〕11.观察以下图形,其中是旋转对称图形的有( )A.1个B.2个C.3个D.4个(1) (2) (3) (4)12.你玩过扑克牌吗?你细心观察过每张扑克牌中的图案吗?请你指出图案是中心对称图形的一组为( )A.黑桃6与黑桃9B.红桃6与红桃9C.梅花6与梅花9D.方块6与方块913.在平面直角坐标系中,点P(2,1)关于原点对称的点在( )A.第一象限B.第二象限C.第三象限D.第四象限14. 以下图形中,是.中心对称图形的为〔〕ABC D15.以下图形中是中心对称图形的是A B C D16.在以下四个图案中,既是轴对称图形,又是中心对称图形的是( )A B C D17.以下图案都是由宁母〝m 〞经过变形、组合而成的.其中不是中心对称图形的是( )18.将下面的直角梯形绕直线 l 旋转一周,可以失掉左边平面图形的 .〔 〕 19.数学课上,教员让同窗们观察如图 8 所示的图形,问:它绕着圆 心 O 旋转多少度后和它自身重合?甲同窗说:45°;乙同窗说:60°; 丙同窗说:90°;丁同窗说:135°。
精品基础教育教学资料,仅供参考,需要可下载使用!人教版九年级上册数学《第23章旋转》单元测试题一.选择题(共10小题)1.下列图形中,由原图旋转得到的是()A.B.C.D.2.如图,Rt△ABC中,∠ACB=90°,线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,过点A作AE⊥射线CD于点E,则∠CAE的度数是()A.90﹣αB.αC.D.3.下列图形绕某点旋转90°后,不能与原来图形重合的是()A.B.C.D.4.在平面直角坐标系中,把点P(﹣5,4)向右平移9个单位得到点P1,再将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是()A.(4,﹣4)B.(4,4)C.(﹣4,﹣4)D.(﹣4,4)5.下列四张扑克牌图案,属于中心对称的是()A.B.C.D.6.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个7.点P(2,﹣1)关于原点中心对称的点的坐标是()A.(2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣2,1)8.如图,是用围棋子摆出的图案,围棋子的位置用有序数对表示,如:A点在(5,1),若再摆放一枚黑棋子,要使8枚棋子组成的图案是轴对称图形,则下列摆放错误的是()A.黑(2,3)B.黑(3,2)C.黑(3,4)D.黑(3,1)9.在A、B、C、D四幅图案中,能通过图平移得到的是()A.B.C.D.10.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影凃在图中标有数字()的格子内.A.1 B.2 C.3 D.4二.填空题(共8小题)11.如图,将△ABC绕着点A旋转,使点B恰好落在BC边上,得△AB'C,如果∠BAB'=32°,且AC'∥BC,那么∠B'AC=度.12.如图,△ABC为等边三角形,AB=3,若点P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.13.如图,等边△AOB绕点O逆时针旋转到△A′OB′的位置,∠A′OB=80°,则△AOB旋转了度.14.已知点A(a,1)与点A(4,b)关于原点对称,则a+b=.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子A,O,B的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个中心对称图形,请写出棋子P的位置坐标(写出1个即可).16.下列4种图案中,是中心对称图形的有个.17.若数字串“000”和数字串“101”既是轴对称图形,又是中心对称图形,那么数字串“110”是图形(填写“轴对称”、“中心对称”).18.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,4),则点B2019的横坐标为.三.解答题(共7小题)19.如图,△AEC绕A点顺时针旋转60°得△APB,∠PAC=20°,求∠BAE.20.如图所示,点D是等边△ABC内一点,DA=13,DB=19,DC=21,将△ABD绕点A逆时针旋转到△ACE的位置,求△DEC的周长.21.如图所示的两个图形成中心对称,请找出它的对称中点.22.如图,方格纸的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上.(1)画出△ABC关于原点对称的△A1B1C1;(2)画出△ABC向上平移5个单位后的△A2B2C2,并求出平移过程中△ABC扫过的面积.23.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点,旋转角度是度.(2)若连结EF,则△AEF是三角形;并证明.24.如图,Rt△ABC中,∠C=90°,把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,点E在AB 上.(1)若∠BDA=70°,求∠BAC的度数;(2)若BC=8,AC=6,求△ABD中AD边上的高.25.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C.(1)如图1,当AB∥CB'时,设A'B'与CB相交于点D,求证:△A'CD是等边三角形.(2)若E为AC的中点,P为A'B'的中点,则EP的最大值是多少,这时旋转角θ为多少度.人教版九年级上册数学《第23章旋转》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列图形中,由原图旋转得到的是()A.B.C.D.【分析】旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这是判断旋转的关键,据此解答即可.【解答】解:A、是由图形通过轴对称得到的;B、是由图形通过轴对称得到的;C、是通过轴对称和旋转得到的;D、是由图形通过顺时针旋转90°得到的.故选:D.【点评】此题主要考查了旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.2.如图,Rt△ABC中,∠ACB=90°,线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,过点A作AE⊥射线CD于点E,则∠CAE的度数是()A.90﹣αB.αC.D.【分析】先利用旋转的性质得∠CBD=α,BC=BD,再根据等腰三角形的性质和三角形内角和定理得到∠BCD=90°﹣α,然后利用互余表示出∠ACE,从而利用互余可得到∠CAE的度数.【解答】解:∵线段BC绕点B逆时针旋转α°(0<α<180)得到线段BD,∴∠CBD=α,BC=BD,∴∠BCD=∠BDC,∴∠BCD=(180°﹣α)=90°﹣α,∵∠ACB=90°,∴∠ACE=90°﹣∠BCD=90°﹣(90°﹣α)=α,∵AE⊥CE,∴∠CAE=90°﹣∠ACE=90°﹣α.故选:C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.3.下列图形绕某点旋转90°后,不能与原来图形重合的是()A.B.C.D.【分析】根据旋转对称图形的概念作答.【解答】解:A、绕它的中心旋转90°能与原图形重合,故本选项不合题意;B、绕它的中心旋转90°能与原图形重合,故本选项不合题意;C、绕它的中心旋转90°能与原图形重合,故本选项不合题意;D、绕它的中心旋转120°才能与原图形重合,故本选项符合题意.故选:D.【点评】本题考查了旋转对称图形的知识,如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.4.在平面直角坐标系中,把点P(﹣5,4)向右平移9个单位得到点P1,再将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是()A.(4,﹣4)B.(4,4)C.(﹣4,﹣4)D.(﹣4,4)【分析】首先利用平移的性质得出P1(4,4),再利用旋转变换的性质可得结论;【解答】解:∵P(﹣5,4),点P(﹣5,4)向右平移9个单位得到点P1∴P1(4,4),∴将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是(4,﹣4),故选:A.【点评】本题考查坐标与图形变化﹣旋转以及平移,解题的关键是理解题意,熟练掌握基本知识,属于中考基础题.5.下列四张扑克牌图案,属于中心对称的是()A.B.C.D.【分析】根据中心对称图形的概念和各扑克牌的花色排列特点的求解.【解答】解:A、是中心对称图形,符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:A.【点评】本题考查中心对称的知识,掌握好中心对称图形的概念是解题的关键.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.6.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.点P(2,﹣1)关于原点中心对称的点的坐标是()A.(2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(﹣2,1)【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y).【解答】解:根据中心对称的性质,得点P(2,﹣1)关于中心对称的点的坐标为(﹣2,1).故选:D.【点评】此题主要考查了关于原点对称的点坐标的关系,记忆方法是结合平面直角坐标系的图形记忆.8.如图,是用围棋子摆出的图案,围棋子的位置用有序数对表示,如:A点在(5,1),若再摆放一枚黑棋子,要使8枚棋子组成的图案是轴对称图形,则下列摆放错误的是()A.黑(2,3)B.黑(3,2)C.黑(3,4)D.黑(3,1)【分析】根据轴对称图形定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:要使8枚棋子组成的图案是轴对称图形,则黑子可以摆放在横坐标为3的格点上,故摆放错误的是A,故选:A.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形定义.9.在A、B、C、D四幅图案中,能通过图平移得到的是()A.B.C.D.【分析】根据平移后对应点的连线平行且相等可得答案.【解答】解:能通过图甲平移得到的是B,故选:B.【点评】此题主要考查了图形的平移,关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.10.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影凃在图中标有数字()的格子内.A.1 B.2 C.3 D.4【分析】从阴影部分图形的各顶点向虚线作垂线并延长相同的距离找对应点,然后顺次连接各点可得答案.【解答】解:如图所示,把阴影凃在图中标有数字3的格子内所组成的图形是轴对称图形,故选:C.【点评】本题考查的是作简单平面图形轴对称后的图形,其依据是轴对称的性质,基本作法:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.二.填空题(共8小题)11.如图,将△ABC绕着点A旋转,使点B恰好落在BC边上,得△AB'C,如果∠BAB'=32°,且AC'∥BC,那么∠B'AC=42 度.【分析】先利用旋转的性质得到∠CAC′=∠BAB'=32°,AB=AB′,再根据等腰三角形性质和三角形内角和定理计算出∠B=74°,接着利用平行线的性质得到∠B′AC′=∠AB′B=74°,然后计算∠B′AC﹣∠CAC′即可.【解答】解:∵△ABC绕着点A旋转,使点B恰好落在BC边上,得△AB'C,∴∠CAC′=∠BAB'=32°,AB=AB′,∵AB=AB′∴∠B=∠AB′B=(180°﹣32°)=74°,∵AC'∥BC,∴∠B′AC′=∠AB′B=74°,∴∠B'AC=∠B′AC﹣∠CAC′=74°﹣32°=42°.故答案为42.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12.如图,△ABC为等边三角形,AB=3,若点P为△ABC内一动点,且满足∠PAB=∠ACP,则线段PB长度的最小值为.【分析】由等边三角形的性质得出∠ABC=∠BAC=60°,AC=AB=3,求出∠APC=120°,当PB ⊥AC时,PB长度最小,设垂足为D,此时PA=PC,由等边三角形的性质得出AD=CD=AC =,∠PAC=∠ACP=30°,∠ABD=∠ABC=30°,求出PD=AD•tan30°=AD=,BD =AD=,即可得出答案.【解答】解:∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,AC=AB=2,∵∠PAB=∠ACP,∴∠PAC+∠ACP=60°,∴∠APC=120°,∴点P的运动轨迹是,当O、P、B共线时,PB长度最小,设OB交AC于D,如图所示:此时PA=PC,OB⊥AC,则AD=CD=AC=,∠PAC=∠ACP=30°,∠ABD=∠ABC=30°,∴PD=AD•tan30°=AD=,BD=AD=,∴PB=BD﹣PD=﹣=.故答案为:.【点评】本题考查了等边三角形的性质、等腰三角形的性质、三角形内角和定理、勾股定理、三角函数等知识;熟练掌握等边三角形的性质是解决问题的关键.13.如图,等边△AOB绕点O逆时针旋转到△A′OB′的位置,∠A′OB=80°,则△AOB旋转了140 度.【分析】∠AOA′就是旋转角,根据等边三角形的性质得出∠AOB等于60°,再根据∠BOA′等于90°,从而求出∠AOA′的度数.【解答】解:旋转角∠AOA′=∠AOB+∠BOA′=60°+80°=140°.∴△AOB旋转了140度.故答案为:140.【点评】本题主要考查了旋转的性质,正确理解旋转角是解题的关键;此题较简单,解题时要能根据等边三角形的性质求出角的度数.14.已知点A(a,1)与点A(4,b)关于原点对称,则a+b=﹣5 .【分析】根据“两点关于原点对称,则两点的横、纵坐标都是互为相反数”解答.【解答】解:∵点A(a,1)与点A′(4,b)关于原点对称,∴a、b的值分别为﹣4,﹣1.所以a+b=﹣1﹣4=﹣5,故答案为:﹣5【点评】本题考查了关于原点对称的点的坐标:两点关于原点对称,则两点的横、纵坐标都是互为相反数.15.在棋盘中建立如图所示的平面直角坐标系,三颗棋子A,O,B的位置如图所示,它们的坐标分别是(﹣1,1),(0,0)和(1,0),在其他点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个中心对称图形,请写出棋子P的位置坐标(0,1)(写出1个即可).【分析】直接利用中心对称图形的性质得出答案.【解答】解:如图所示:点P(0,1)答案不唯一.故答案为:(0,1).【点评】此题主要考查了中心对称图形的性质,正确把握定义是解题关键.16.下列4种图案中,是中心对称图形的有 2 个.【分析】根据中心对称图形的概念即可求解.【解答】解:第1个图形,是中心对称图形,符合题意;第2个图形,不是中心对称图形,不符合题意;第3个图形,是中心对称图形,符合题意;第4个图形,不是中心对称图形,不符合题意.故答案为:2.【点评】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.17.若数字串“000”和数字串“101”既是轴对称图形,又是中心对称图形,那么数字串“110”是轴对称图形(填写“轴对称”、“中心对称”).【分析】根据轴对称图形的概念与中心对称图形的概念即可作答.【解答】解:根据对称图形的概念,知110仅是轴对称图形,对称轴为正中水平直线.【点评】掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,对称轴两边图形折叠后可重合.18.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,4),则点B2019的横坐标为10096 .【分析】由图象可知点B2019在第一象限,求出B2,B4,B6的坐标,探究规律后即可解决问题.【解答】解:由图象可知点B2019在x轴上,∵OA=,OB=4,∠AOB=90°,∴AB=,∴B2(10,4),B4(20,4),B6(30,4),…∴B2018(10090,4).∴点B2019横坐标为10090++=10096.故答案为:10096.【点评】本题考查坐标与图形的变化﹣旋转、勾股定理等知识,解题的关键是从特殊到一般探究规律,发现规律,利用规律解决问题,属于中考常考题型.三.解答题(共7小题)19.如图,△AEC绕A点顺时针旋转60°得△APB,∠PAC=20°,求∠BAE.【分析】充分运用旋转的性质,旋转前后三角形全等,即△ABP≌△ACE,根据对应角相等,三角形内角和定理,对应边的夹角为旋转角,通过计算解答题目问题.【解答】解:根据旋转的性质可得△ABP≌△ACE,AC与AB是对应边,∠BAC=∠BAP+∠PAC=60°,∵∠PAC=20°,∴∠CAE=∠BAP=40°,∴∠BAE=∠BAC+∠CAE=100°.【点评】本题考查旋转的性质,旋转变化前后,对应角分别相等,结合三角形内角和定理求出相关的角.20.如图所示,点D是等边△ABC内一点,DA=13,DB=19,DC=21,将△ABD绕点A逆时针旋转到△ACE的位置,求△DEC的周长.【分析】先根据等边三角形的性质得∠BAC=60°,AB=AC,再根据旋转的性质得到AD=AE,CE =BD=19,∠DAE=∠BAC=60°,则可判断△ADE为等边三角形,从而得到DE=AD=13,然后计算△DEC的周长.【解答】解:∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵△ABD绕点A逆时针旋转到△ACE的位置,∴AD=AE,CE=BD=19,∠DAE=∠BAC=60°,∴△ADE为等边三角形,∴DE=AD=13,∴△DEC的周长=DE+DC+CE=13+21+19=53.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.21.如图所示的两个图形成中心对称,请找出它的对称中点.【分析】根据关于中心对称的两个图形,对应点的连线都经过对称中心作图.【解答】解:连接CC′,BB′,两条线段相交于当O,则点O即为对称中点.【点评】本题考查的是中心对称的性质,掌握关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分是解题的关键.22.如图,方格纸的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上.(1)画出△ABC关于原点对称的△A1B1C1;(2)画出△ABC向上平移5个单位后的△A2B2C2,并求出平移过程中△ABC扫过的面积.【分析】(1)根据关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和平移的性质画出A、B、C的对应点A2、B2、C2,然后计算一个矩形的面积加上△ABC的面积得到△ABC扫过的面积.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,△ABC扫过的面积=5×4+×2×4=24.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点A,旋转角度是90 度.(2)若连结EF,则△AEF是等腰直角三角形;并证明.【分析】(1)根据旋转变换的定义,即可解决问题;(2))根据旋转变换的定义,即可解决问题.【解答】解:(1)如图,由题意得:旋转中心是点A,旋转角度是90度.故答案为A、90.(2)等腰直角三角形由旋转得:AF=AE,∠FAB=∠EAD∴∠FAB+∠BAE=∠EAD+∠BAE即∠FAE=∠BAD∵四边形ABCD是正方形∴∠FAE=∠BAD=90°∴△AEF是等腰直角三角形故答案为等腰直角.【点评】本题主要考查了旋转变换的性质、正方形的性质及其应用问题;解题的关键是牢固掌握旋转变换的性质、正方形的性质,这是灵活运用、解题的基础和关键.24.如图,Rt△ABC中,∠C=90°,把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,点E在AB 上.(1)若∠BDA=70°,求∠BAC的度数;(2)若BC=8,AC=6,求△ABD中AD边上的高.【分析】(1)由旋转性质知BD=BA、∠CBA=∠EBD,据此可得∠BDA=∠BAD=70°,从而得∠ABD=∠ABC=40°,结合∠C=90°可得答案;(2)由旋转性质得BE=BC=8、DE=AC=6、AB=BD=10,从而得AE=2,利用勾股定理知AD =2,作BF⊥AD得AF=AD=,再次利用勾股定理可得答案.【解答】解:(1)由旋转性质知BD=BA、∠CBA=∠EBD,∵∠BDA=70°,∴∠BAD=70°,∴∠ABD=∠ABC=40°,∵∠C=90°,∴∠BAC=50°;(2)∵BC=8、AC=6,∠C=90°,∴AB=10,由旋转性质知△ABC≌△DBE,则BE=BC=8、DE=AC=6,∴AE=2,在Rt△ADE中,AD===2,作BF⊥AD于点F,∵BA=BD,∴AF=AD=,则BF===3.【点评】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.也考查了等腰三角形的性质和勾股定理.25.在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C.(1)如图1,当AB∥CB'时,设A'B'与CB相交于点D,求证:△A'CD是等边三角形.(2)若E为AC的中点,P为A'B'的中点,则EP的最大值是多少,这时旋转角θ为多少度.【分析】(1)当AB∥CB′时,∠BCB′=∠B=∠B′=30°,则∠A′CD=90°﹣∠BCB′=60°,∠A′DC=∠BCB′+∠B′=60°,可证:△A′CD是等边三角形;(2)连接CP,当E、C、P三点共线时,EP最长,根据图形求出此时的旋转角及EP的长.【解答】(1)证明:∵AB∥CB′,∴∠B=∠BC B′=30°,∴∠BC A′=90°﹣30°=60°,∵∠A′=∠A=60°,∴△A′CD是等边三角形;(2)解:如图,连接CP,当△ABC旋转到E、C、P三点共线时,EP最长,此时θ=∠ACA1=120°,∵∠B′=30°,∠A′CB′=90°,设AC=a,∴A′C=AC=A′B′=a,∵AC中点为E,A′B′中点为P,∠A′CB′=90°∴CP=A′B′=a,EC=a,∴EP=EC+CP=a+a=AC.【点评】此题考查了旋转的性质,特殊三角形的判定与性质,相似三角形的判断与性质.关键是根据旋转及特殊三角形的性质证明问题.。
第二十三章旋转单元综合测试一.选择题1.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=4,则BE的长为()A.3B.4C.5D.62.如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=25°,则旋转角度是()A.25°B.15°C.65°D.40°3.如图,△ADE绕点D的顺时针旋转,旋转的角是∠ADE,得到△CDB,那么下列说法错误的是()A.DE平分∠ADB B.AD=DC C.AE∥BD D.AE=BC4.如图,若△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,则∠AB1B=()A.50°B.55°C.60°D.65°5.下列图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.如图,将△ABC绕点C(0,)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A.(﹣a,﹣b)B.(a,﹣b+2)C.(﹣a,﹣b+)D.(﹣a,﹣b+2)7.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B的对应点B′的坐标是()A.B.C.D.(0,﹣4)8.如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED,若BC=8,BD=7,则△AED的周长是()A.15B.14C.13D.129.如图,CD是△ABC的边AB上的中线,将线段AD绕点D顺时针旋转90°后,点A的对应点E恰好落在AC边上,若AD=,BC=,则AC的长为()A.B.3C.2D.410.在平面直角坐标系xOy中,点A(4,3),点B为x轴正半轴上一点,将△AOB绕其一顶点旋转180°,连接其余四个顶点得到一个四边形,若该四边形是一个轴对称图形,则满足条件的点有()A.5个B.4个C.3个D.2个二.填空题11.如图,四角星的顶点是一个正方形的四个顶点,将这个四角星绕其中心旋转,当第一次与自身重合时,其旋转角的大小是度.12.一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D 在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180),如果EF⊥AB,那么n的值是.13.如图,在Rt△ABC,∠B=90°,∠ACB=50°.将Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,连接CC'.若AB∥CC',则旋转角的度数为°.14.如图,在正方形ABCD中,AB=4,点M在CD边上,且DM=1,△AEM与△ADM关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为.15.已知点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,则xy的值是.16.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是.17.已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围是.18.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)19.在平面直角坐标系中,△OAB的位置如图所示,将△OAB绕点O顺时针旋转90°得△OA1B1;再将△OA1B1绕点O顺时针旋转90°得△OA2B2;再将△OA2B2绕点O顺时针旋转90°得△OA3B3;……依此类推,第2020次旋转得到△OA2020B2020,则项点A的对应点A2020的坐标是.三.解答题20.在平面直角坐标系中,已知点P(a,﹣1),请解答下列问题:(1)若点P在第三象限,则a的取值范围为;(2)若点P在y轴上,则a的值为;(3)当a=2时,点P关于y轴对称的点的坐标为点P关于原点对称的点的坐标为.21.如图,在△ABC中,AB=BC,∠ABC=120°,点D在边AC上,且线段BD绕着点B 按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.(1)求证:AE=CD;(2)若∠DBC=45°,求∠BFE的度数.22.如图所示,把△ABC绕点A旋转至△ADE位置,延长BC交AD于F,交DE于G,若∠CAD=10°,∠D=25°,∠EAB=120°,求∠DFB的度数.23.已知点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,点C(a+2,b)与点D 关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次联结点A、D、B、C,求所得图形的面积.24.如图,正△ABC与正△A1B1C1关于某点中心对称,已知A,A1,B三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点C,C1的坐标.25.如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.参考答案1.解:∵△ABC绕点A顺时针旋转60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=4,∴BE=4.故选:B.2.解:∵∠AOB=40°,∠BOC=25°,∴∠AOC=65°,∵将△AOB绕着点O顺时针旋转,得到△COD,∴旋转角为∠AOC=65°,故选:C.3.解:将△ADE绕点D顺时针旋转,得到△CDB,∴∠ADE=∠CDB,AD=CD,AE=BC,故A、B、D选项正确;∵∠B=∠E,但∠B不一定等于∠BDC,∴BD不一定平行于AE,故C选项错误;故选:C.4.解:∵△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,∴AB=AB1,∠BAB1=50°,∴∠AB1B=(180°﹣50°)=65°.故选:D.5.解:A、是轴对称图形,不是中心对称图形,不符合题意;B、既不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,符合题意.故选:D.6.解:将点A的坐标为(a,b)向下平移个单位,得到对应点坐标为(a,b),再将其绕原点旋转180°可得对称点坐标为(﹣a,﹣b+),然后再向上平移个单位可得点A'的坐标为(﹣a,﹣b+2),故选:D.7.解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故选:C.8.解:∵将△BCD绕点B逆时针旋转60°得到△BAE,∴BD=BE,∠DBE=60°,CD=AE,∴△DBE是等边三角形,∴BD=DE=7,∴△AED的周长=AE+AD+DE=CD+AD+DE=8+7=15,故选:A.9.解:如图,连接BE,∵CD是△ABC的边AB上的中线,∴AD=BD,∵将线段AD绕点D顺时针旋转90°,∴AD=DE,∠ADE=90°,∴∠A=45°,AE=AD=2,AD=DE=BD,∴∠AEB=90°,∴∠A=∠ABE=45°,∴AE=BE=2,∴EC===1,∴AC=AE+EC=3,故选:B.10.解:观察图象可知,满足条件的点B有5个.故选:A.11.解:该图形被平分成四部分,旋转90°的整数倍,就可以与自身重合,故当此图案第一次与自身重合时,其旋转角的大小为90°.故答案为:90.12.解:如图1,延长EF交AB于H,∵EF⊥AB,∠A=45°,∴∠ACH=45°,∴∠ACE=135°,∴n=135;如图2,∵EF⊥AB,∠A=45°,∴∠ACE=45°,∴n=360﹣45=315,∵0<n<180,∴n=315不合题意舍去,故答案为:135.13.解:∵AB∥CC',∴∠ABC+∠C′CB=180°,而∠B=90°,∴∠C′CB=90°,∴∠ACC′=90°﹣∠ACB=90°﹣50°=40°,∵Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,∴AC=AC′,∠C′AC等于旋转角,∴∠AC′C=∠ACC′=40°,∴∠C′AC=180°﹣40°﹣40°=100°,即旋转角为100°.故答案为100.14.解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠F AB=∠MAD.∴∠F AB=∠MAE,∴∠F AB+∠BAE=∠BAE+∠MAE.∴∠F AE=∠MAB.∴△F AE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=4.∵DM=1,∴CM=3.∴在Rt△BCM中,BM==5,∴EF=5,故答案为:5.15.解:∵点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,∴x﹣2+x+4=0,3+y﹣5=0,解得:x=﹣1,y=2,则xy的值是:﹣2.故答案为:﹣2.16.解:∵△DEC与△ABC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE==2,故答案为2.17.解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,,解得:a<2.∴故答案为:a<2.18.解:如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,∴S四边形DMNT=S△DKN=a,∴正方形ABCD的面积=4×a+b=a+b.故答案为(a+b).19.解:将△OAB绕点O顺时针旋转90°得△OA1B1;此时,点A1的坐标为(2,﹣1);再将△OA1B1绕点O顺时针旋转90°得△OA2B2;此时,点A2的坐标为(﹣1,2);再将△OA2B2绕点O顺时针旋转90°得△OA3B3;此时,点A3的坐标为(﹣2,1);再将△OA3B3绕点O顺时针旋转90°得△OA4B4;此时,点A4的坐标为(1,2);∴每旋转4次一个循环,∵2020÷4=505,∴第2020次旋转得到△OA2020B2020,则顶点A的对应点A2020的坐标与点A4的坐标相同,为(1,2);故答案为:(1,2).20.解:(1)∵点P(a,﹣1),点P在第三象限,∴a<0;故答案为:a<0;(2)∵点P(a,﹣1),点P在y轴上,∴a=0;故答案为:0;(3)当a=2时,点P(a,﹣1)的坐标为:(2,﹣1)关于y轴对称的点的坐标为:(﹣2,﹣1),点P关于原点对称的点的坐标为:(﹣2,1).故答案为:(﹣2,﹣1),(﹣2,1).21.(1)证明:∵线段BD绕着点B按逆时针方向旋转120°能与BE重合,∴BD=BE,∠EBD=120°,∵AB=BC,∠ABC=120°,∴∠ABD+∠DBC=∠ABD+∠ABE=120°,∴∠DBC=∠ABE,∴△ABE≌△CBD(SAS),∴AE=CD;(2)解:由(1)知∠DBC=∠ABE=45°,BD=BE,∠EBD=120°,∴∠BED=∠BDE=(180°﹣120°)=30°,∴∠BFE=180°﹣∠BED﹣∠ABE=180°﹣30°﹣45°=105°.22.解:由旋转可知:△ABC≌△ADE,∵∠D=25°,∴∠B=∠D=25°,∠EAD=∠CAB,∵∠EAB=∠EAD+∠CAD+∠CAB=120°,∠CAD=10°,∴∠CAB=(120°﹣10°)÷2=55°,∴∠F AB=∠CAB+∠CAD=55°+10°=65°,∵∠DFB是△ABF的外角,∴∠DFB=∠B+∠F AB,∴∠DFB=25°+65°=90°.23.解:(1)∵点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,∴2b+1=﹣1,3a﹣1=2,解得a=1,b=﹣1,∴点A(﹣1,2),B(﹣1,﹣2),C(3,﹣1),∵点C(a+2,b)与点D关于原点对称,∴点D(﹣3,1);(2)如图所示:四边形ADBC的面积为:.24.解:(1)∵A,A1,B三点的坐标分别是(0,4),(0,3),(0,2),所以对称中心的坐标为(0,2.5);(2)等边三角形的边长为4﹣2=2,所以点C的坐标为(,3),点C1的坐标(,2).25.解:(1)∵△ABC与△DEC关于点C成中心对称,∴AC=CD,BC=CE,∴四边形ABDE是平行四边形,∴AE与BD平行且相等;(2)∵四边形ABDE是平行四边形,∴S△ABC=S△BCD=S△CDE=S△ACE,∵△ABC的面积为5cm2,∴四边形ABDE的面积=4×5=20cm2;(3)∠ACB=60°时,四边形ABDE为矩形.理由如下:∵AB=AC,∠ACB=60°,∴△ABC是等边三角形,∴AC=BC,∵四边形ABDE是平行四边形,∴AD=2AC,BE=2BC,∴AD=BE,∴四边形ABDE为矩形.。
第23章 旋转单元测试(附解析)学校:___________姓名:___________班级:___________考号:___________总分120分,考试时间120分钟一、单选题(共10个小题,每小题3分,共30分)1.下列与杭州亚运会有关的图案中,中心对称图形是( )A .B .C .D . 2.2022年冬奥会将在我国北京市和张家口市联合举行,下列历届冬奥会会徽的部分图案中,是中心对称图形的是( )A .B .C .D . 3.平面直角坐标系内一点P (-2,3)关于原点对称的点的坐标是( )A .(3,2)B .(-2,-3)C .(2,-3)D .(2,3)4.如图,矩形ABCD 的顶点1,0A ,()0,2D ,()5,2B ,将矩形以原点为旋转中心,顺时针旋转75°之后点C 的坐标为( )A .()4,2-B .()42,22-C .()42,2-D .()26,22- 5.如图,在钝角△ABC 中,35BAC ∠=︒,将ABC 绕点A 顺时针旋转70︒得到ADE ,点B ,C 的对应点分别为D ,E ,连接BE .则下列结论一定正确的是( )A .ABC AED ∠=∠B .AC DE = C .AD BE AC += D .AE 平分BED ∠ 6.平面直角坐标系中,O 为坐标原点,点A 的坐标为()5,1-,将OA 绕原点按逆时针方向旋转90︒得OB ,则点B 的坐标为( )A .()5,1-B .()1,5--C .()5,1--D .()1,5-7.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,直角MDN ∠绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:①DEF 是等腰直角三角形;②AE CF =;③12ABC AEDF S S =△四边形;④BE CF EF +=,其中正确结论的个数是( )A .1B .2C .3D .48.在矩形ABCD 中,AB =4,BC =3,CE =2BE ,EF =2,连按AF ,将线段AF 绕着点A 顺时针旋转90°得到AP ,则线段PE 的最小值为( )A .25B .342-C .4D .341+9.如图,在Rt △ABC 中,∠ACB =90°,2AC BC ==将△ABC 绕点A 逆时针旋转60°,得到△ADE ,连接BE ,则12BE AB +的值为( )A 6B .22C 3D 210.如图,P 是正三角形ABC 内的一点,且6PA =,8PB =,10PC =.若将PAC △绕点A 逆时针旋转后,得到MAB △,则APB ∠等于( ).A .120°B .135°C .150°D .160°二、填空题(共10个小题,每小题3分,共30分)11.如图所示,P 是正方形ABCD 内一点,将△ABP 绕点B 按顺时针方向旋转能与△CBP '重合,若PB =3,则PP '=__________12.若点P (a -1,5)与点Q (5,1-b )关于原点成中心对称,则a +b =_________. 13.对于下列图形:①等边三角形; ②矩形; ③平行四边形; ④菱形; ⑤正八边形;⑥圆.其中既是轴对称图形,又是中心对称图形的是_________________.(填写图形的相应编号) 14.若点P (a ,2)点Q (﹣4,b )关于原点对称,则点M (a ,b )在第___象限.15.如图,△ABC 为等边三角形,D 是△ABC 内一点,若将△ABD 经过旋转后到△ACP 位置,则旋转角等于___________度.16.如图,在矩形ABCD 中,23AB =6BC =,点E 是直线BC 上的一个动点,连接DE ,将线段DE 绕着点D 顺时针旋转120︒得到线段DG ,连接AG ,则线段AG 的最小值为_________.17.如图,△ABC 边长为1的正三角形,BDC 是顶角120BDC ∠=︒的等腰三角形,以D 为顶点作一个60度角,角的两边分别交AB 于M ,交AC 于N ,连结MN ,则AMN 的周长为__________.18.如图,在Rt △ABC 中,90ACB ∠=,30BAC ∠=,BC =2,线段BC 绕点B 旋转到BD ,连AD ,E 为AD 的中点,连接CE ,则CE 的最大值是___.19.如图,在△ABC 中,3AB =,2AC =,60BAC ∠=︒,P 为ABC 内一点,则PA PB PC ++的最小值为__________.20.如图,点P 是等边三角形ABC 内一点,且6PA 2PB =22=PC ABC 的边长为________.三、解答题(共6个小题,每小题10分,共60分)21.如图,在△ABC 中,∠ACB =90°,∠B =60°,以C 为旋转中心,旋转一定角度后成△A ′B ′C ,此时B ′落在斜边AB 上,试确定∠ACA ′,∠BB ′C 的度数.22.四边形ABCD 各顶点坐标分别为(5,0)A ,(2,3)B -,(1,0)C -,(1,5)D --,作出与四边形ABCD 关于原点对称的图形.23.如图,在同一平面内,△BEC绕点B逆时针旋转60°得到△BAD,且AB⊥BC,BE=CE.连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.24.正方形ABCD中,点F为正方形ABCD内的点,BFC△绕着点B按逆时针方向旋转90︒后与△重合.BEA(1)如图①,若正方形ABCD的边长为2,1BE=,3FC=AE∥BF.(2)如图②,若点F为正方形ABCD对角线AC上的点(点F不与点A、C重合),试探究AE、AF、BF之间的数量关系并加以证明.。
第一学期人教版九年级上册数学第23章《旋转》单元测试卷(含答案)一、填空题〔共10 小题,每题 3 分,共30 分〕1.如图,矩形OABC和ABEF,B(3, 4).如图,矩形OABC和ABEF,B(3, 4).(1)画出矩形OABC绕点O逆时针旋转90∘后的矩形OA1B1C1,并写出B1的坐标为________,点B运动到点B1所经过的途径的长为________;(2)假定点E的坐标为(5, 2),那么点F的坐标为________,请画一条直线l平分矩形OABC与ABEF组成图形的面积〔保管必要的画图痕迹〕.2.如下图是日本三菱汽车的标志,它可以看作由一个菱形经过________次旋转,每次至少旋转________失掉的.3.如下图的图形为中心对称图形,点O为它的对称中心,写出一组关于点O的对称点是________.4.点A(−1, 2)关于y轴的对称点坐标是________;点A关于原点的对称点的坐标是________.5.点P坐标为(1, 1),将点P绕原点逆时针旋转45∘得点P1,那么点P1的坐标为________.6.如图是4×4的正方形网格,再把其中一个白色小正方形涂上阴影,使整个阴影局部红为轴对称图形,这样的白色小正方形有________个.7.如下图,把甲图案〝扶直〞属于________变换.甲图案与乙图案外形、大小完全相反,假定让甲图案与乙图案重合,还需________变换.8.图中,甲图怎样变成乙图:________.9.如图,将△ABC绕点C按顺时针方向旋转64∘至△A′B′C,使点A′落在BC的延伸线上.那么∠ACB′=________度.10.如图,在直角坐标系中,点A(−3, 0)、B(0, 4),对△OAB延续作旋转变换,依次失掉△1、△2、△3、△4,那么△2017的直角顶点的坐标为________.二、选择题〔共10 小题,每题 3 分,共30 分〕11.将点A(−2, 3)绕原点O旋转180∘失掉点P,那么点P的坐标是〔〕A.(2, 3)B.(−2, −3)C.(2, −3)D.(3, −2)12.如图,将两块大小相反的三角板堆叠在一同,∠A=30∘,∠B=60∘,BC=10cm,把下面一块三角板绕顶点C作逆时针方向旋转到△A′B′C′的位置,点B′在AB上,A′B′与AC相交于点D,那么A′D的长度为〔〕A.14cmB.15cmC.16cmD.17cm13.如图,四边形ABD与四边形FGHE关于一个点成中心对称,那么这个点是〔〕A.O1B.O2C.O3D.O414.要使正十二边形旋转后与自身重合,至少应将它绕中心旋转的度数为〔〕A.75∘B.60∘C.45∘D.30∘15.在以下由纸折叠而成的图案中,是中心对称图形的是〔〕A.B.C. D.16.将等腰直角三角形AOB按图放置,然后绕O点逆时针旋转90∘至A′OB′位置,点B(2, 0),那么A的坐标〔〕A.(1, 1)B.(√2, √2)C.(−1, 1)D.(−√2, √2)17.在直角坐标系中,点A(−2, 3)与点B关于原点成中心对称,那么点B的坐标为〔〕A.(2, 3)B.(2, −3)C.(−2, −3)D.(−2, 3)18.平移、旋转与轴对称都是图形之间的一些主要变换,以下关于图形经这些变换后说法错误的〔〕A.对应线段的长度不变B.对应角的大小不变C.图形的外形和大小不变D.图形的位置不变19.如图,正三角形网格中,已有两个小正三角形被涂黑,随机将图中其他小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的概率是〔〕A.1 7B.2 7C.37D.以上答案都不对20.如图,Rt△ABC中,∠C=90∘,AC=8,BC=6,△ABC绕着点B逆时针旋转90∘到△A′B′C′的位置,AA′的长为〔〕A.10√2B.10C.20D.5√2三、解答题〔共6 小题,每题10 分,共60 分〕21.(1)如图1,在正方形网格中,每个小正方形的边长均为1个单位.将△ABC向绕点C逆时针旋转90∘,失掉△A′B′C′,请你画出△A′B′C′〔不要求写画法〕.21.(2)如图2,点O和△ABC,试画出与△ABC关于点O成中心对称的图形.22.△ABC各顶点坐标区分为A(5, 1),B(2, 3),C(0, 0),将它绕原点顺时针方向旋转90∘,失掉△A1B1C1(1)求A1,B1,C1的坐标;(2)求△A1B1C1的面积.23.将Rt△ABC绕顶点C区分旋转90∘、180∘、270∘失掉图所示的图形,衔接BB1、B1B2、B2B3、B3B,直角边BC=1,求四边形BB1B2B3的外形及其面积.24.某校九年级学习小组在探求学习进程中,用两块完全相反的且含60∘角的直角三角板ABC 与AFE按如下图(1)位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0∘<α< 90∘),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30∘时,四边形ABPF是什么样的特殊四边形?并说明理由.25.(1)如图1,在△ABC中,绕点C旋转180∘后,失掉△CA′B′.请先画出变换后的图形,写出以下结论正确的序号是________.①△ABC≅△A′B′C;②线段AB绕C点旋转180∘后,失掉线段A′B′;③A′B′ // AB;④C是线段BB′的中点.在(1)的启示下解答下面效果:25.(2)如图2,在△ABC中,∠BAC=120∘,D是BC的中点,射线DF交BA于E,交CA的延伸线于F,请猜想∠F等于多少度时,BE=CF?〔直接写出结果,不证明〕(3)如图3,在△ABC中,假设∠BAC≠120∘,而(2)中的其他条件不变,假定BE=CF的结论依然成立,那么∠BAC与∠F满足什么数量关系〔等式表示〕并加以证明.26.阅读下面资料:如图(1),把△ABC沿直线BC平行移动线段BC的长度,可以变到△DEC的位置;如图(2),以BC为轴,把△ABC翻折180∘,可以变到△DBC的位置;如图(3),以点A为中心,把△ABC旋转180∘,可以变到△AED的位置.像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改动位置,不改动外形大小的图形变换,叫做三角形的全等变换.回答以下效果:①在图(4)中,可以经过平行移动、翻折、旋转中的哪一种方法怎样变化,使△ABE变到△ADF 的位置;②指图中线段BE与DF之间的关系,为什么?答案π(5, −2)1.(−4, 3)522.2120∘3.点A与点C4.(1, 2)(1, −2)5.(0, √2)6.47.旋转平移8.绕点A顺时针旋转9.5210.(8064, 0)11-20:CBADD CBDCA21.解:(1)(2)如下图:22.解:(1)如图,△ABC绕原点顺时针方向旋转90∘失掉△A1B1C1,点A1,B1,C1的坐标区分为(5, −1),(3, −2),(0, 0);(2)△A1B1C1的面积=5×2−12×2×3−12×2×1−12×1×5=3.5.23.解:∵将Rt△ABC绕顶点C区分旋转90∘、180∘、270∘失掉图所示的图形,直角边BC=1,∵BC=CB1=CB2=CB3=1,∠B1CB2=∠B1CB=∠B2CB3=∠BCB3=90∘,∵BB1=BB3=B2B3=B1B3,B1B3=BB2,∵四边形BB1B2B3为正方形,∵BB1B2B3的面积为:2×2×12=2.24.(1)证明:∵用两块完全相反的且含60∘角的直角三角板ABC与AFE按如下图(1)位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0∘<α<90∘),∵AB=AF,∠BAM=∠FAN,在△ABM和△AFN中,{∠FAN=∠BAM AB=AF∠B=∠F,∵△ABM≅△AFN(ASA),∵AM=AN;(2)解:当旋转角α=30∘时,四边形ABPF是菱形.理由:衔接AP,∵∠α=30∘,∵∠FAN=30∘,∵∠FAB=120∘,∵∠B=60∘,∵∠B+∠FAB=180∘,∵AF // BP,∵∠F=∠FPC=60∘,∵∠FPC=∠B=60∘,∵AB // FP,∵四边形ABPF是平行四边形,∵AB=AF,∵平行四边形ABPF是菱形.25.解:(1)依据旋转的性质,知①②③④都是正确的.(2)60∘.(3)等量关系:∠BAC=2∠F.作△FCD关于点D的中心对称三角形DBF′,那么∠F′=∠F,FC=BF′=BE,∠F′=∠F=∠BED=∠FEA.∵∠BAC=2∠F.26.解:①在图4中可以经过旋转90∘使△ABE变到△ADF的位置.②由全等变换的定义可知,经过旋转90∘,△ABE变到△ADF的位置,只改动位置,不改动外形大小,∵△ABE≅△ADF.∵BE=DF,∠ABE=∠ADF.∵∠ADF+∠F=90∘,∵∠ABE+∠F=90∘,∵BE⊥DF.。
人教版九年级数学上册第二十三章《旋转》测试题(含答案)一.选择题1.下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.下列图形绕某点旋转90°后,不能与原来图形重合的是()A.B.C.D.3.已知点A的坐标为(2,3),O为坐标原点,连接OA,将线段OA绕点A按顺时针方向旋转90°得AB,则点B的坐标为()A.(5,1)B.(﹣3,2)C.(﹣1,5)D.(3,﹣2)4.下列说法中错误的是()A.成中心对称的两个图形全等B.成中心对称的两个图形中,对称点的连线被对称轴平分C.中心对称图形的对称中心是对称点连线的中心D.中心对称图形绕对称中心旋转180°后,都能与自身重合5.下列英语单词中,是中心对称图形的是()A.SOS B.CEO C.MBA D.SAR6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.在平面直角坐标系中,点M(3,﹣5)关于原点对称的点的坐标是()A.(﹣3,﹣5)B.(3,5)C.(5,﹣3)D.(﹣3,5)8.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部分图形,其中不是轴对称图形的是()A.B.C.D.9.将图绕中心按顺时针方向旋转60°后可得到的图形是()A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=15,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为()A.48B.50C.55D.60二.填空题11.与电子显示的四位数6925不相等,但为全等图形的四位数是.12.若数字串“000”和数字串“101”既是轴对称图形,又是中心对称图形,那么数字串“110”是图形(填写“轴对称”、“中心对称”).13.如图,在△ABC中,AB=4,AC=3,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为.14.如图,是4×4正方形网格,其中已有4个小方格涂成了黑色,现在要从其余12个白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有个.15.如图,△ABC与△DEF关于O点成中心对称.则AB DE,BC∥,AC=.16.在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是.17.时钟从上午9时到中午12时,时针沿顺时针方向旋转了度.18.时钟的时针在不停地转动,从上午6时到上午9时,时针旋转的旋转角为度,从上午9时到下午5时时针旋转的旋转角为度.19.如图,把这个“十字星”形图绕其中心点O旋转,当至少旋转度后,所得图形与原图形重合.20.如图,在平面直角坐标系中,点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,…,OP n(n为正整数),则点P2020的坐标是.三.解答题21.在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为;(3)求线段CC′的长.22.如图所示的图形是一个轴对称图形,且每个角都是直角,小明用n个这样的图形,按照如图(2)所示的方法玩拼图游戏,两两相扣,相互间不留空隙.(1)用含a、b的式子表示c;(2)当n=2时,求小明拼出来的图形总长度;(用含a、b的式子表示)(3)当a=4,b=3时,小明用n个这样的图形拼出来的图形总长度为28,求n的值.23.(1)计算:+﹣2﹣1;(2)一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是;在前16个图案中有个;第2008个图案是.24.在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图(1)指出旋转中心,并求出旋转角的度数.(2)求出∠BAE的度数和AE的长.25.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角.例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90度.(1)判断下列命题的真假(在相应的括号内填上“真”或“假”).①等腰梯形是旋转对称图形,它有一个旋转角为180度.()②矩形是旋转对称图形,它有一个旋转角为180°.()(2)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是(写出所有正确结论的序号):①正三角形;②正方形;③正六边形;④正八边形.(3)写出两个多边形,它们都是旋转对称图形,都有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形:;②既是轴对称图形,又是中心对称图形:.26.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A、O旋转后的对应点为A′、O′,记旋转角为a.(1)如图1,若a=90°,求AA′的长;(2)如图2,若a=120°,求点O′的坐标.参考答案一.选择题1.解:传送带传送货物的过程中没有发生旋转.故选:A.2.解:A、绕它的中心旋转90°能与原图形重合,故本选项不合题意;B、绕它的中心旋转90°能与原图形重合,故本选项不合题意;C、绕它的中心旋转90°能与原图形重合,故本选项不合题意;D、绕它的中心旋转120°才能与原图形重合,故本选项符合题意.故选:D.3.解:如图,过A作y轴的平行线,过B作x轴的平行线,交点为C,由∠C=∠ADO,∠BAC=∠AOD,AB=OA,可得△ABC≌△OAD,∴AC=OD=2,BC=AD=3,∴CD=5,点B离y轴的距离为:3﹣2=1,∴点B的坐标为(﹣1,5),故选:C.4.解:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称,中心对称图形的对称中心是对称点连线的交点,根据中心对称图形的定义和性质可知A、C、D正确,B错误.故选:B.5.解:是中心对称图形的是A,故选A.6.解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:B.7.解:点M(3,﹣5)关于原点对称的点的坐标是(﹣3,5),故选:D.8.解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.9.解:将图绕中心按顺时针方向旋转60°后得到的图形是.故选:A.10.解:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=15,∴△BCD为等边三角形,∴CD=BC=BD=15,∵AB===17,∴△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=8+15+15+17=55,故选:C.二.填空题11.答:5269.12.解:根据对称图形的概念,知110仅是轴对称图形,对称轴为正中水平直线.13.解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1=3,∠CAC1=60°,∴∠BAC1=90°,∴BC1===5,故答案为:5.14.解:如图所示:1,2,3位置即为符合题意的答案.故答案为:3.15.解:∵△ABC与△DEF关于O点成中心对称∴△ABC≌△DEFAB=DE,AC=DF又∵BO=OE,CO=OF,∠BOC=∠FOE∴△BOC≌△EOF∴∠BCO=∠OFEBC∥EF故填:=,EF,DF16.解:点(﹣3,4)关于原点对称的点的坐标是(3,﹣4).故答案为:(3,﹣4).17.解:从上午9时到中午12时,时针就从指向9,旋转到指向12,共顺时针转了3个“大格”,而每个“大格”相应的圆心角为30°,所以,30°×3=90°,故答案为:90.18.解:从上午6时到上午9时时针转过3个大格,所以,3×30°=90°,上午9时到下午5时时针转过8个大格,所以,8×30°=240°.故答案为:90;240.19.解:把这个“十字星”形图绕其中心点O旋转,当至少旋转360°÷4=90°后,所得图形与原图形重合,故答案为:90.20.解:∵点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;∴OP1=1,OP2=2,∴OP3=4,如此下去,得到线段OP4=23,OP5=24…,∴OP n=2n﹣1,由题意可得出线段每旋转8次旋转一周,∵2020÷8=252…4,∴点P2020的坐标与点P4的坐标在同一直线上,正好在y轴的负半轴上,∴点P2020的坐标是(0,﹣22019).故答案为:(0,﹣22019).三.解答题21.解:(1)△ABC与△A′B′C′成中心对称;(2)根据点C的坐标为(0,0),则点B′的坐标为:(7,﹣2);(3)线段CC′的长为:=2.22.解:(1)由图(1)可得,c=;(2)观察图形可知:当2个图(1)拼接时,总长度为:2a﹣2c=2a﹣2×=a+b;(3)结合(2)发现:用n个这样的图形拼出来的图形总长度为:a+(n﹣1)b,当a=4,b=3时,4+3(n﹣1)=28,解得:n=9.∴n的值为9.23.解:(1)原式==2;(2)根据分析,知应分别为,5,.24.解:(1)在△ABC中,∵∠B+∠ACB=30°,∴∠BAC=150°,当△ABC逆时针旋转一定角度后与△ADE重合,∴旋转中心为点A,∠BAD等于旋转角,即旋转角为150°;(2)∵△ABC绕点A逆时针旋转150°后与△ADE重合,∴∠DAE=∠BAC=150°,AB=AD=4,AC=AE,∴∠BAE=360°﹣150°﹣150°=60°,∵点C为AD中点,∴AC=AD=2,∴AE=2.25.解:(1)等腰梯形必须旋转360°才能与自身重合;矩形旋转180°可以与自身重合.①等腰梯形是旋转对称图形,它有一个旋转角为180度.(假)②矩形是旋转对称图形,它有一个旋转角为180°.(真)(2)①只要旋转120°的倍数即可;②只要旋转90°的倍数即可;③只要旋转60°的倍数即可;④只要旋转45°的倍数即可.故是旋转对称图形,且有一个旋转角为120°的是①、③.(3)360°÷72°=5.①是轴对称图形,但不是中心对称图形:如正五边形,正十五边形;②既是轴对称图形,又是中心对称图形:如正十边形,正二十边形.26.解:(1)∵点A(4,0),点B(0,3),∴OA=4,OB=3.在Rt△ABO中,由勾股定理得AB=5.根据题意,△A′BO′是△ABO绕点B逆时针旋转900得到的,由旋转是性质可得:∠A′BA=90°,A′B=AB=5,∴AA′=5.(2)如图,根据题意,由旋转是性质可得:∠O′BO=120°,O′B=OB=3过点O′作O′C⊥y轴,垂足为C,则∠O′CB=90°.在Rt△O′CB中,由∠O′BC=60°,∠BO′C=30°.∴BC=O′B=.由勾股定理O′C=,∴OC=OB+BC=.∴点O′的坐标为(,).。
第23章旋转单元测试
一、选择题
1.平面图形的旋转一般情况下改变图形的()
A. 位置
B.大小
C.形状
D.性质
2. 9点钟时,钟表的时针与分针的夹角是()
A.30°
B.45°
C.60°
D.90°
3. 将□ABCD旋转到□A′B′C′D′的位置,下面结论错误的是()
A. AB=A′B′
B. A B∥A′B′
C.∠A=∠A′
D.△ABC≌△A′B′C′
4.在下列图形中,既是中心对称又是轴对称的图形是()
5.如图,图形旋转一定角度后能与自身重合,则旋转的角度可能是()
A. 30°
B. 60°
C.90°
D. 120°
A B C D
F
E
D
C
B
A
O
F
E
D
C
B
A
第5题图第6题图第8题图
6.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将△BCE 绕点 C 顺时针旋转90°得到△DCF ,连接EF ,若∠BEC=60°,则∠EFD 的 度数为()
A. 10°
B. 15°
C. 20°
D. 25° 7.把一个正方形绕它的中心旋转一周和原来的图形重合() A. 1次 B. 2次 C. 3次 D. 4次
8.如图,△ABC 和△DEF 关于点O 中心对称,要得到△DEF ,需要将△ABC A. 30° B. 90° C. 180° D. 360° 二、填空题
9.钟表上的时针随时间的变化而转动,这可以看做的数学上的 . 10.菱形ABCD 绕点O 沿逆时针方向旋转得到四边形A ′B ′C ′D ′,则四边形A ′B ′C ′D ′是 .
11.钟表的分针经过20分钟,旋转了 ° . 12.等边三角形至少旋转 °才能与自身重合.
13.如图,△ABC 以点A 为旋转中心,按逆时针方向旋转60°,得到的△A B 1B 是 三角形。
14.如图,△ABC 绕着点C 顺时针旋转35°得到△1A 1B C ,若1A 1B ⊥AC ,则∠A 的度数是 。
13题图 C 1
B 1
C B
A
14题图
A 1
B 1
C
B
A
15题图
F
E
C
B
A
16题图
D
C B
A
15.如图,△ABC 绕点B 逆时针方向旋转到△EBF 的位置 ,若∠A=15°,∠C=10°,E ,B ,C 在同一直线上,则∠ABC= ,旋转角是 。
16.如图,等腰△ABC 绕点A 旋转到△ACD 的位置。
已知∠ABC=80°,则在这个图中,点B 的对应点是 ,BC= ,∠ACD= ,旋转中心是 ,旋转角是 。
三、解答题(本大题共6个小题,共
52分) 17.(本题6分)
在图中,将大写字母H 绕它右上侧的顶点按逆时针方向旋转90°,请作出旋转后的图案。
18.(本题8分) 如图,菱形A ′B ′C ′D ′是菱形ABCD 绕点O 顺时针旋转90°后得到的,你能画出旋转前的图形吗?
O
D'
C'B'
A '
19如图,将扇形绕点O 按顺时针方向旋转,分别画出旋转下列角度后的图形:
(1)90° (2)180° (3)270° 你能发现将扇形旋转多少度后能与原图形重合吗?
答:旋转 后能与原图形重合。
20.(本题8分)
如图,Rt △ABC ,绕它的锐角顶点A 分别逆时针旋转90°,180°和顺时针旋转90°:
(1) 试作出Rt △ABC 旋转后的三角形;
(2) 将所得的所有三角形看成一个图形,你将得
到怎样的图形?
答:将所得的所有三角形看成一个图形,可以得 图形。
O
C B
A
21.(本题10分)
如图,四边形ABCD 的∠BAD=∠C=90°,AB =AD ,AE ⊥ BC 于E ,△BEA 旋转一定角度后能与△DFA 重合. (1) 旋转中心是哪一点? (2) 旋转了多少度?
(3) 若AE=5cm ,求四边形ABCD 的面积.
22.(本题12分)
把两个全等的等腰直角三角板ABC 和EFG (其直角边长均为4)叠放在一起,如图(1),且三角板EFG 的直角顶点G 与三角板ABC 的斜边的中点O 重合,现将三角板EFG 绕点O 顺时针方向旋转(旋转角α满足的条件:0°<α<90°),四边形CHGK 是旋转过程中两个三角板的重叠部分,如图(2). 在上述旋转过程中,BH 与CK 有怎样的数量关系?四边形CHGK 的面积有何变化?证明你发现的结论。
F E
D
C
B
A
(O)
G F
E
C B
A
(1)
E
B
A (2)
参考答案
一、1.A 2.D 3.B 4.C 5.C 6.B 7.D 8.C
二、9.旋转 10.菱形 11.120 12.120 13.等边 14.55°
15.155° 25° 16.点C CD 70° 点A 40°
三、21.(1)点A (2)90° (3)因为ADF ABE S S ∆∆=且易得四边形
AECF 是正方形,所以cm S S AECF 2552ABCD ===四边形四边形.
22.BH=CK ;因为△GBH ≌△GCK.此四边形的面积保持不变,总等于原直角三角形面积的一半.。